Classifying Protein Fingerprints

Melanie Hilario!, Alex Mitchell?, Jee-Hyub Kim!,
Paul Bradley?, and Terri Attwood?

L Artificial Intelligence Laboratory, University of Geneva, Switzerland
{Melanie.Hilario,Jee.Kim}@cui.unige.ch
2 European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
{mitchell,pbradley}@ebi.ac.uk
3 School of Biological Sciences, University of Manchester, UK
attwood@bioinf.man.ac.uk

Abstract. Protein fingerprints are groups of conserved motifs which can
be used as diagnostic signatures to identify and characterize collections of
protein sequences. These fingerprints are stored in the PRINTS database
after time-consuming annotation by domain experts who must first of
all determine the fingerprint type, i.e., whether a fingerprint depicts a
protein family, superfamily or domain. To alleviate the annotation bottle-
neck, a system called PRECIS has been developed which automatically
generates PRINTS records, provisionally stored in a supplement called
prePRINTS. One limitation of PRECIS is that its classification heuristics,
handcoded by proteomics experts, often misclassify fingerprint type; their
error rate has been estimated at 40%. This paper reports on an attempt
to build more accurate classifiers based on information drawn from the
fingerprints themselves and from the SWISS-PROT database. Extensive
experimentation using 10-fold cross-validation led to the selection of a
model combining the ReliefF feature selector with an SVM-RBF learner.
The final model’s error rate was estimated at 14.1% on a blind test set,
representing a 26% accuracy gain over PRECIS’ handcrafted rules.

1 Motivation and Background

Protein fingerprints are groups of conserved amino acid motifs drawn from mul-
tiple sequence alignments that are used to characterise protein families. The
PRINTS database [1] is a compendium of more than 1800 diagnostic fingerprints
for protein families, superfamilies and domains. It provides large amounts of
handcrafted annotation, aiming to document the constituent protein families and
to rationalise the conserved regions in functional and structural terms. The an-
notation procedure is exhaustive and time consuming, and consequently PRINTS
remains relatively small by comparison with other, largely automatically-derived
signature databases.

To address this issue, automation of fingerprint production and annotation
has been investigated. The PRINTS group has previously developed PRECIS [9],
an annotation tool which generates protein reports from related swiss-PrROT
entries. Though this approach has worked well overall, PRECIS has areas of
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Fig. 1. Schema of a protein fingerprint. Each row is a protein sequence and each column
an amino acid. Solid rectangles depict conserved regions or motifs.

limitation. The annotation generated by the tool inevitably lags that which
could be derived from current literature. This is due to the fact it is almost
entirely dependent on information stored in swiss-PROT, which, despite the
valiant efforts of a team of annotators, cannot be kept up to date. Another
limitation of PRECIS is that its relatively simple heuristics often misclassify
fingerprints. Broadly speaking, fingerprints may be diagnostic for a gene family
or superfamily (united by a common function), or a domain family (united by
a common structural motif). The type of fingerprint has implications on the
kind of information and the level of detail to be reported within the annotation.
Increased accuracy of fingerprint classification would therefore help ensure that
the correct information was processed to generate appropriate annotation.

2 Task and Data Representation

The goal of the work reported in this paper was to replace PRECIS’ handcrafted
heuristics with classification models extracted from data. These heuristics deter-
mined fingerprint type through an analysis of swiss-PROT database records con-
cerning protein sequences within the fingerprint. Before turning to swiss-PROT,
we decided to investigate whether a fingerprint’s physical parameters could be
used as discriminators to improve classification. As shown in Fig. 1, a fingerprint
is basically a multiple sequence alignment with a number of conserved regions
or motifs. A fingerprint can be characterized in terms of three distinct entities:
the fingerprint itself and its component motifs and proteins. We are therefore
confronted with a multirelational learning problem which can be addressed most
naturally using a relational approach. This paper focuses on an alternative ap-
proach which propositionalizes the task representation by aggregating protein
and motif characteristics over the fingerprint.
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Fingerprint. The fingerprint as a whole can be described by the number of mo-
tifs and proteins it contains. The coherence of a fingerprint can also be expressed
by true and partial positive rates, defined as the proportion of protein sequences
that match all or only a part of the motifs in the fingerprint respectively. These
fingerprint statistics are summarized in Table 1-1.

Motif. Individual motifs are characterized by their size and degree of conser-
vation. Motif size is assessed in terms of length (number of amino acids) and
depth (the number of protein sequences). A motif’s depth is used to compute its
coverage, i.e., the fraction of protein sequences in the fingerprint that match the
motif. We explored two ways of measuring motif conservation. One alternative
was to estimate a motif’s entropy by averaging over the entropies of its individ-
ual columns (residues). Since motifs involving more protein sequences tend to
have higher entropies, the result was normalized by dividing the average entropy
over the number of sequences. The main objection of proteomics experts to the
entropy-based approach was that it takes no account of domain knowledge con-
cerning differential distances between amino acids; entropy computations assume
a zero-or-one distance between residues, whereas it is a known biological fact
that certain residues are more closely related than others. This knowledge has
been codified in substitution matrices, among which Blosum matrices have been
shown to achieve better overall performance [7]. On the basis of the Blosum-62
matrix, we computed a motif’s blosum score by averaging over the blosum scores
of its individual residues. In the absence of strong prior arguments in favor of

Table 1. Predictive information for fingerprint classification.

Description | Variables
I. Fingerprint
Number of motifs nmt
Number of proteins npr
True positive rate tpr
Partial positive rate ppr
II. Motif
Motif length (average, std, median, min, max) mlen-A|S|D|N|X
Motif coverage (average, stdev, median, min, max) mcov-A|S|D|N|X
Motif entropy (average, stdev, median, min, max) ment-A|S|D|N|X
Motif blosum score (average, stdev, median, min, max) msco-A|S|D|N|X
Intermotif distance (average, stdev, median, min, max) mdis-A|S|D|N|X
ITI. Protein sequence
SWISS-PROT ID: fraction of proteins with an 1D pSP
- LHS| frac of proteins whose LHS length > 3|4 chars PN3, pN4
frac of proteins with common first 1|2|3|4 chars in LHS| mjl, mj2, mj3, mj4
entropy of LHS averaged over first 1|2|3]4 chars el, e2, e3, e4
- RHS| frac of proteins with a common RHS (species) mjr
entropy of RHS taken as a unit er
CC | similarity: sequence belongs to family cc-belongs
CC | similarity: sequence contains domain cc-contains
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either entropy or blosum scores, we decided to retain both, leaving it up to the
feature selection process (Sec. 3.2) to sort out their relative effectiveness. A final
characteristic concerns the distance between a motif and its nearest neighbor in
the fingerprint; intuitively, large lengths and small intermotif gaps suggest closely
related protein sequences. These motif characteristics are summarized in Table
1-II. For propositional learning, where the training unit is the fingerprint, we
summarized each characteristic by computing its average, standard deviation,
median, minimum and maximum over all fingerprint motifs.

Sequence. Each protein sequence is uniquely identified by its swiss-PrROT/
TrEMBL ID or accession number. In an approach similar to that taken by PRECIS,
we use these codes to retrieve the swiss-PROT entry for the protein and examine
this for information concerning the individual protein or the family to which it
belongs. The swiss-PROT ID field itself is particularly informative by virtue of its
structure. It is composed of two parts separated by an underscore; the left hand
side (LHS) denotes the protein type and the right hand side (rRHS) the species.
PRECIS’ classification heuristics focus on the LHS, which tends to be homogeneous
among members of a protein family. PRECIS searches for a common root of at
least 2 characters in a set of sequence 1Ds; if such a root is found in at least 75%
of these, the fingerprint is assumed to represent a family.

Rather than imposing fixed thresholds as PRECIS does, we simply isolated
features that might correlate with fingerprint type and expressed them in terms
of relative frequencies — e.g., the relative frequency of swiss-PROT IDs in a set
of proteins, or the proportion of iDs whose LHS is at least 3 characters long. We
used two features to simulate PRECIS’ homogeneity heuristic: (1) the majority
score, defined as the proportion of LHSs sharing the most frequent common root
of 1-4 characters, and (2) entropy as averaged over the first 1-4 characters of
the LHS. For the right hand side, homogeneity was also quantified by the ma-
jority score and entropy, but computed this time over the rRHS as a whole. This
asymmetric processing of the 2 ID components aims to mimic unwritten con-
ventions that appear to govern assignment of protein names in SWiss-PROT. In
the LHS, biological homogeneity is suggested by the length of the leftmost com-
mon substring in a set of protein names; for instance the perfect uniformity of
the LHS in JAK1 HUMAN, JAK!I MOUSE, JAK1 BRARE and JAK1 CYPCA suggests
a tightly knit baselevel family while the 4th-letter variations in BAXA HUMAN,
BAXB_HUMAN and BAXD HUMAN reflect interfamily differences within a super-
family. However, these conventions are implicit and short of perfectly consistent,
hence the need for adaptive induction from examples rather than formulation as
hard and fast rules.

Finally, we follow PRECIS’ reliance on SWISs-PROT’s CC similarity field, which
often contains information about the family membership of a protein. This field’s
value can take the form belongs to <family-or-superfamily-name> or contains
<domain-name>. However the information is not always consistent for all pro-
teins in a fingerprint; rather than a boolean indicating the presence or absence of
the flag words 'belongs to’ or ’contains’, we compute the proportion of proteins
containing one or the other (whichever is more frequent).
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3 Data Preprocessing and Mining Methods

3.1 Missing Value Imputation

The swiss-PROT ID field is a valuable source of hints concerning the class of pro-
teins in a fingerprint. Unfortunately, many proteins have no associated swiss-
PROT IDS. As a result for 7.5% of the training examples, all 12 features concerning
the LHS and RHS of SWi1ssS-PROT IDs had missing values. These values are clearly
not 'missing completely at random’ as defined in [8], since their presence or ab-
sence is contingent on the value of another feature, the fraction of swiss-pProT
identified proteins. This precludes the use of simple data completion methods
such as replacement by means, which have the added drawback of underesti-
mating variance. In addition, the distribution of incomplete features was diverse
and far from normal; we thus imputed missing values using a non parametric
technique based on K-nearest neighbors [11].

3.2 Feature Selection

The initial data representation described in Sec. 2 contained a total of 45 fea-
tures or predictive variables, 30 based on the initial fingerprint and 15 on infor-
mation culled from swiss-PROT. It was not obvious which of these features were
discriminating or redundant or even harmful. To obtain the minimal feature set
needed to obtain reasonable performance, several feature selection methods were
investigated and their impact on classification accuracy evaluated. We compared
two variable ranking methods based on information gain or mutual information
(I(X,Y)=H(X)-H(X|Y)=H(Y)—- H(Y|X)), and symmetrical uncertainty

o H(X)+H(Y)—H(X,Y)
(U(X,Y) = 2 [HXROO AL

cluded ReliefF and correlation-based feature selection (crs). crs selects feature
sets rather than individual features [6]; while ReliefF scores individual features,
its nearest-neighbor based approach evaluates each feature in the context of all
others and integrates the impact of irrelevant, noisy or redundant features [10].

}) To account for feature interaction, we in-

3.3 Algorithm and Model Selection

To ensure coverage of the space of possible hypotheses, we investigated learn-
ing algorithms with clearly distinct biases. Among the basic algorithms we used
were logic-based learning algorithms that build decision trees and rules (J48
and Part [12], variants of C5.0 tree and C5.0 rules respectively; Ltree, which
builds oblique hyperplanes contrary to the orthogonal decision borders built
by C5.0 [5]); density-estimation based learners like Naive Bayes (NBayes) and
instance-based learning (I1BL, a variant of K-nearest-neighbors); linear discrim-
inants (Lindiscr) and their diverse extensions such as multilayer perceptrons
(MLps), and support vector machines (svMs). Details on each of these learning
approaches can be found in, e.g., [4].

These methods represent different points along the bias-variance spectrum:
NBayes and LinDiscr are extremely high-bias algorithms; at the other extreme,
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decision trees and rules, 1BL, MLPs and svMs are high-variance algorithms which
can yield simple or very complex models depending on user-tuned complexity
parameters. From the viewpoint of feature evaluation, sequential methods like
orthogonal decision trees and rules consider predictive features successively while
so-called parallel learners like NBayes, 1BL, LinDiscr, MLPs, and svMs evaluate
all features simultaneously. Ltree is a hybrid sequential-parallel algorithm as it
builds decision tree nodes sequentially but can create linear combinations of
features at each node.

This set of basic algorithms was completed by two ensemble methods, boosted
decision trees (C5.0boost) and RandomForest [2]. Ensemble methods build mul-
tiple models and classify new instances by combining (usually via some form of
weighted voting) the decisions of the different models. Both methods use deci-
sion trees as base learners but differ in the way they diversify the training set.
Boosting produces new variants of the training set by increasing the weights of
instances misclassified by the model built in the previous training cycle, effec-
tively obliging the learner to focus on the more difficult examples. RandomForest
produces data variants by selecting features instead of examples. At each node,
RandomForest randomly draws a subset of K (a user-defined parameter) features
and then selects the test feature from this typically much smaller subset.

In order to find a reasonably good hypothesis, learning algorithms should be
assessed in a variety of parameter settings. From the set of candidates described
above, only the high-bias algorithms, NBayes and Lindiscr, have no complexity
parameters; however NBayes has variants based on whether continuous variables
are discretized (D) or not, in which case probabilities are computed either by
assuming normality (N) or via kernel-based density estimation (K). For all the
others, we tested a number of parameter settings and used only the best settings
for inter-algorithm comparison. The main complexity parameter of recursive
partitioning algorithms (J48, Part, and Ltree) is the C parameter, which governs
the amount of postpruning performed on decision trees and rules. Its default
value is 0.25 for J48 and Part and 0.10 for Ltree. We tried values of C from
1 to 50 in increments of 5. In IBL, the parameter K (the number of nearest
neighbors to explore) produces a maximal-variance model when assigned the
default value of 1. At the other extreme, with K = the number of training
instances, IBL degenerates to the default majority rule. We explored the behavior
of 1BL with K=1, 10, 25, 40, 55, and 70. The topology of MLPs is governed
by H, the number of hidden units. We tested H=1, 10, 23, 50, 75, and 100.
RandomForest is governed by 2 main parameters — the number of trees which
form the commitee of experts (I) and the number of features (K) to select for
each tree. We explored combinations of I = 10, 25, 50, and 100 and K = 3, 6,
12, 18, 24. Finally, SVM complexity parameters depend on the type of kernel
used. We tried polynomial kernels with degree E = 1 and 2 as well as radial
basis function (Gaussian) kernels, with gamma (G) or width = 0.01 (default),
0.05, 0.1, 0.15, and 0.2. In addition, the regularization parameter C governs the
trade-off between the empirical risk or training error and the complexity of the
hypothesis. We explored values of C from 1 (default) to 100 in increments of 10.
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4 Experimentation and Results

4.1 Experimental Strategy

The dataset contained 1842 fingerprint records from version 37 of the PRINTS
database. 1487 cases were used as the design set, i.e., as training and validation
sets for algorithm, feature, and model selection. The rest (355 cases) was held
out for blind testing of the trained models. All experiments were conducted using
stratified 10-fold cross-validation. Prior to training, missing values of incomplete
examples were imputed as described in Sec. 3.1. Contrary to KNN-based missing
value imputation, which is unsupervised, all feature selection techniques used
(Sec. 3.2) rely on the training class labels and therefore had to be nested within
the cross-validation loop.

4.2 Results on the Initial Feature Set

Table 2, column 3, summarizes the cross validated error rates of the learning
algorithms. To provide a basis for comparison, the top give two baseline errors.
The first is the traditional default error obtained by assigning all examples to
the majority class. The class distribution of the 1842-instance training set is as
follows: domain = 0.05, family = 0.54, superfamily=0.41. The majority rule thus
yields a baseline error of 45.6% on the training set. A second yardstick, specific
to the given task, is the error rate obtained by applying PrRECIS’ handcrafted
classification heuristics. A simulation run of these heuristics on both the design
set and the blind test set revealed an error rate of around 40%.

The obvious result is that the error rates of all learning algorithms are sig-
nificantly better than both the default error of ~46% and the PRECIS error
of ~40%. The advantage gained from data mining leaves no room for doubt.
Note that the lowest errors in this application are obtained by either ensemble

Table 2. Error rates on the full 45-feature set. Each row gives the optimal parame-
ter setting found for the given method, its cross-validation (CV) error on the design
dataset, and its final test error on the holdout (HO) set.

Method Parameters CV error HO error
Default 45.60 46.19
PRECIS 39.55 40.28
SVM-RBF G=0.05, C=50 14.06 14.65

RandomForest 1=100, K=6 14.59 17.46
C5.0boost B=10, C=0.1 15.13 18.59

MLP H=10 15.13 16.62
IBL K=10 15.47 19.44
Lindiscr - 15.80 17.18
LTree C=0.05 16.27 17.46
J48 C=0.01 16.48 19.15
Part C=0.05 19.97 21.69

NBayes K 23.20 27.07
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methods (RandomForest and C5.0boost) or parallel learning algorithms which
examine all features simultaneously (SVM-RBF, MLP, IBL). On the contrary, learn-
ing algorithms which test individual features sequentially (Ltree, J48, Part) are
gathered together at the lower end of the performance scale. NBayes turned out
to be the least accurate in all our comparative experiments, with kernel-based
density estimation obtaining slightly better results than the variants that dis-
cretize continuous features or assume a normal distribution. NBayes aside, this
clear performance dichotomy between parallel and sequential algorithms will be
observed constantly in this study under different experimental settings.

The statistical significance of the differences in error rate is not clearcut.
Without adjustment for multiple comparisons, the difference between the five
lowest error rates is not statistically significant at the 1% level. However, after
applying the Bonferroni adjustment for a total of around 500 pairwise tests, all
statistically significant differences vanish among the first 8 models. Nevertheless,
we selected the model with the lowest nominal error — svM-RBF with a kernel
width of 0.05 and a complexity parameter C of 50.

The result of algorithm and model selection was then validated on the blind
test set. Since cross-validation produces a different model at each iteration, the
selected SVM-RBF parameterization was rerun on the full training set and ap-
plied to the blind test set of 355 examples. The error rate obtained was 14.65%,
confirming that the observed cross-validation error of 14.06% resulted not from
overfitting but from effective generalization. As a countercheck, the other candi-
date models were also run on the holdout set; the results are shown in the last
column of Table 2. The difference between the cross-validation and the blind
test error is less than 0.6% for sVM-RBF but varies between 1.2% and 4% for
all other algorithms, the highest blind test error (NBayes) exceeding 27%. This
remarkable stability of svM-RBF, added to its predictive accuracy, parsimony,
and reasonable computational speed, confirms and magnifies the advantage of
SVM-RBF over the other learning methods on this specific classification task.

4.3 Results of Feature Selection

To find the minimal feature set needed for accurate prediction and see which
features were truly discriminating, we applied the feature selection methods
described in Section 3.2. The number of features to retain was automatically
determined by the subset selector CFS in backward search mode but had to be
supplied by the user for the three feature rankers ReliefF, InfoGain, and SymmU
(we tried 32, 36, and 40 features).

Results are summarized in Table 3. Each row shows the specific combination
of model parameters, feature selection method, and number of selected features
that produced the lowest cross-validation error (col. 5) for a given learning algo-
rithm (col. 1). The first obvious finding is that feature selection improves perfor-
mance for all learning algorithms except svM-RBF, which achieves the same error
rate with 36 features as with the initial set of 45 features. Nevertheless, SVM-RBF
conserves its top rank; in fact, the most remarkable result is that the overall
ranking of learning algorithms remains the same before and after feature selec-
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Table 3. Cross-validation and holdout error rates after feature selection.

Method Parameters Feature selector # features CV error HO error
SVM-RBF G=0.05, C=90 ReliefF 36 14.09 14.08
RandomForest 1=25, K=12 InfoGain 40 14.19 16.61
C5.0boost C=0.3 ReliefF 32 14.79 16.90
MLP H=10 ReliefF 40 14.86 16.90
IBL K=10 SymmU 32 14.93 18.31
Lindiscr - ReliefF 40 15.40 17.46
LTree C=0.05 SymmU 32 15.53 18.59
J48 C=0.10 SymmU 32 15.53 19.72
Part C=0.10 CFS 7-10 17.35 18.03
NBayes K CFS 7-10 18.02 23.66

tion. To validate the observed results, we reran these ten learning configurations
on the full training set and applied the resulting models to the blind test set.
Here again, we observe the same phenomenon as on the initial feature set: the
holdout error of svM-RBF is 14.08%, practically identical to its cross-validation
error of 14.06%:; for all other algorithms the holdout error was higher than the
cross-validation error by an average of 2.84%.

5 Discussion

This section addresses two issues related to the findings described above. First,
what is the source of sVM-RBF’s generalization power on this particular task?
Second, how can we assess the relative impact of domain-specific (e.g. Blosum
scores) and domain-independent features (e.g. entropy) on the discriminatory
ability of the trained model?

One hypothesis that might explain the performance of SVM-RBF on this task is
its approach to multiclass learning. Rather than solve a C-class problem directly
like most of the other algorithms studied, it builds a decision frontier by building
and combining the responses of (g) pairwise binary classifiers. In this sense svM-
RBF could be viewed as an ensemble method and the rankings given in Tables 2
and 3 would simply confirm the widely observed efficacy of model combination
versus individual models in many classification tasks. This hypothesis is however
weakened by the fact that Lindiscr follows the same pairwise binary approach to
multiclass problems and yet displays worse performance. To see more clearly into
the issue, we reran J48, Part, IBL, NBayes and MLP with the same parameters as
in Table 2, but this time adopting SVM’s pairwise binary classification strategy.
Holdout error increased slightly for MLP and J48, and improved somewhat for the
others. However, no error improvement led to a performance level comparable to
SVM-RBF’s 14.65% holdout error. While the binary pairwise approach may have
favorably affected accuracy, it cannot be considered the main source of SVM-RBF’s
generalization performance.

A complementary explanation can be found by comparing the performance of
parallel and sequential learners, as noted in Sec. 4.2. Recursive partitioning meth-
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ods generally fared badly on this problem, as shown clearly in Tables 2 and 3.
Exceptions are the two ensemble methods where the myopia of sequential feature
testing is compensated by iterative resampling, whether instance-wise (boosting)
or feature-wise (RandomForest). These cases aside, parallel algorithms take the
top six performance ranks, with or without feature selection. The clear perfor-
mance dichotomy between parallel and sequential algorithms suggests a strong
interaction among the 45 features distilled from fingerprints. This conjecture is
further supported by results of sensitivity analyses described below.

The second issue concerns the relative contributions of domain-specific (e.g.,
Blosum scores, PRECIS heuristics) and domain-independent features (e.g. en-
tropy measures) to the discriminatory power of the final classifier. We examined
separately features describing motif conservation and those describing the set of
collected proteins. Motif conservation in a fingerprint is depicted by 2 groups
of features, one based on domain-specific Blosum scores and another on generic
entropy measures (Sec. 2). To compare their relative effectiveness, we removed
each feature set at a time and trained the selected SVM-RBF learner on the re-
maining features. Each time, the resulting increase in error was taken to quantify
the impact of the excised feature set on classification performance. Finally, we
removed both feature sets simultaneously to estimate their combined impact.

The results are shown in Table 4(a). Error increase was slight for both feature
sets and neither appeared to have a convincingly higher impact on accuracy
than the other. Even the combined impact on performance differed little from
the individual contribution of one or the other. Blosum scores and entropy not
only seem to have roughly equivalent and redundant predictive impact; their
combined contribution is scarcely greater. We see two possible explanations:
either motif conservation has a minor role in discriminating fingerprint types, or
an adequate representation of motif conservation remains to be found.

Knowledge-based and knowledge-poor features concerning fingerprint pro-
teins displayed quite different trends. One set of features embodied expert knowl-
edge underlying the PRECIS heuristics while another set comprised less informed

Table 4. Impact of knowledge-based and knowledge-poor features. Error" and "Perf
Impact" indicate respectively the error and error increase (wrt to the baseline) entailed
by removal of a given feature set.

Ccv HO
Baseline: Full feature set (SVM-RBF) 14.06 14.65
(a) Features describing motif conservation
Error Perf Impact Error Perf Impact

Uninformed (entropy) 15.33 1.28 16.34 2.28
Knowledge-based (Blosum scores)  14.85 0.81 16.62 2.56
Both 15.06 1.01 16.62 2.56

(b) Protein-related features
Error Perf Impact Error Perf Impact
Uninformed (see Section 2) 24.88  10.83  29.86 15.80
Knowledge-based (PRECIS rules)  14.53 0.47 15.49 1.44
Both 27.10 13.05 33.52 19.47
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features such as simple statistical and entropy measures on the left and right
components of swiss-PROT protein 1Ds. We followed the same procedure as
above to quantify their respective contributions to generalization power; these
are summarized in Table 4(b). When PRECIS-based features were removed, hold-
out error increased by 1.44% whereas removal of uninformed features incurred
a degradataion of 15.8% (cross-validation errors display the same behavior). It
is clear that uninformed features are contributing much more to classification
performance (note however that the 3 knowledge-based features are heavily out-
numbered by the 12 uninformed features). Remarkably, when both feature sets
were deleted, error climbed to 27.10%, much more than the sum of their indi-
vidual contributions.

To summarize, these motif- and protein-centered views of fingerprints reveal
two distinct feature interaction scenarios. In one case, the domain-specific and
domain-independent feature sets have roughly comparable contributions to pre-
dictive accuracy; their combination seems to add nothing to either alone, but
it is unclear which should be kept. In the second case one feature set is clearly
more effective than the other, but their combined contribution to generalization
performance suggests a synergy that individual feature rankers or sequential
learners are at pains to capture. This could explain the observed superiority of
parallel learners like svMs and MLPs on this particular problem.

6 Conclusion and Future Work

Since this classification task is a preliminary step in the time-consuming process
of annotating protein fingerprints, it is important to achieve high accuracy in
order to avoid even more tedious backtracking and database entry revision. The
approach described in this paper achieved a 26% accuracy increase relative to the
performance of expert rules; the goal of ongoing and future work is to decrease
further the residual error of 14.1%. There is a diversity of ways to achieve this;
we explored 2 alternatives with negative results.

The first unfruitful track is the relational learning approach. As seen in Sec-
tion 2, protein fingerprints have a natural multirelational flavor since they gather
information on diverse object types — the fingerprints themselves and their com-
ponent motifs and protein sequences. Relational learning thus seemed to be a way
of gaining accuracy via increased expressive power. However, our experiments
in relational instance-based learning were inconclusive; they incurred consider-
ably higher computational costs but did not yield better performance than the
propositional approach reported above.

The second track explored was the combination of multiple learned mod-
els. We investigated the efficacy of combining learned models with uncorrelated
errors to obtain a more accurate classifier. We measured the pairwise error cor-
relation of the 10 classifiers in Table 2. SVM-RBF, NBayes and Part were among
those that had the lowest pairwise error correlations. We built an ensemble model
which combined the predictions of these three learners by a simple majority vote.
The error rate of the combined model was 15.87% on the training set and 18.03%
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on the holdout test set — in both cases higher than that of svM-RBF alone. Several
other model combinations based on low error correlation were explored; they all
yielded higher error rates than at least one of their component base learners.

Other hopefully more promising paths remain to be explored. Ongoing work
is focused on correcting data imbalance to increase accuracy. Protein domain
families represent less than 5% of PRINTS records, and we are adapting to this
task a set of class rebalancing techniques that have proved effective in another ap-
plication domain [3]. Perhaps the biggest remaining challenge is that of bringing
more discriminatory information to bear on the classification task. Integrating
information from databases other than swiss-PROT is a feasible solution in the
short term. But given the time lag between the production of new data and
their availability in structured databases, we may ultimately have to mine the
biological literature to gather fresh insights on the 14% of protein fingerprints
that currently defy classification.
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