Filtered Reinforcement Learning

Douglas Aberdeen

National ICT Australia, Canberra, Australia
douglas.aberdeen@nicta.com.au
http://csl.anu.edu.au/"daa/

Abstract. Reinforcement learning (RL) algorithms attempt to assign
the credit for rewards to the actions that contributed to the reward.
Thus far, credit assignment has been done in one of two ways: uniformly,
or using a discounting model that assigns exponentially more credit to
recent actions. This paper demonstrates an alternative approach to tem-
poral credit assignment, taking advantage of exact or approximate prior
information about correct credit assignment. Infinite impulse response
(IIR) filters are used to model credit assignment information. IIR filters
generalise exponentially discounting eligibility traces to arbitrary credit
assignment models. This approach can be applied to any RL algorithm
that employs an eligibility trace. The use of IIR credit assignment filters
is explored using both the GROMDP policy-gradient algorithm and the
Sarsa(\) temporal-difference algorithm. A drop in bias and variance of
value or gradient estimates is demonstrated, resulting in faster conver-
gence to better policies.

1 Introduction

A reinforcement learning (RL) agent performs actions in a world according to a
parameterised policy. The agent seeks to adjust the policy in order to maximise
a long-term measure of reward. A core difficulty is correctly distinguishing which
actions caused high long-term pay offs. This temporal credit assignment problem
is usually solved in one of two ways: (1) if the task ends in finite time then credit
can sometimes be assigned uniformly; (2) if the task has an infinite horizon a
discounted model assigns exponentially more credit to recent actions.

This paper shows how to use exact or approximate prior information about
reward delays to build a tailored credit assignment model. Taking advantage of
such information leads to a reduction in the bias and variance of estimates; either
value estimates or gradient estimates depending on the algorithm employed. We
demonstrate that the drop in bias and variance can be orders of magnitude given
good prior information about the correct way to assign credit to actions.

For example, the action of adding chemicals to a bio-reactor, or the injection
of a drug into a patient, will not have an immediate impact. Rather, the response
of the system to the input ramps up with time to a maximum, then decays slowly.
In this case exponential credit assignment is inappropriate because the majority
of the credit goes to the most recent input (or action), rather than the input
that is currently dominating the system response.

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNATI 3201, pp. 27-38, 2004.
© Springer-Verlag Berlin Heidelberg 2004

28 Douglas Aberdeen

This paper introduces the use of infinite impulse response (IIR) filters to
shape the temporal credit assignment. The IIR filter generalises eligibility traces
to non-exponential models of credit assignment. IR models of credit assignment
can be applied to any RL algorithm that employs an eligibility trace. This paper
uses the GPOMDP policy-gradient algorithm [1], and the Sarsa(A) algorithm [2].

This rest of this paper is organised as follows. Section 2 describes the al-
gorithms modified in this paper: GPOMDP and Sarsa()). Section 3 describes
how these algorithms can be extended to arbitrary temporal credit assignment.
Section 4 presents experiments that demonstrate the bias and variance improve-
ments that can be gained using IIR filters. Section 5 presents a less trivial ex-
ample to motivate the use of trace filtering in real world problems.

2 Background

Markov decision processes (MDPs) are a natural framework for RL. Specifically,
the GPOMDP and Sarsa(\) algorithms are described. Both employ exponential
credit assignment models that will be generalised to ITR assignment models. The
algorithms are described in the fully observable MDP framework for simplicity,
but GPOMDP extends to partially observable environments without loss of local
convergence guarantees [1]. Some experiments in this paper are only partially
observable, where an observation replaces the exact state.

2.1 MDPs

A MDP consists of states S = {1,...,|S|} of the world, actions A = {1,...,|A|}
available to the agent in each state!, and a (possibly stochastic) reward (i) for
each state i € S.

Each action a € A determines a stochastic matrix P(a) = [Pr(jli, a)] where
Pr(jli,a) denotes the probability of making a transition from state i € S to
state j € S given action a € A. The GPOMDP and Sarsa(\) algorithms are
model-free methods that do not assume explicit knowledge of P(a), however,
such knowledge might contribute to the temporal credit assignment modelling.

All policies are stochastic. The probability of choosing action a given state
i, and parameters § € RI’l is Pr(a|6,i). The evolution of the world state i is
Markov, with an |S| x |S| transition probability matrix P(#) = [Pr(j]6,)] whose
entries indexed by ¢, 7 are given by

Pr(jl6,i) = Y Pr(al0,i) Pr(jli,a). (1)

acA

In this paper, the soft-max function is used to generate Pr(alf,i) from the
real valued output of a parameterised function. Given a vector y € RI4! the

! Generally, state spaces may be uncountably infinite. However, the maths becomes
more complex without altering the final algorithms.

Filtered Reinforcement Learning 29

probability of action a € {1,..., A} according to the soft-max distribution gen-
erated by the vector y is

exp(Ya) '
Sl exp(ym)

The vector y represents the real valued output of a function representing ac-
tion likelihoods for policy-gradient algorithms, or state/action values for value
algorithms. All but the final experiment use parameters 6, ; representing each
likelihood, or value, of action a given state i. L.e., a table lookup representation.
Thus, given state i, we have y = [01,...,0).4),]-

Pr(aly) := (2)

2.2 GPOMDP
GPOMDP is an infinite-horizon policy-gradient algorithm [1]. It computes the

gradient of the long-term average reward

. 1
n(0) = JHim_ 7F

T
Z Tt‘|) (3)
t=1

with respect the policy parameters 6. The expectation Ey is over the distribution
of states {ig,41,...} induced by P(6). Updating the policy parameters in the
direction of the gradient locally maximises the average reward. Under a standard
ergodicity assumption n(#) is independent of the starting state and is equal to

S|

n(0) = Z mi(0)r (i) = =(0)Tr, (4)

where 7(6) is the stationary distribution of states induced by the current 6, and

ro=[r(1),...,r(|SD]".

Theorem 1 (From [1]). Let I be the identity matriz and let e be a column
vector of 1’s. Further, drop the explicit dependence of n, P, and m on 6. The true

gradient of the long-term average reward with respect to 6 is

Vn=aT(VP)[[- P+ex™] "1 (5)

This theorem, proved in [1], establishes the true gradient of the long-term average
reward with respect to the policy parameters, but requires known Pr(j|i, a) and
also requires inverting a potentially large matrix.

The GPOMDP algorithm computes a Monte-Carlo approximation of (5). The
agent interacts with the environment, producing a state, action, reward sequence
{i1,a1,71,...,i7,ar,rr}. Under mild technical assumptions, including ergodic-
ity and bounding all the terms involved, the approximation is:

T-1 T

—~ 1 . s—t—1
Vn = 7 Z Vlog Pr(a:|0, i) Z B s, (6)

t=0 s=t+1

30 Douglas Aberdeen

where the discount factor 8 € [0, 1) has been introduced to control the variance
of the gradient estimate. The discount factor implicitly assumes that rewards
are exponentially more likely to be due to recent actions. Without such an as-
sumption, rewards must be assigned over a potentially infinite horizon, resulting
in estimates with infinite variance. As (3 decreases, the variance decreases, but
the bias of the gradient estimate increases [1]. In practice, (6) is implemented
efficiently using an exponentially discounted eligibility trace, described in Sec-
tion 2.4. The algorithmic form of GPOMDP is described in Section 3.1.

2.3 Sarsa(})

Sarsa(\) [2] is introduced only briefly to highlight the general applicability of
IIR credit assignment. Sarsa(\) estimates

T

Q(i,a,0) = Hm Eo ;5t7"t|i0:i,aoza ;

which is the expected discounted sum of rewards over time. Policies in this paper
are derived from Q(%, a, #) using the soft-max function (2), preferring actions with
high value. Updates to 6 are driven by temporal differences: the error between
the current value estimate and the actual return

d(ig, te41) = [re + 0Q(ip41, apg1,0:)] — Qir, ar, 6y),
Orr1 = 0 + apd(iy, ie11)es.

The discount factor § determines the importance of long-term rewards compared
to instant rewards, a4 is a possibly variable step size, and e; is the current
eligibility trace that stores how eligible each parameter is for an update in the
direction of d(i¢, i;+1). Temporal errors can also be computed over multiple time
steps, resulting in n-step temporal differences d(it, i+4,,). The Sarsa(A) algorithm
implicitly calculates all such n-step temporal differences to the end of the episode
via the use of the eligibility trace. Sarsa(\) places a weight of A»~! on the n-step
temporal error when updating parameters [2]. Thus, increasing the A parameter
places more weight on temporal differences computed over many steps. As A — 1
we approach a Monte Carlo method that uses the actual sum of returns received
from the target state to the terminal state, providing low bias, but high variance.
Reducing A reduces variance at the cost of increased bias [3]. If domain knowledge
such as “the rewards received for the first 7 steps after actions, are random with
mean 0” is available, the exponential weighting model A" ~! is not appropriate.
The n-step temporal difference weight should be 0 for the first 7 steps, then
decay exponentially with A"~ 7. For Sarsa()), this paper generalises eligibility
traces to allow arbitrary weights for each n-step temporal difference. Computing
the eligibility trace e; is described in the next section. The algorithmic form of
Sarsa()\) is described in Section 3.2.

Filtered Reinforcement Learning 31

2.4 Computing Eligibility Traces

A standard mechanism for implementing temporal credit assignment is the eli-
gibility trace. The eligibility trace e is a vector of length |0|, one element for each
parameter 6, € 6. The trace stores how eligible each state/action pair is for re-
ceiving the credit for a reward or temporal difference. If function approximation
is used the trace stores how eligible each parameter is for being updated.
Eligibility traces work in a similar way for most RL algorithms. After receiv-
ing a state i; and choosing an action a;, the gradient of the parameterised policy,
or Q-function, is computed for action a;, and added to the trace. At each step
the trace is also multiplied by the trace discount. The GROMDP trace update is

eir1 = PBey + Vlog Pr(a|0, i), (7)

where Vlog Pr(a.|0,i;) is the log derivative of the soft-max function (2) for the
chosen action. The Sarsa(\) eligibility trace update is

Ct+1 = 5)\6,5 + VQ(it+1, At41, 9t+1)- (8)

The use of A in this equation implements the weighting by A"~ ! of the n-step
return (see [2] for details). The additional factor of ¢ in the eligibility trace
update is needed to maintain consistency with the discount factor selected for
the domain. The value discount factor 6 — which changes the quantity being
estimated — should not be confused with the GPOMDP discount factor of S,
which is introduced to control the variance of estimates of Vn 2.

The parameterisation of Q(i,a,6) in this paper is a lookup table, with one
parameter for each combination of state and action. The gradient is 1 for the
parameter indexed by the current state and action, and 0 otherwise.

Eligibility traces are used in many RL algorithms including TD(X), Sarsa()),
Williams’ REINFORCE [4], and GPROMDP. See [2] for a history of eligibility traces.

3 Filtering Traces

Equations (7) and (8) show the usual method of updating the eligibility trace for
GPOMDP and Sarsa(A). Implicit in this update is the idea of assigning exponen-
tially more credit to recent actions. Figure 1 shows how an instantaneous reward
of 1 at time ¢, would be credited to the action chosen 7 steps ago with a discount
factor of 0.9. Control theorists would view Figure 1 the impulse response of a
first order infinite impulse response (IIR) filter.

In this section first order eligibility traces are extended to arbitrary IIR
filters, allowing domain specific knowledge about credit assignment to be used.
The aim is to subtract a zero-mean, non-zero variance process from the gradient
or value estimates, effectively reducing the variance of these estimates. This
paper extends the author’s early trace filtering work [5] to value-methods, and
provides empirical evaluations of the methods. Other relevant work includes

2 However, the two quantities are related to each other [1].

32 Douglas Aberdeen

[6], which discusses replacing traces, and [1] which mentions the possibility of
higher-order trace filters.

IIR filters are a common signal processing tool for producing an output at
each time step from a weighted combination of the |b| most recent inputs and
the |a| — 1 past outputs [7]. The term “infinite” impulse response arises because
filters may have an infinitely non-zero response to an impulse input at time 0.
IIR filters have uses in many digital signal processing applications. IIR filters
allow efficient eligibility traces that can allow arbitrary assignment of credit.

°
&

Credit assigned
o o
2 &
Output
s o
2 &

Fig. 1. The first 25 points of the infinite
impulse response generated by the 8 =
0.9 model.

The general form of an IIR filter is

la]—1

Fig.2. The optimal FIR filter for Test
I, with parameters a = [1], b =
[0,0,1,0,0,1,0,0,1].

[b]—1

Ci41 = — Z An€t41—n + Z bnxt—n s (9)
n=1 n=0

where a = [ag, a1, ..., aq—1] and b = [bo, b1, . .., bjp|—1] are vectors of filter coef-
ficients. The z’s represent the filter input at each time step. For eligibility traces,
the filter input x; is the gradient of the policy with respect to the chosen action
and current parameters. The coefficient a¢ is assumed to be 1. To implement the
filter, eligibility traces from the last |a] — 1 steps, and gradients x from the last
|b| action choices, must be stored, requiring O(|0|(|b| + |a] — 1)) units of memory.

Let 7 denote the delay between an action and a possible reward. Impulse
response plots, such as Figure 1, show the filter outputs e, after a scalar impulse
input of zg = 1 and z, = 0 for all 7 > 0. The response at delay 7 represents
the likelihood of receiving a reward for an action chosen at 7 = 0. The filter
coefficients determine the poles and zeros of the filter’s discrete-time frequency
response. Given a desired impulse response, i.e., a desired temporal credit as-
signment model, filter coefficients can be chosen by a least squares fit of the filter
coefficients to the Fourier transform of the impulse response®. The complexity of

3 The Matlab function invfreqz performs this task.

Filtered Reinforcement Learning 33

implementing the filter increases linearly with the number of coefficients. Hence
it can be useful to choose a filter that only approximates the desired credit as-
signment, but has few coefficients. Unsurprisingly, experiments demonstrate it
is better to award credit mistakenly than to not award credit where it is due.
A special case of IIR filters are finite impulse response (FIR) filters. FIR
filters set a = [1] and the maximum 7 for which the impulse response is non-zero
is given by |b|. FIR filters are useful if actions have short impacts on rewards.

3.1 GPOMDP(iir)

Algorithm 3 generalises the original GPOMDP algorithm to arbitrary IIR fil-
ters. To recover GPOMDP we use a first order filter which matches standard
exponential credit assignment by setting @ = [1.0, =], and b = [1].

The gradient estimate returned by GPOMDP(iir) is passed to a Polak-Ribiére
conjugate-gradient line-search ascent routine to update the parameters. The
whole process repeats until the magnitude of A drops below 107!°, indicat-
ing a local maximum has been reached. Convergence guarantees for GPOMDP
[1] tell us that as § — 1, and as the number of estimation steps T' — oo, the
GPOMDP estimate Ap = Vn exactly. Here, a similar result is presented for
GPOMDP(iir). Without loss of generality the following proposition assumes an
FIR filter with an unbounded number of coefficients. This includes all possible
IIR filters that. Due to using fewer co-efficients, IIR filters are more efficient.

Proposition 1. Let the GPOMDP(iir) filter coefficients be b, =1 Vn =0, ...,
|| — 1. Let Ap be the estimate produced by GPOMDP(iir) after T steps. Then
under ergodicity assumptions, and if all absolute quantities in Algorithm 3 can
be bounded by constants*, then limp_, lim|y| oo A7 =V w.p. 1.

It states that as the number of estimation steps 7' — oo, and as the filter impulse
response approaches a step function, the GROMDP(iir) estimate converges to V.
The proof can be seen by observing that approaching the step response filter is
the same credit assignment model as 3 — 1, then applying the proofs of [1]. If a
tailored filter correctly assigns all credit the estimation will be unbiased without
needing an infinite step response filter. Compare this with GPOMDP, which
cannot produce unbiased estimate unless credit assignment is truly exponential.
However, errors in the filter design will introduce bias into gradient estimates.

3.2 SARSA(iir)

Algorithm 4 shows the SARSA(iir) algorithm for approximating Q(7, a). The IIR
filter is implemented by lines 8-11. Lines 8 to 10 pre-discount the currently
stored eligibility traces before applying the IIR filter. This is needed to maintain
the consistency of value estimates with discount factor 9.

Unlike GROMDP, SARSA(iir) is an online algorithm that updates parameters
at each step. Various termination conditions can be used, including stopping
when values change by less than a threshold over a fixed number of iterations.

* See [1] for the detailed assumptions.

34 Douglas Aberdeen

1: Set ep = [0], and Ag = [0] (eg, Ag €| | 1+ Set eg =0,00 =0
]1@9‘)7 T = estimation steps 2: while not converged do
2: while t < T do 3: Sample ary1 ~ Pr(-|Q(it+1,-,0¢))
3: Observe i; from the world 4: Observe i, at — 41, Q41
4: Sample as ~ Pr(:0,) 5: Compute d(ie,ie41) =
5.z = Vlog Pr(a¢|6,i:) Tt +0Q(it41, ar41,0¢) — Q(ir, ar, Ot)
. _ al—- 6: Set Or41 = 0 + ed(it, ie41)es
6: erp1 = — <Z‘n:‘ ! anet+17n) + t+1 ¢ e, St
b1 ! 7 Set zy = VQ(Zt+17 at+179t+1)
(n—0 bnfctfn) 8 foreachei—n,n=0,...,|a|]—1do
T A1 = As+ HLl [r(it41)esr1 — Ay 9: et—n = 0et—n
8: Issue action a 10: end for .
9: t—t+1 11: e = — (Z‘::‘I anet+17'n) +
10: end while (Z\;\;& bnmt,n>
12: end while
Fig. 3. Algorithm GPOMDP(iir) Fig. 4. Algorithm SARSA(iir)

4 Experimental Bias and Variance

Four simple partially observable (PO)MDPs were contrived as initial test cases:
(I) the POMDP of Figure 5 with p = 0; (II) the POMDP of Figure 5 with
p = 0.5; (IIT) the POMDP of Figure 6 when completely observable; (IV) the
POMDP of Figure 6 when only the tree depth is observable.

N\ r from ag

S
1 a2 from/ 1
O-0~0~0-0~0~Cr® %gvx?
3 from f1o
, [¥ @ (] (]

Fig.5. The completely unobservable
MDP used to test IIR trace filtering in
Tests I and II. Test I sets p = 0.0; Test Fig. 6. In tests III and IV rewards have a
II sets p = 0.5 so that rewards may occur delay of 1 step. In test IV, only the depth
an arbitrarily long time after the action = down the tree is observable. In light states
at state 0. r =1, in dark states r = —1.

Tests I and I are examples in which normal GROMDP performs poorly but
trace filtering performs well. The optimal policy is to follow the lower path. The
3 actions only have an effect in state 0, deterministically leading to one of the 3
outward transitions. This POMDP is harder than it looks. For GPOMDP with
£ < 0.97 the reward discounted back to the action at state 0 appears higher for
the upper two paths than for the lower optimal path. Thus for § < 0.97, the
gradient will drive parameters away from the optimal policy.

Filtered Reinforcement Learning 35

In Tests III and IV the agent must fall down the correct branch of the tree to
maximise its reward. The agent can move left or right at each level. The reward
is always delayed by 1 step, that is, when the agent makes a decision leaving the
top node, level 0, it gets the relevant reward when it reaches level 2. The test
is interesting because rewards overlap; the reward received immediately after
executing an action is actually due to the previous action.

GPOMDP(iir) was applied to all tests. The number of gradient estimate steps
used for each test is shown in Tables 1 and 2. The bias optimal filter for Test I,
where p = 0 in Figure 5, has a finite response with impulses corresponding to
the 3 possible reward delays 7 = 2, 5 and 8. This filter is shown in Figure 2. Two
filters were applied to Test II. The first is a conservative FIR filter that assumes
that rewards must be received between 2-12 steps after the relevant action. It
makes no other assumption so all impulses between 7 = 2 and 7 = 12 have
equal value, defining a rectangular filter. A good filter for Test II, where p = 0.5,
should have an infinite response since rewards can be received an arbitrarily
long time into the future. An IIR filter with impulses at the same places as
Figure 2 was also tested, but the impulses were allowed to decay exponentially
by setting the a; weight to -0.75. This filter is shown in Figure 8. It might be
suspected that we should decay the impulses by a factor of p, however it was
found empirically that this produced a bias and variance worse than the FIR
filter. This indicates that it is important to over-estimate credit assignment if bias
needs to be minimised. Indeed, it is usually the case that the correct assignment
varies with the current state and the current policy. Provided the chosen credit
assignment model covers all possible action-reward delays over all states and
policies, there is no bias penalty. Even better performance would be obtained if
credit assignment dynamically adjusted to state and policy. The optimal filter
for Tests IIT and IV is @ = [1] and b = [0, 1], a single impulse for the 1 step
delay in rewards. Because the test POMDPs are small, we can compute true
gradient by evaluating Equation (5) directly. The true gradient was compared
to 50 GPOMDP(iir) gradient estimates for each test and filter. Comparisons were
done with GPOMDP discounting at 8 = 0.9 and 5 = 0.99.

4.1 GPOMDP(iir) Results

The bias and variance of the estimates are shown in Tables 1 and 2. For Test I,
£ = 0.9 produced a gradient pointing in the wrong direction; 8 = 0.99 is in the
correct direction but the high variance meant a total of around 1,000,000 estima-
tion steps were required to achieve convergence to the correct policy. The simple
FIR filter required only around 10,000 total estimation steps. These values are
different from 7T in the first row, which is the steps performed for single gradient
estimate. In Test II, the FIR filter only marginally improved the bias, how-
ever the variance was greatly reduced. The IIR filter improved the bias further
because it does not arbitrarily cut off credit after 12 steps, but introducing an in-
finite response increased the variance. This demonstrates that the bias/variance
trade-off in the choice of discount factor is still evident when designing arbitrary
filters. Proposition 1 tells us that one choice of unbiased filter for any POMDP is

36 Douglas Aberdeen

an infinite step response. A large class of POMDPs have unbiased filters that are
not infinite step responses. For example, the POMDP of Test I and any POMDP
that visits a recurrent state after at most N steps. Tests III and IV also show
an order of magnitude improvement in bias (measured in degrees) and variance.

Table 1. Results for Tests I and II. Table 2. Results of Tests III and IV.

T I: 10° 1I: 10° T II1: 1000 1V: 400
Trace type| Bias Var.| Bias Var. Trace type| Bias Var.| Bias Var.
B3=09 176° 12.3] 176° 18.4 £ =0.9 0.610° 0.560| 1.11° 111
B=0.99 | 14.7° 2090(14.7° 2140 B =0.99 1.15° 2.88| 2.36° 655
FIR 0.107° 7.72(113.9° 10.71 FIR 0.0450° 0.278]0.394° 16.7
IIR 4.35° 59.5

4.2 SARSA(iir) Results

The SARSA(iir) algorithm was run on a completely observable version of Test
I, comparing it to the performance of Sarsa()\) with different values of \. For
these experiments, § was fixed at 0.99 and the parameter step size a was fixed
at 0.01. Three filters were used, with 100 training runs of each. The first using
the optimal FIR filter of Figure 2, the second using A = 0.9, and the third
A = 0.99. Exploration was encouraged by choosing actions according to a soft-
max distribution (2) on the Q-values.

filtered raf

TE = ===

[TIT]

o] 10 20 30
Trials

| L (“'HTTQJ...Z&

5

Fig. 7. Results of applying the SARSA(iir)
to Test I. The error bars show one stan-
dard deviation.

Fig. 8. A good IIR filter for Test II, with
parameters a = [1,—0.75], b = [0,0,1,
0,0,1,0,0,1].

Figure 7 plots the mean reward 7 received over trials of 1000 steps each,
averaged over the 100 optimisation runs. The top line uses the filter of Figure 2,
consistently finding the optimal policy in around 25,000 steps. The policy is near
random if A = 0.99 and the worst policy, with n = 1.11, coincides with A = 0.9.

Filtered Reinforcement Learning 37

5 Drug Dosage Control

When drugs are injected into the body they take a few tens of seconds to reach
maximum effect. The effect then decreases with time. Figure 9 shows an approx-
imate drug concentration curve for the large class of drugs that follow first order
kinetics of elimination [8]. The challenge is to choose dosages at each time step
to maintain a desired drug concentration. Using Matlab to approximate a filter
for Figure 9 results in an IIR filter with coefficients a = [1.0, —1.30,0.096, 0.24]
and b = [0.0074,0.039, —0.023,0.18,0.092, 0.21]. These coefficients were used to
construct a simulator for the reaction of a person to drug injection actions. The
simulator implements (9), allowing an action to be chosen at each discrete time
step and outputting the current total concentration from all doses. The state
space is a subspace of RI%I=1*bl consisting of a vector containing the last 3
total concentrations, and the last 6 actions.

At each time step the agent receives a measurement of the current drug con-
centration in the patient, i.e., the last output of the simulator’s implementation
of (9), corrupted by N(0,0.05) noise. A neural network is used to parameterise
the policy for this continuous state space. The 2 inputs are the desired concentra-
tion level and the observed concentration level, normalised to a [0, 1] range. The
3 hidden units are squashed using the tanh function. The agent chooses from 3
actions: 0 dose, 0.5 dose, or 1.0 dose. The 3 network outputs form the y vector,
passed to a soft-max function to produce a stochastic policy. The network weights
were randomly initialised in [—0.01,0.01]. The desired concentration level was
defined as 14.8 sin(27t/1000), forcing the agent to track a moving target.

Five filters were tried over 100 training runs each: standard exponential dis-
counting with S = {0.8,0.9,0.99}, a rectangular FIR filter that cuts off credit
assignment after 7 = 40, and an IIR filter with the same IIR filter coefficients
used in the simulator. Each gradient was estimated with T'= 2 x 10* steps.

5.1 Results

Figure 10 shows the convergence of the two best filters. Using the IIR filter
instead of discounting with 5 = 0.9 improved the average n from 0.621 to 0.675.
A single sided t-test indicates this result is significant with 99.9% confidence.
The variance of the final IIR solutions was 0.010 compared to 0.014 for § = 0.9.
Random policies achieved n = 0.47 on average. It took an average of 19.0 seconds
to obtain a value of 7 = 0.8 (achieved 6/100 times) using a 3GHz Pentium 4, or
1.28 times longer than the exponential discounting took to achieve the same 7
(which it did 4/100 times). Discounting with 8 = 0.9 was the second best filter
because of the roughly 0.9 decay rate in Figure 9 after the initial peak. The
rectangular filter was the next best with average n = 0.599, 8 = 0.8 returned
n = 0.591, and 8 = 0.99 returned n = .520. Increasing the estimation times for
the IIR filter allowed 1 = 0.812 to be found consistently.

38 Douglas Aberdeen

0.8

0.7

0.6

Drug Concentration

0.5

0 0‘,5 1
Estimation Steps x 10
Fig. 9. A first-order kinetics drug-concen- Fig. 10. Drug dosage task results aver-
tration vs. time curve. The drug is in- aged over 100 runs. Error bars indicate
jected at 7 = 0. one standard deviation.

6 Conclusions and Further Work

Higher-order models of temporal credit assignment can result in greatly reduced
bias and variance, both for value estimates and policy-gradient estimates. Trace
filtering can be applied to any RL algorithm that uses an eligibility trace. Bet-
ter theoretical characterisations of the bias-variance trade-offs of IIR filters are
needed to aid the choice of robust filters. The preliminary experiments are being
extended to problems from non-linear control literature.

Acknowledgements

National ICT Australia is funded by the Australian Government, the Australian
Research Council, and the ICT Centre of Excellence program.

References

1. Baxter, J., Bartlett, P.L.: Infinite-horizon policy-gradient estimation. JAIR 15
(2001) 319-350

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. (1998)

3. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, University of
Cambridge, England (1989)

4. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8 (1992) 229-256

5. Aberdeen, D.: Policy-Gradient Algorithms for Partially Observable Markov Decision
Processes. PhD thesis, Australian National University (2003)

6. Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Machine Learning 22 (1996) 123-158

7. Elliott, S.: Signal Processing for Active Control. Academic Press (2001)

8. Boroujerdi, M.: Pharmacokinetics: Principles and Application. McGraw-Hill, New
York, NY (2002)

	1 Introduction
	2 Background
	2.1 MDPs
	2.2 GPOMDP
	2.3 Sarsa(λ)
	2.4 Computing Eligibility Traces

	3 Filtering Traces
	3.1 GPOMDP(iir)
	3.2 SARSA(iir)

	4 Experimental Bias and Variance
	4.1 GPOMDP(iir) Results
	4.2 SARSA(iir) Results

	5 Drug Dosage Control
	5.1 Results

	6 Conclusions and Further Work
	References

