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Abstract. A tacit assumption in classifier induction is that the class dis-
tribution of the training set must match the class distribution of the test
set. A direct implementation is to retrain a model using a data set with
matching class distribution every time the operating condition changes
(i.e., the matching model). The alternative is to modify the decision rule
of a previous trained model to the new operating condition. The latter is
the single model approach commonly used and recommended by many
researchers. In this paper, we argue with empirical support using decision
trees that learning using the matching class distribution is desirable. We
also make explicit the differences and limitations of the two methods for
the single model approach: rescaling and thresholding.

1 Introduction

In order to produce the best classifier for the test condition, conventional wisdom
requires the class distribution of the training data to match that of the testing
data. Strict compliance to this principle requires one to retrain a new model us-
ing a matching (class) distribution whenever the test class distribution changes.
However, many opt to modify the decision output of a previously trained model
to adjust to the new condition. We call the first approach the matching model
approach and the second the single model approach. The second approach has a
practical advantage because it uses a single model only for all operating condi-
tions. Thus, many researchers (e.g., [2,4,7,14]) use the single model approach
by default or recommend others to use it.

However, despite its common application, it is unclear if the performance of
the single model approach will match that of the matching model approach. This
paper aims to answer this open question.

Both approaches have multiple variations. For the matching model approach,
one may collect a separate training set with matching class distribution; or re-
train using the same training set by re-weighting the instances according to new
class distribution; or use over-sampling or under-sampling to reproduce a new
training set from the original one. For the single model approach, one may rescale
the output probability by a ratio of the changed prior probability [2, 4, 7]; or use
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thresholding in which one determines the appropriate threshold of the previously
trained model using ROC or cost curves [9,12].

Previous analyses on rescaling have not taken into account the type of model
employed. There are two types of models, depending on whether the learning
algorithm is modeling posterior probability or class-conditional probability den-
sity function (or class density model, hereafter). Some suggest that one should
rescale a model regardless of its type. We show that different model types can be
treated differently when rescaling. Examples of posterior probability models are
decision trees, logistic regression and neural networks; and class density models
are Naive Bayesian classifiers and linear discriminant functions.

In addition, we show that model sensitivity is a necessary condition when
considering rescaling a model. An algorithm that is insensitive to prior probabil-
ity produces models with the same structure when trained using different class
distributions. We reveal that a previous analysis on rescaling [7] is based on an
implicit assumption of model insensitivity.

Because of differing and sometimes conflicting factors as described above,
it is not always clear which is the most appropriate approach to produce the
best model in accordance to the requirement of matching distribution. It is thus
important to have a clear understanding of the relationship between different
factors and provide a guide as to what to apply under different scenarios. This
paper contributes toward this end.

Specifically, we investigate the following issues:

e Does the type of model influence what we do when rescaling?

e The limitations of rescaling.

e Does the single model perform comparably to the matching model?

We provide analyses on the first two issues and a comprehensive experiment
comparing the two approaches.

Despite the now known fact that optimal learning can be achieved by us-
ing unmatched class distribution, it is still important to know which of the two
matched class distribution approaches perform better because most of the cur-
rent research is comparing optimal learning against the commonly used single
model approach rather than the matching model approach. We show in this
paper that the latter can be significantly better than the former.

The issue of optimal learning using unmatched class distribution has been
explored elsewhere [12,14]. This issue is not discussed in this paper. Another
related issue is: what does one do when there is insufficient training data for rea-
sonable estimation in the modeling process? For example, given a fixed training
set with class distribution 1:99 while the test distribution is known to be 99:1.
In this paper, we assume the training set has sufficient data to make reasonable
estimation and focus on the stated issues, and leave the issue of insufficient data
to be discussed elsewhere.

Bayes decision rules form the basis of this paper and are described in Section
2. We show that rescaling a class density model is simpler than rescaling a
posterior probability model. Section 3 discusses the limitations of rescaling and
its implicit assumption in a previous analysis. Section 4 describes thresholding
and representing the performance of a model using cost curves. Section 5 shows
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the experimental result comparing the single model approach with the matching
model approach. We provide a discussion of the related issues in Section 6 and
conclude in the last section.

2 Bayes Decision Rules and Rescaling

Let ¢ =< &1, 29, ..., z, > be a vector of attribute-values representing an example
in a classification task; and C' € {1,2} is the class label of the task.

Given a model that produces the posterior probability P(C|z) for a test
example x, the Bayes decision rule used to make a final prediction is as follows:

Predict class 1 if P(1]|z) > P(2|z), (1)

otherwise predict class 2.

Alternatively, if it is the class density function P(X|C) of the data that is
being modeled, then the rule can be similarly described as:

Predict class 1 if P(z|[1)P(1) > P(z|2)P(2), (2)

otherwise predict class 2.

P(C) is the prior probability for class C.
The second equation is derived from the first by applying the Bayes rule

P(z|C)P(C)
PClr) = ——~—. 3
() = =757 (3)
P(z) can be ignored in the Bayes decision rules because it is a constant inde-
pendent of class.
Let M be the factor of the changed ratio of P(C).

M=l 2 (4)

where P(C) and P’(C') are the prior probabilities for class C' in the training set
and testing set, respectively.

Rescaling as suggested by some authors [4, 14] can be done by simply rescal-
ing P(C|z) of the previously trained model by the ratio of the changed P(C).
Following this suggestion, Equation (1) can be rescaled to the test condition as
follows.
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The same rescaling can be applied to both posterior probability models and
class density models. The following rescaling for the class density model shows
that it produces the same result as in the case for posterior probability model.
Rescaling Equation (2) gives:

> = (6)

However, Equation (6) can be re-written and simplified as follows.

P(l)  P(2)
PR~ P )

This means that rescaling a class density model can be done without knowing the
training prior probability.

A caveat is in order here. The analysis thus far assumes that the algorithm,
whether it is producing class density models or posterior probability models, is
totally insensitive to the training prior probability. If this assumption does not
hold, then the rescaled model cannot guarantee to produce the same output as
that from the retrained matched model. We will have further discussion on this
issue in the next section.

3 The Limitations of Rescaling

The above analyses do not take practical considerations into account which limit
its applicability in practice. Here we list two practical constraints and reveal a
limiting implicit assumption in a previous analysis on rescaling.

(a) Rescaling does not adapt to the output range of the model. For exam-
ple, if the output range for P(1|z) is between 0.3 and 0.7 (which is the typical
range of values obtained using the Laplace estimate in decision trees in most of
the experiments we conducted), then rescaling for M > 2 will always predict
class 1 using (5)! An example is shown in Figure 1 in which rescaling a model
trained with natural distribution performs poorly with respect to the models
trained from the matching distribution using the default threshold = 0.5 in each
operating condition 1 < M < 10.

(b) Rescaling relies on accurate probability estimation. Many classifiers are
poor probability estimators [10]. As a result, rescaling becomes an unreliable
method to provide accurate prediction.

(¢) The following analysis on rescaling has an implicit assumption that the
learning algorithm is totally insensitive to prior probability.

“Theorem 1: To make a target probability threshold p’ correspond to a given
probability threshold p, the number of negative examples in the training set

should be multiplied by £ =27 [7]
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Two models with different thresholds will produce the same decision, if and
only if the learning algorithm produces models with the same structure when
trained using different class distributions. Figure 2 shows a simple example: a
model is initially trained using 50:50 distribution; and then a second model is
trained with the same split using a 75:25 distribution. Assuming p and p’ are
the corresponding thresholds in these models that produce the same prediction.
Using Elkan’s formulation, the relationship can be computed as p’ = 1.5p. This
is interpreted as: for the first model, predict class 1 if the output probability
is more than p = 0.5 otherwise predict class 2; the second model can then use
p’ = 0.75 to produce the same prediction.

This is only true if the algorithm is totally insensitive to prior probability, or
in the case of decision trees, the splitting criterion is totally insensitive to prior
probability. The model insensitivity assumption is not true with decision tree
learning algorithms, in general, as shown in the experimental results in [12,14],
for example.

It is important to point out that rescaling does not provide the kind of fine
adjustment as in thresholding because thresholding adapts to the output range
of the model, and can be determined for a wider range of M value. Thresholding
using exactly the same model comes close to that of the matching distribution;
thus, it is much better then rescaling as shown in Figure 1 (the plot for thresh-
olding is eliminated to increase readability.) In addition, thresholding does not
rely on accurate probability estimation, but only requires the class ranking to be
correct (see [10] for a discussion of probability estimation trees.) We will describe
thresholding in the next section.

4 Thresholding and Cost Curves

The key difference between thresholding and rescaling is that each threshold is
determined empirically rather than an adjustment through a decision rule (based
on Bayes rule), as described in the last two sections.
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A decision threshold is the cut-off level used to decide the final prediction of
a classification model. In a two-class problem, the final prediction is class posi-
tive if the model’s posterior probability of a test example is above the threshold;
otherwise it is class negative. When the threshold is changed, the model’s per-
formance also changes. The best threshold is usually determined empirically for
each testing condition using a holdout set.

The procedure used to determine the best threshold can be further aided by
either a cost curve [5] or a ROC curve [9], which represents the performance of a
model. We use cost curves in this paper and describe the pertinent detail below.

The normalised expected cost of a classifier can be expressed in terms of
true positive rate (T'P), false positive rate (F'P) and probability-cost function
(PCF); it is defined by [5] as

NEC = (1-TP)PCF + FP(1 — PCF) (8)
= (1-TP— FP)PCF + FP,
P'(1)C"(2]1)
(W' (2[1) + P'(2)C(1]2)

where PCF = Iz

For the purpose of discussion in this paper, PCF = P’(1) since we assume
C'(2]1) = C'(1]2), where C(a|b) is the cost of misclassifying an example of class
b as belonging to class a. This assumption is solely for ease of discussion and the
result is by no means restricted to the cost-insensitive case only since doubling
P’(1)/P'(2) has the same effect of doubling C’(2|1)/C"(1]2).

The performance of a classification model that uses a fixed decision threshold
is represented by a pair {T'P, F'P}. Given the pair, it can be represented as a
line in the cost space, which consists of the normalised expected cost in the y-
axis and PCF in the x-axis, indicated by the second linear equation. Because
both are normalised, they range from 0 to 1. Different cost lines are obtained by
varying the decision threshold of the same model, as shown in Figure 3a. The
cost curve representing the performance of the single model that uses varying
decision thresholds is the lowest envelop of all cost lines produced by the model.
Examples of cost curves produced from a single tree and multiple trees, using
thresholding, are given in Figure 3b.

We compare the single model approach with the matching model approach,
both using thresholding, in the following section.

5 Single Tree vs Trees Trained
from Matching Distribution

5.1 Experimental Settings

The experiment is aimed to compared the performance of a single tree to that
of trees trained from a matching distribution for different testing conditions. A
cost curve is produced from each case; the latter uses 100 trees, one for each of
the testing conditions (denoted by an integral value of M for 1 to 100), whereas
the former is using one tree for all conditions.
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Fig. 3. (a) Cost lines and curves: each cost line is produced using a fixed decision
threshold. The cost curve for the model is the lowest envelop of all the cost lines
for the model, indicated as the dotted line. (b) Cost curves for a single tree trained
from M = 1 and trees trained from matching distribution in the flare data set. Note
that the cost curve for trees trained from matching distribution spans over the range
corresponding to 1 < M < 100, and not the entire range.

We use the decision tree induction algorithm C4.5 [11] and its default setting
in all experiments, while taking the following modifications into consideration.
The algorithm is modified to take M into consideration in the training process.
For example, with M=2, every minority class training instance will be weighted
twice as high as every majority class instance. Cost-sensitive pruning is done
in accordance with the modified weights, though the default pruning method of
(C4.5 is used unaltered. We also added the DKM splitting criterion [3]. We report
the results of pruned trees using the gain ratio criterion unless stated otherwise.
Note that the probability estimates of decision trees are smoothed using the
Laplace-estimate (as used by [10, 12]).

We use thirteen data sets obtained from the UCI repository [1]. The minority
prior spans from 50% to about 1%, that is from balanced to highly skewed
distributions; and the data sizes range from 1000 to about 49000. There are
seven data sets which have more than two classes and they are converted to
two classes (marked with /). A stratified 10-fold cross-validation is conducted for
each data set.

To compute cost curves, we use an algorithm provided by [9] to obtain all
pairs of {TP, FP} in one pass through a test set for all the different thresholds
of a model. Note that although the test set we used to produce the cost curves
is derived from the natural distribution, we can still compute the expected cost
for different testing or operating conditions (denoted by PCF or its equivalent
M) using Equation (8) since the resultant cost curve, like the ROC curve, is
independent of prior probability and cost.
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Table 1. Average AUCC for a single tree and matching trees trained for the testing
condition 1 < M < 100. Bold face indicates the lowest value in each data set.

Data set Gain Ratio DKM
%Minority Single Tree  Matching Single Tree  Matching
prior|M =1 M = M, Trees\M =1 M = M, Trees
Coding 50.0 3.39 3.39 3.69| 3.45 3.45 3.71
Kr-vs-kp 47.8| 0.26 0.26 0.42| 0.26 0.26 0.33
Abalone’ 317 7.22 6.96 6.58| 7.30 6.73 6.62
German 30.0 7.37 5.77 6.60| 7.45 5.50 6.50
Adult 24.1| 7.22 7.34 6.01| 7.32 7.09 6.40
Splice’ 24.0 2.16 2.65 1.49| 2.28 2.46 1.53
Solar Flare 15.7| 13.68 12.81 12.62| 13.91 12.64 12.44
Satellite’ 9.7| 14.96 13.68 13.25| 14.44 13.71 13.72
Pendigits’ 9.6] 2.65 1.93 1.57| 2.37 2.39 2.08
Hypothyroid 4.8] 4.94 4.03 3.44| 3.76 4.14 3.38
Letter-a’ 39| 292 2.28 2.32| 3.19 2.32 2.15
Nursery’ 2.6] 1.91 1.27 1.39] 191 1.27 1.39
Nettalk-stress’ 1.1} 3275 21.94 23.65| 32.75  20.19 20.24
Win:loss ratio
wrt matching trees| 2:11 6:7 2:11 6:7
wrt M, tree 2:9 3:8
wrt DKM tree 73 5:6 6:6

The area under cost curve (AUCC) is used as a generic measure to compare
the performance of different algorithms under all operating conditions, like that
in the ROC curve [12,14]. Here we limit ourselves to operating conditions 1 <
M < 100 for models trained from naturally skewed class distribution data sets
(where class 1 in Equation (4) represents the minority class.) M > 1 allows
us to concentrate on situations that bias the minority class which often occurs
in practice. This is equivalent to assigning higher cost to the minority class in
cost-sensitive learning.

All AUCC figures reported refer to a partial area under the cost curve. An
algorithm which has smaller AUCC is performing better in general under those
operating conditions. AUCC is computed by integrating over M rather than
PCF because a precise value of performance is available for each M.

5.2 Experimental Results

Table 1 shows the average result for both the gain ratio and DKM splitting
criteria. In addition to a single tree trained from the natural distribution, the
results of a single tree trained from the balanced distribution (i.e., the M} tree)
are also provided. The last three rows show the ratios of the number of data sets
in which one approach wins and loses with respect to (wrt) the other.

The gain ratio results, in the ‘M = 1’ column, clearly show that a single tree
trained from the natural distribution performs worse than trees trained from a
matching distribution with a win:lose ratio of 2:11.
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Fig. 4. Single tree versus matching trees: the detailed results for pruned trees using
partial cost curves constructed from M = 1 (the left-most point) to M = 100 (the right-
most point). Each point is an average over a 10-fold cross-validation. Coding and kr-
vs-kp have identical cost curves for single trees trained with M = 1 and M = M, since
they are naturally balanced. Not all results are presented because of space limitation.

It is interesting to note that there are two data sets in which a single tree
performs better and the only data characteristic that stands out from the other
data sets is that they have balanced distribution. If that is an important criterion,
then a single tree trained from the balanced distribution will perform better than
a single tree trained from the natural distribution. The results in the ‘M = M}’
column of Table 1 indeed demonstrates that with a win:lose ratio of 2:9. This
result agrees with that obtained by Weiss & Provost [14] using the AUC measure
for ROC curves though they are using sampling and we are using re-weighting
to change the training priors.

Comparing to trees trained from the matching distribution, a single tree
trained from the balanced distribution is a better contender than that trained
from the natural distribution but it is still slightly in favour of matching trees,
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with the win:lose ratios of 6:7. This result shows that it is still advisable to train
a tree that matches the operating condition.

We repeat the experiments using the DKM criterion. The results in Table 1
show similar trends for all the pair-wise comparisons as those for gain ratio.

Figure 4 shows the detailed results for gain ratio trees. It is interesting to
note that the M, tree almost always performs better than the M = 1 tree in
most operating conditions in most data sets, and in many cases there is only a
minor difference between the two in the natural distribution operating condition.
Interestingly, M, tree performs better than M = 1 tree in some cases even in the
natural distribution operating condition (at the left-most point)! An example is
in the pendigits data set. The only exception to the above overwhelming one-
sided result is in the splice data set.

The matching model is always better than the single model in abalone and
adult. Compared to the single model trained from the balanced distribution,
the matching model is significantly better in a substantial part of the testing
conditions in splice, pendigits and hypothyroid. The reverse is true in kr-vs-kp,
german, nursery and nettalk-stress.

The cost curves for matching trees are not “smooth” because there are two
variables: a different tree and a different threshold for each point in the curve.
Single tree has only one variable, that is the threshold.

Note that the above discussion on the detailed results are for the gain ratio
trees only. The relative results between the two approaches correspond to the
summarised results shown in Table 1, whether it is for the gain ratio trees or the
DKM trees. However, one can expect some variation in local operating points as
shown in Figure 4 and unsmooth curves for matching trees in all cases.

6 Discussion

We begin this investigation assuming that the single model approach will perform
comparable to the matching model approach at its best, but will never perform
better. The assumption turns out to be incorrect, as shown in the experimental
results in Section 5.2 in which the single model can sometimes outperform the
matching model when the training class distribution is balanced. This unintuitive
result is a direct result of the now known fact that the best classifier can be
induced from an unmatching class distribution [5, 12, 14].

Quite a few researchers (e.g., [8,14]) have shown that models trained from
the balanced distribution perform better than models trained from the natural
distribution, using either rescaling or thresholding. However, none of them has
compared them with matching models. Our result shows that matching models
cannot be ignored by assuming that single models will perform comparably to
matching models.

The re-weighting method is best suited for scenarios in which a skewed dis-
tribution data set is readily available and misclassifying a minority class is
more costly than misclassifying a majority class. The main advantage of the
re-weighting method over the sampling methods is that for any class distribu-
tion we obtain a training set with the same data size, using all the examples.
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This is achieved through weight normalization in which the total weight is al-
ways equal to the total size of the original data [13]. This effectively uses a
mixture of up-weighting for one class and down-weighting for another in each
class distribution modification.

If the test condition is expressed as misclassification cost, one common method
is to apply the minimum expected cost criterion to a previously trained model
and make the final decision with a class that has the minimum expect cost. It
can be easily shown that this is equivalent to rescaling.

7 Conclusions and Future Work

This paper’s first contribution is establishing the relationship among different
methods for the single model approach and their limitations. Its second contri-
bution is answering the open question of whether the single model approach is
sufficient to implement the matching distribution assumption, in comparison to
the matching model approach using decision trees.

Specifically for the first contribution, we show that

e Rescaling for a class density model is easier than rescaling a posterior prob-
ability model because no knowledge of the training prior probability is re-
quired. It is also simpler than rescaling by a ratio of changed probability. This
result suggests that when using class density models such as Naive Bayes,
prior probability needs not be estimated during training; and then apply
Equation (7) which uses the appropriate prior probability for classification.

e Rescaling is not a recommended approach because it relies on accurate prob-
ability estimation and does not adapt to the output range of the model. We
also reveal that a previous analysis advocating the use of rescaling has an
implicit strong assumption, that is, the learning algorithm must be totally
insensitive to prior probability. We argue that the rescaled model cannot
guarantee to produce the same output as that from the matching model, as
claimed by the analysis when this assumption is violated; which is the case
for decision trees, in general.

e Thresholding is the preferred method for the single model approach because
it determines the threshold empirically that avoids the limitations of rescal-
ing.

For the second contribution, we show using decision trees that there is no
foolproof substitute for the matching model approach that recommends training
a model using data whose class distribution matches the testing condition. Using
matching model is usually better than a single model trained from the natural
distribution. One possible substitute for the matching model is to train a single
model using a balanced distribution (either natural or derived). The single model
trained from the derived balanced distribution is only likely to work better than
the matching model when the original distribution is highly skewed.

We show that model sensitivity, as exhibited by using two different splitting
criteria with different degrees of sensitivity to priors in decision trees, does not
play a role in determining whether the single model approach or the matching
model approach should be used.
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Our experiments have been limited to decision trees. It is possible that other
learning algorithms which are designed for probability estimation might behave
quite differently from the results presented. Also, we have limited this study to
the case of changed class distribution that happens uniformly across the sample
space. It is possible that class distribution changes non-uniformly; in which case
re-weighting instances uniformly as we have done for the matching model here is
an inappropriate method. The analysis is restricted to the two-class case because
of the current limitation of the cost space or ROC analysis that we employed.
We intend to explore these issues in the near future.
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