
Constructive Induction
for Classifying Time Series

Mohammed Waleed Kadous and Claude Sammut

University of New South Wales, Sydney, Australia
{waleed,claude}@cse.unsw.edu.au

Abstract. We present a method of constructive induction aimed at
learning tasks involving multivariate time series data. Using metafea-
tures, the scope of attribute-value learning is expanded to domains that
contain instances that have some kind of recurring substructure, such
as strokes in handwriting recognition, or local maxima in time series
data. These substructures are used to construct attributes. Metafeatures
are applied to two real-world domains: sign language recognition and
ECG classification. Using a very generic set of metafeatures we are able
to generate classifiers that are either comprehensible or accurate, pro-
ducing results that are comparable to hand-crafted preprocessing and
comparable to human experts.

Keywords: machine learning, constructive induction, time series

1 Introduction

There are many domains that do not easily fit into the static attribute-value
model so common in machine learning. These include multivariate time series,
optical character recognition, sequence recognition, basket analysis and web logs.
Consequently, researchers hoping to use attribute-value learners on these do-
mains have few choices: apply hand-crafted preprocessing, write a learner specif-
ically designed for the domain, or use a learner with a more powerful represen-
tation, such as relational learning or graph-based induction.

Each of these has problems. Hand-crafted preprocessing is frequently used,
but requires extensive domain knowledge and concept descriptions are some-
times unnatural. Writing a custom learner is possible, but is labour-intensive.
Relational learning techniques tend to be very sensitive to noise and to the par-
ticular clausal representation selected. They are typically unable to process large
data sets in a reasonable time frame, and/or require the user to set limits on the
search such as refinement rules [3]. Furthermore, their most powerful feature –
the use of relations – is sometimes not used.

In this paper, we use a generic constructive induction technique to allow
for domains where instances exhibit recurring substructures. The user defines
the recurring substructures, but subsequent steps are automated. Further, the
substructures are reusable across domains. These substructures are extracted,
and a novel clustering algorithm is used to construct synthetic attributes based
on the presence or absence of certain substructures. Standard learners can then
be applied.

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 192–204, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Constructive Induction for Classifying Time Series 193

Learnt concepts are expressed using the same substructures identified by the
user. Since these substructures are frequently the same concepts humans use
themselves in classifying instances, this results in very readable descriptions.

We begin with an overview of applying metafeatures. Experimental results
are presented, and we review related work. Finally, we conclude and make some
suggestions for future work.

2 Overview

To explain the application of metafeatures, we present a simple pedagogical
domain. SoftCorp develops and supports software. Help desk calls are recorded
for later analysis. SoftCorp wants to find the critical difference between happy
and angry customers.

An engineer suggests that the volume level indicates frustration. Each call
is therefore divided into 30-second segments; and the average volume in each
segment is calculated. If it is high volume, it is marked as “H”, while if it is
at a reasonable volume, it is labelled as “L”. On a subset of their data, they
determine the outcome by independent means. These are shown in Table 1.

Table 1. The training set for the Tech Support domain, showing observed LoudRun
events.

Call Loudness (over time) Observed Class
0 1 events
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

1 L L L H H H L L L L L L {(3, 3)} Happy
2 L L L H L L H L L H H H H {(3, 1), (6, 1), (9, 4)} Angry
3 L L H L L H L L L L L L H H H {(2, 1), (5, 1), (12, 3)} Angry
4 L L L L H H H H L L L L L {(4, 4)} Happy
5 L L L H H H L L L L {(3, 3)} Happy
6 L L H H L L H L L H H H {(2, 2), (6, 1), (9, 3)} Angry

One expert advises that “runs” of high volume conversation – continuous
periods where the conversation runs at a high volume level – are important for
classification. Runs of loud volume could be represented as a tuple (t, d) where
t is the time at which the conversation becomes loud and d and how long it
remains loud. This is an example of a metafeature, called LoudRun.

Each instance can now be characterised as having a set of LoudRun events –
the LoudRun events are the recurrent substructures appropriate for this domain.
These can be extracted by looking for sequences of high-volume conversation.
For example, call 2 has one run of highs starting at time 3 lasting for 1 timestep,
a high run starting at time 6 lasting for one timestep and a high run starting
at time 9 for 4 timesteps. Hence the set of LoudRuns produced from call 2 is
{(3, 1), (6, 1), (9, 4)}.

194 Mohammed Waleed Kadous and Claude Sammut

To take advantage of attribute-value learners, these sets must be converted
into propositional form. A good hypothesis language for such domains consists
of rules that check for combinations of particular kinds of events that are critical
for classification. For example, in the sign language domain, an upwards motion
early in the sign and a movement of the hand forward later in the sign without a
closed hand means thank. Thus we break the learning into two stages: the first
to pick out the prototypical instances of an event – in this case: the upwards
motion, the movement of the hand forward and the closed hand; and the second
to create rules using the prototypical instances. To accomplish the first task, we
use a clustering technique similar to instance-based learning, and for the second
we use an attribute-value learner.

To complete the first stage, the events extracted above can be plotted in the
two-dimensional space shown in Figure 1. This is the parameter space. This
two-dimensional space consists of one axis for the start time and another for the
duration.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

D
ur

at
io

n
(d

)

Start time (t)

A

B

C

Angry
Happy

Synth events

Fig. 1. Paramater space and synthetic events around them for LoudRuns in the Tech
Support domain.

Once the points are in parameter space, “typical examples” of LoudRuns can
be selected. In this case, the points labelled A, B and C have been selected, as
shown in Figure 1. These are termed synthetic events. They may or may not
be the same as an observed event – so for example, point A actually corresponds
to a real event (the event (3,3) was observed in the data), whereas B and C do
not.

These synthetic events can be used to segment the parameter space into
different regions by computing the Voronoi tiling: for each point in the parameter
space, the nearest synthetic event is found. The set of points associated with each
synthetic event form a region and the boundaries of each region are calculated.
These are shown as dotted lines in Figure 1.

Constructive Induction for Classifying Time Series 195

To accomplish the second stage, each region constructed in the first stage is
used as a test: if a training instance has an event in a region, it “passes” the test.
Each training instance is labelled with the test results, each test result effectively
becomes an attribute. In this case, three tests A, B and C are constructed and
the results shown in Table 2. To construct this table, the “observed events” in
Table 2 are examined, and for each region if there is an event that lies within it,
a synthetic attribute corresponding to the point is marked as a “yes”.

Table 2. Attribution of synthetic attributes for the Tech Support domain.

Stream Class Synth Attrib
A B C

1 Happy Yes Yes No
2 Angry No Yes Yes
3 Angry No Yes Yes
4 Happy Yes Yes No
5 Happy Yes Yes No
6 Angry Yes Yes Yes

As a result of the clustering stages above, the initial time series has been
converted into a table suitable for learning. In fact, if C4.5 is run on it, the
simple tree in Figure 2 results.

rgnC = yes: Angry (3.0)

rgnC = no: Happy (3.0)

Fig. 2. Rule for telling happy and angry customers apart.

This tree says that if the training instance has an event that lies within in
region C (i.e. a run of high values that starts around time t=10 and goes for
approximately 3.33 timesteps), then its class is Angry. In other words, as long
as there is not a long high-volume run towards the end of the conversation, the
customer is likely to be happy.

3 Detailed Description

While the idea of metafeatures is simple, there are several possible enhance-
ments and features that need to be considered when implementing a practical
system. The TClass algorithm is shown in Table 3. Explanation of each of the
components follows.

3.1 Inputs

The input is specified as a set of streams Strain. Each stream represents a single
training instance; for example, a single sign. We are also given class labels.

The temporal characteristics are represented by a list of time series. Each
time series is called a channel. While the Tech Support domain has a single

196 Mohammed Waleed Kadous and Claude Sammut

Table 3. TClass training algorithm.

Inputs:
Strain = [s1, ..., sn] /* Training streams */
Gtrain = [g1, ..., gn] /* Specified global attributes */
Ltrain = [l1, ..., ln] /* Class labels of training streams */
f = [f1, ..., fm] /* Metafeature extraction functions */
w = [w1, ..., wp] /* Global attribute calculators */

Outputs:
E = [e1, e2, ..., em] /* Synthetic events (each is a set) */
dP /* Learnt classifier */
h /* Human-readable description of learnt concept */

Temporary:
Otrain = [o11, ..., onm] /* Observed events*/
Atrain = [a1, ..., an] /* Global attribute calculator results */
Itrain = [i1, ..., in] /* Synthetic attributes */
Btrain = [b1, ..., bn] /* All attributes combined */

procedure Train
Otrain := ExtractObservedEvents(Strain, f)
E := SelectSyntheticEvents(Otrain, Ltrain)
I := EvaluateSyntheticAttributes(Otrain, E)
A := CalculateGlobalAttributes(Strain, w)
Btrain := CombineAttributes(Itrain, Atrain, Gtrain)
dP := Learn(Btrain, L)
h := ProduceComprehensibleDescription(dP , E, Otrain)

End

channel (the volume level); the Auslan domain, for example has 22 channels
representing various hand position and orientation measures.

In addition to temporal characteristics, many domains have non-temporal
attributes that are important for classification. For example, when diagnosing
ECGs, age, height, weight and gender are important. TClass allows the integra-
tion of these conventional features.

It is also useful in temporal classification tasks to examine aggregate values
of signals and use them as propositional attributes. For example, for continuous
channels, the global maximum and minimum value of a channel, or the mean of
each channel may be important attributes. These are termed aggregate global
attributes – they measure some property of each training instance as a whole,
rather than looking at the temporal structure. To support the use of such aggre-
gate features, TClass supports the use of global attribute calculators. In TClass
the global attribute calculators are provided a vector of functions, each function
acting on each training stream.

Metafeatures form the most critical component of TClass. The formal defi-
nition of a metafeature is very simple. It consists of:

Constructive Induction for Classifying Time Series 197

– A tuple of parameters p = (p1, ..., pk), which represents a particular event.
Let Pi represent the set of possible values of the parameter pi. Let P be the
space of possible parameter values, i.e. P = P1 × P2 × ... × Pk. P is termed
the parameter space.

– An extraction function f : S → P(P) which takes a stream s and returns
a set of observed events from P .

Metafeatures capture a type of recurring temporal substructure, which can
then be used as the basis of constructing a propositional feature learner. This
work uses a generic set of metafeatures, that are hopefully useful in diverse tem-
poral domains. The metafeatures used are Increasing and Decreasing with the
parameter space (time, average, gradient, duration); Plateau with the pa-
rameter space (time, average, duration); and LocalMax and LocalMin which
detect local maxima and minima on a single channel (time, value). Additional
metafeatures can be easily implemented.

3.2 Processing

Once the metafeatures have been selected, the extraction of observed events is
accomplished by applying each metafeature to each training instance. For each
metafeature and training instance, a list of the observed events is stored for the
the later synthetic event selection. It is also retained for use in attribution.

Now that a list of all observed events has been constructed, the synthetic
events must be selected. The key insight to selecting these synthetic events is
that the distribution of observed events in the parameter space is probably not
uniform.

An initial approach might be to use standard clustering algorithms, such
as K-Means, in the parameter space, i.e., clustering that groups points in such
a way that the distance between points within the same cluster is small, and
distances between points in different clusters is large. However, this is merely
one approach to answering the real question: “Which are the observed events
whose presence or absence indicate that the instances belong to a particular
class?” The clustering approach can certainly be used to answer this question –
the theory being that the different clusters represent different types of observed
events. This is an example of unsupervised segmentation.

Another approach is to re-pose the question as: “Are there regions in the
parameter space where the class distribution is significantly different to what
is statistically expected?” This question is very similar to typical problems of
supervised classification. This is an example of supervised segmentation:
segmentation directed towards creating good features for learning by explicitly
considering the class from which an observed event originated.

This suggests a more refined approach. Let the set of all observed events be
O. Let the set of points we select be E = {e1, e2, ..., ek}, where there are k points
selected. Define the set of regions R = {R1, ..., Rk} as:

Ri = {x ∈ P |closest(x, E) = ei}

198 Mohammed Waleed Kadous and Claude Sammut

and
closest(x, E) = argmin

e∈E
dist(x, e)

where dist is the distance metric we are using for the parameter space.
In other words, each region Ri is defined as the set of points in the parameter

space P for which ei is the closest point (using the distance metric dist) in the
set E. This is the definition of a Voronoi diagram.

If the distribution of observed events in a region differs significantly from
the global class distribution, then this would be a good feature for classification.
Asking whether a training stream has an observed event within a region would
be informative of the class of the training stream that the observed event came
from.

Measuring the disparity between global and local distributions is well studied
in both machine learning and statistics [19]. We will term this measure the
disparity measure. Typical disparity measures include χ2 tests, information
gain, gain ratio and Gini coefficients. Our objective is to find E such that:

R = argmax
E∈P(O)

DispMeas(E)

In other words, we are looking to find the subset of O (the set of all observed
events), E, for which the disparity measure is the greatest.

The search, however, is difficult. Hence a “random search” can be employed to
solve the problem. While it may first seem that using a random search algorithm
is not productive, work by Ho [6] in the field of ordinal optimisation shows that
random search is an effective means of finding near-optimal solution. This was
also used by Srinivasan [18] in his Aleph ILP system where it was shown to
perform well even compared to complex search methods.

The random search algorithm is incredibly simple; it picks random subsets
of O with an upper bound on the size (in this work we allow subsets with up
to ten elements), evaluates the disparity measure on this subset, and if it is the
greatest disparity seen so far, it saves the subset. This is repeated for a fixed
number of iterations (in this paper, 10,000 iterations are made). The best subset
is returned as the set E.

We now have a set of synthetic events for each metafeature. Each synthetic
event from each metafeature is converted into a synthetic attribute. Each at-
tribute is a test based on whether a given training instance has an observed
event that lies within the region around that particular synthetic event.

In Table 2, the attributes generated are binary – i.e., we are checking for the
presence of particular events. However, this allows only simple decision bound-
aries. By using the measure D = log2(d2

d1
), where d1 is the distance to the nearest

centroid and d2 is the distance to the second nearest centroid, the backend learner
itself can choose the cutpoint and hence decision boundaries can have a more
complex shape. This measure has useful properties; for instance, a point on the
boundary between two regions has D = 0, whereas the centroid has a measure
of D = ∞. This expands the hypothesis language significantly and makes the
classification more robust.

Constructive Induction for Classifying Time Series 199

Attributes are then combined for each instance from the three sources: syn-
thetic attributes, specified global attributes, and calculated global attributes.

With this in place, an attribute-value learner can be applied. TClass can use
any learner provided by Weka [21]. Both bagging [2] and boosting [16] can also
be used.

There is a further possibility resulting from the random nature of the syn-
thetic event selection algorithm. Each time the synthetic event selection algo-
rithm runs, it results in a different set of synthetic attributes. Multiple runs of
synthetic event selection and the subsequent evaluation and learning stages can
be used to create a stochastic ensemble, resulting in improved accuracy, but at
the cost of reduced incomprehensibility.

Does have a Loud run

starting between time 9 and 12 AND

lasting between 3 and 4 timesteps: Angry (3.0)

Otherwise: Happy (3.0)

Fig. 3. Comprehensible description generated from learnt concept.

Finally, if the learner used at the backend produces descriptions of the form
rgnC = yes, then these can be used to create comprehensible descriptions by
substituting the synthetic event in place of the attribute name. Hence Figure
2 can be converted into Figure 3. The bounds on these values are obtained by
drawing a bounding box in the original parameter space of all the instances
belonging to region C. Looking at Figure 1, we see that all the points in region
C lie within the bounding box d = [3, 4], t = [9, 12].

Note that this is not the same concept that the classifier uses on unseen
instances, but it is still useful as an approximation. An obvious modification of
this approach allows it to be used with relative membership.

3.3 Testing

The testing algorithm employed by TClass is shown in Table 4. As can be seen
it reuses many of the same components used from training. Note that the global
attribute calculators and metafeature extraction functions must be the same for
both training and testing.

As before, the observed events are extracted, but the synthetic events se-
lected in the training stage are used to create the synthetic attributes. Once the
attributes are combined, the classifier built in the training stage can be employed
to give a classification.

4 Experiments

We tested TClass on a number of domains. Only brief descriptions are included
here; more information can be found in [8].

200 Mohammed Waleed Kadous and Claude Sammut

Table 4. TClass testing algorithm.

Inputs:
Stest = [s1, ..., sn] /* Test streams */
Gtest = [g1, ..., gn] /* Specified global attributes */
f = [f1, ..., fm] /* Metafeature extraction functions */
w = [w1, ..., wp] /* Global attribute calculators */
E = [e1, e2, ..., ek] /* Synthetic events from training */
dP /* Learnt classifier from training */

Outputs:
Ltest = [l1, ..., ln] /* Test set labels */

Temporary:
Otest = [o11, ..., onm] /* Observed events */
Atest = [a1, ..., an] /* Global attribute calculated */
Itest = [i1, ..., in] /* Synthetic attributes */
Btest = [b1, ..., bn] /* Combination of all attributes from all sources */

procedure Test
Otest := ExtractObservedEvents(Stest, f)
I := EvaluateSyntheticAttributes(Otest, E)
A := ExtractGlobalAttributes(Stest,w)
Btest := CombineAttributes(Itest, Atest, Gtest)
Ltest := Classify(Btest, dP)

End

– The cylinder-bell-funnel (CBF) domain. This domain, proposed by [15], has
a single channel and three classes.

– A new artificial domain, called TTest, which we created to overcome the
limitations of the CBF domain.

– Auslan sign recognition: Auslan is the language of the Australian Deaf com-
munity. 95 signs were selected and recorded from a native Auslan signer
using instrumented gloves. This data has a total of 22 channels covering
both hands’ position, orientation and finger bends.

– ECG classification: Electrocardigraphs of patients who were healthy or suf-
fered from one of six ailments such as acute myocardial infarctions were
recorded. The data has 15 channels in all. The data has a skewed class
distribution; with the most common class having approximately 8 times as
many examples as the least common class.

For comparison, we also applied two baseline learners:

– A “naive segmentation” approach, where each channel was subdivided into
a certain number of intervals and the mean for each interval computed. This
was then fed to a learner. The number of intervals tested were 3, 5, 10, 20.
The best results are shown in the table.

Constructive Induction for Classifying Time Series 201

– Hidden Markov models were applied using Entropic’s HTK [22]. A number
of different transition models were considered, such as ergodic, left-right,
left-right with one skip. 3,4 and 5-state HMMs were tested. The best results
are shown in the table.

For the back-end learning, the following learners were used from the Weka
package [21]: J48, PART, and bagging and boosting using J48 as the base learner.
Also, voting of the boosted learner was performed, using 11 runs of synthetic
event construction. The error rates are shown in Table 5. It shows the mean
error (percentage) for ten-fold1 cross-validation and the standard error of the
mean. The first five use metafeatures, and the last two are baseline learners. The
stochastic ensemble employed AdaBoost as the base learner. The χ2 disparity
measure was used for supervised segmentation.

Table 5. Error rates on TClass domain.

Alg CBF TTest Auslan ECG

J48 2.3 ± 0.7 3.3 ± 0.9 14.5 ± 0.4 45.5 ± 1.7
PART 4.6 ± 0.8 2.3 ± 0.3 16.7 ± 0.9 41.9 ± 2.1
Bag 1.9 ± 0.5 2.5 ± 0.4 9.4 ± 0.8 35.1 ± 2.6
AB 1.4 ± 0.3 1.0 ± 0.3 6.4 ± 0.4 32.9 ± 2.4

Stochastic Ensemble 0 ± 0 0.5 ± 0.2 2.1 ± 0.2 28.2 ± 1.8
Naive 0 ± 0 7.2 ± 0.7 5.5 ± 0.5 28.5 ± 2.6
HMM 0 ± 0 4.4 ± 0.5 12.9 ± 0.6 33.5 ± 1.7

The results in Table 5 are very promising, although there are some qualifi-
cations. Firstly, in every domain, TClass performs as well or better than other
learners and the baseline learners – the Auslan and TTest domains are signifi-
cantly better at the 99.5 per cent level2.

The stochastic ensemble is significantly better than any other TClass method
in two of the domains. However, such solutions are less readable, hence forcing a
tradeoff between readability and accuracy. The results for Auslan converge with
9 voters, and 11 voters for TTest.

The results on the ECG data are worthy of particular note, since de Chazal
[4] obtained an error of 28.6%± 2.4 by hand-crafting an attribute set for a neu-
ral network. Given that we were using generic metafeatures and not making use
domain knowledge, this result is surprising and promising – since we obtained
similar accuracy results (28.2% ± 1.8). Furthermore, in a survey completed by
Willems [20], he found that on the same dataset a median human cardiologist
obtained an error of 29.7% – less accurate than our system. We were also sur-
prised by the success of the naive approach – almost as accurate as TClass on

1 For consistency with previous results, 5-fold cross validation was used for the Auslan
domain.

2 All significance statements are made using a paired t-test.

202 Mohammed Waleed Kadous and Claude Sammut

this domain. We do not understand why it performs so well, and we plan to
explore this in future work.

As for comprehensibility, for the Auslan domain, definitions generated by
TClass compared favourably to the definitions found in the Auslan dictionary
[7]. Furthermore, ruleset sizes were reasonable for the Auslan domain of 1.14 rules
per class using PART. In the ECG domain, a simple set of 24 rules was found
that obtained 40.5 per cent error. Some of these rules showed close correlations
with the rules used by existing expert systems [17]. With the TTest domain, it
was able to reconstruct the generating concept exactly at low to medium noise
levels. In general, in domains with many classes (such as Auslan), it was found
that binarizing the learning problem led to more comprehensible definitions than
trying to understand complex rules that cover all 95 possible classes.

5 Related Work

This work closely relates to the areas of feature extraction and construction [11],
although the formal definitions of extraction and construction assume attribute-
vector representation [11, p. 4]. Liu and Motoda do point to automated pre-
processing (or data categorization) as future work [11, p. 9]. They also point to
the importance of comprehensibility. It also closely relates to Michalski’s work
[12] on constructive induction, but again the work assumes that examples are
described in attribute-value format.

There are some general techniques that can be applied to temporal and struc-
tured domains. The best developed technique for temporal classification is the
hidden Markov model [13]. However, they do suffer some serious drawbacks for
general use. Firstly, the structure of the HMM – similar to that of a finite state
machine – needs to be specified a priori. Secondly, extracting comprehensible
rules from HMMs is not at all easy. Thirdly, there are frequently hundreds or
thousands of parameters per HMM. As a result, many training instances are
required to learn effectively. Recurrent neural networks and Kohonen maps have
also been used to solve temporal and sequence domains [1], but suffer similar
problems.

Keogh and Pazzani [9] have worked on improving and extending dynamic
time warping to temporal domains by representing the time series hierarchically.
Lee and Kim [10] take a syntactic approach to time series recognition. Based on
knowledge of the financial markets, they develop a grammar for events. Recent
interest has also arisen in applying ILP to temporal classification problems. [14]
is an interesting example of this, using a tailored search algorithm designed to
cope with temporal constraints, although the scalability of this approach is an
issue. [5] also presents a system that uses ILP for temporal classification.

6 Conclusions and Future Work

Metafeatures have been applied to diverse domains that exhibit difficult prop-
erties: it has been tested on domains with up to 22 channels, 110 metafeatures,

Constructive Induction for Classifying Time Series 203

200 megabytes of data, 95 classes, and highly skewed class distributions. They
have been shown capable of producing high-accuracy classifiers; in fact, classi-
fiers that match hand-crafted preprocessing techniques. Although the user must
define the metafeatures, we have shown that a generic family of metafeatures
work for temporal domains. Furthermore, they produce comprehensible descrip-
tions. However, results show that the best accuracy results are achieved using
techniques that produce less comprehensible descriptions.

This suggests one avenue for future work. The marked difference between
the stochastic ensemble and other results points to the weakness of the random
search for a good segmentation. For those interested in TClass, it is available at:
http://www.cse.unsw.edu.au/~waleed/tclass/

References

1. Yoshua Bengio. Neural Networks for Speech and Sequence Recognition. Interna-
tional Thomson Publishing Inc., 1996.

2. Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
3. W. W. Cohen. Learning to classify English text with ILP methods. In L. De

Raedt, editor, Proceedings of the 5th International Workshop on Inductive Logic
Programming, pages 3–24. Department of Computer Science, Katholieke Univer-
siteit Leuven, 1995.

4. Philip de Chazal. Automatic Classification of the Frank Lead Electrocardiogram.
PhD thesis, University of New South Wales, 1998.

5. Pierre Geurts. Pattern extraction for time series classification. In Luc de Raadt
and Arno Sieves, editors, Principles of Data Mining and Knowledge Discovery,
5th European Conference, PKDD 2001, Freiburg, Germany, September 3-5, 2001,
Proceedings, Lecture Notes in Computer Science. Springer-Verlag, 2001.

6. Y. C. Ho, R. S. Sreenivas, and P. Vakili. Ordinal optimization of DEDS. Discrete
Event Dynamic Systems: Theory and Applications, 2(1):61–88, 1992.

7. Trevor Johnston. Auslan Dictionary: a Dictionary of the Sign Language of the
Australian Deaf Community. Deafness Resources Australia Ltd, 1989.

8. Mohammed Waleed Kadous. Temporal Classification: Extending the Classification
Paradigm to Multivariate Time Series. PhD thesis, School of Computer Science
and Engineering, University of New South Wales, 2002. Awaiting review.

9. Eamonn Keogh and Michael Pazzani. Dynamic time warping with higher order
features. In SIAM International Conference on Data Mining, SDM 2001. SIAM,
2001.

10. Jae Kyu Lee and Hyun Soon Kim. Intelligent Systems for Finance and Business,
chapter 13. John Wiley and Sons Ltd, 1995.

11. Huan Liu and Hiroshi Motoda, editors. Feature Extraction, Construction and Se-
lection: A Data Mining Perspective. Kluwer Academic Publishers, 1998.

12. R. S. Michalski. Machine Learning: An Artificial Intelligence Approach, chapter A
Theory and Methodology of Inductive Learning. Tioga Publishers, 1983.

13. Lawrence R. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286, February
1989.

14. Juan J. Rodŕıguez, Carlos J. Alonso, and Henrik Boström. Learning first order
logic time series classifiers. In J. Cussens and A. Frisch, editors, Proceedings of
ILP2000, pages 260–275, 2000.

204 Mohammed Waleed Kadous and Claude Sammut

15. Naoki Saito. Local feature extraction and its application using a library of bases.
PhD thesis, Yale University, December 1994.

16. Robert E. Schapire. A brief introduction to boosting. In Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence, 1999.

17. Schiller Medical. The Schiller ECG Measurement and Interpretation Programs
Physicians Guide, 1997.

18. Ashwin Srinivarsan. The Aleph manual. Technical report, Oxford University, 2000.
19. Allan P. White and Wei Zhong Liu. Bias in information-based measures in decision

tree induction. Machine Learning, 15:321–329, 1994.
20. J. L. Willems, C. Abreu-Lima, P. Arnaud, C.R. Brohet, and B. Denic. Evaluation

of ECG interpretation results obtained by computer and cardiologists. Methods of
Information in Medicine, 29(4):pp. 308–316, 1990.

21. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

22. Steve Young, Dan Kershaw, Julian Odell, Dave Ollason, Valtcho Valtchev, and
Phil Woodland. The HTK Book. Microsoft Corporation, 1998.

	1 Introduction
	2 Overview
	3 Detailed Description
	3.1 Inputs
	3.2 Processing
	3.3 Testing

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References

