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Abstract. Enterprise privacy enforcement allows enterprises to internally en-
force a privacy policy that the enterprise has decided to comply to. To facilitate
the compliance with different privacy policies when several parts of an organiza-
tion or different enterprises cooperate, it is crucial to have tools at hand that allow
for a practical management of varying privacy requirements.
We propose an algebra providing various types of operators for composing and
restricting enterprise privacy policies like conjunction, disjunction, and scoping,
together with its formal semantics. We base our work on a superset of the syn-
tax and semantics of IBM’s Enterprise Privacy Authorization Language (EPAL),
which recently has been submitted to W3C for standardization. However, a de-
tailed analysis of the expressiveness of EPAL reveals that, somewhat surprisingly,
EPAL is not closed under conjunction and disjunction. To circumvent this prob-
lem, we identified the subset of well-founded privacy policies which enjoy the
property that the result of our algebraic operations can be turned into a coherent
privacy policy again. This enables existing privacy policy enforcement mecha-
nisms to deal with our algebraic expressions. We further show that our algebra
fits together with the existing notions of privacy policy refinement and sequential
composition of privacy policies in a natural way.

1 Introduction

Not only due to the increasing privacy awareness of costumers, the proper incorporation
of privacy considerations into business processes is gaining importance. Also regulatory
measures like the Children’s Online Privacy Protection Act (COPPA) or the Health In-
surance Portability and Accountability Act (HIPAA) illustrate that avoiding violations
of privacy regulations is becoming a crucial issue. While the Platform for Privacy Pref-
erences Project (P3P) [21] is a valuable tool for dealing with privacy concerns of web
site users, the fine-grained treatment of privacy policies in business-to-business mat-
ters is still not settled satisfyingly. E.g., a language for the internal privacy practices
of enterprises and for technical privacy enforcement must offer more possibilities for
fine-grained distinction of data users, purposes, etc., as well as a clearer semantics. To
live up to these requirements, enterprise privacy technologies are emerging [9]. One
approach for capturing the privacy requirements of an enterprise – which however does
not specify the implementation of these requirements – is the use of formalized enter-
prise privacy policies [11, 17, 16].
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Although the primary purpose of enterprise privacy policies is enterprise-internal
use, many factors speak for standardization of such policies. E.g., it would allow cer-
tain technical parts of regulations to be encoded into such a standardized language once
and for all, and a large enterprise with heterogeneous repositories of personal data could
then hope that enforcement tools for all these repositories become available that allow
the enterprise to consistently enforce at least the internal privacy practices chosen by the
CPO (chief privacy officer). For these reasons, IBM has proposed an Enterprise Privacy
Authorization Language (EPAL) as an XML specification, which has been submitted
to W3C for standardization. EPAL allows for a fine-grained description of privacy re-
quirements in enterprises and could become a valuable tool for (business) processes that
span several enterprises or different parts of a larger organization.

An enterprise privacy policy often reflects different legal regulations, promises
made to customers, as well as more restrictive internal practices of the enterprise. Fur-
ther, it may allow customer preferences. Hence it may be authored, maintained, re-
placed, and audited in a distributed fashion. In other words, one will need a life-cycle
management system for the collection of enterprise privacy policies. However, despite
considerable advancement in this area, current approaches are based on monolithic and
complete specifications, which is very restrictive given that several policies might have
to be enforced at once while being under control of different authorities. Having in
mind actual use cases where sensitive data obeying different privacy regulations has to
be merged or exchanged, this situation calls for a composition framework that allows
for integrating different privacy policies while retaining their independence. While such
thoughts occur as motivation in most prior work on enterprise privacy policies, the few
tools provided so far are not very expressive, and even intuitively simple operations
have not been formalized yet.

Motivated by successful applications of algebraic tools in access control [7, 24, 8,
25], our goal is to provide an expressive algebra over enterprise privacy policies together
with its formal semantics, offering operators for combining and restricting policies,
along with suitable algebraic laws that allow for a convenient policy management. We
do this concretely for the IBM EPAL proposal. However, for a scientific paper it is
desirable to avoid the lengthy XML syntax and use a corresponding abstract syntax
presented in [2, 4] and known as E-P3P (which, like EPAL, is based on [17]).

To employ existing privacy policy enforcement mechanisms to our algebraic expres-
sions, it is necessary to represent the results of the operators as a syntactically correct
privacy policy again. While achieving this representation has been identified as a core
property in previous work on algebras for access control policies [7], and also explored
there in detail, achieving the same result for enterprise privacy policies as in EPAL
seems rather involved because of the treatment of obligations, different policy scopes,
default values as well as a sophisticated treatment of deny-rules. In fact, our analysis
of the expressiveness of EPAL shows that EPAL is not closed under operations like
conjunction and disjunction, hence the aforementioned representation can often not be
achieved. To circumvent this problem, we identify the set of well-founded policies,
which constitutes a subset of all EPAL policies, for which we can give a constructive
algorithm that represents the results of our algebraic operations as a well-founded EPAL
policy again.
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The first operators we define are policy conjunction and disjunction, which serve
as the basic building blocks for constructing larger policies. For instance, an enterprise
might first take all applicable regulations and combine them into a minimum policy by
means of the conjunction operator. A general promise made to the customers, e.g., an
existing P3P translated into the more general language, may be a further input. As one
expects, these operators are not a simple logical AND respectively OR for expressive
enterprise privacy policies for the reasons depicted above. We show that these operators
enjoy the expected algebraic laws like associativity or distributivity. Our third operator
– scoping – allows for confining the scope of a policy to sub-hierarchies of a policy.
This is of major use in practice as it enables managing respectively reasoning about
privacy requirements that involve only certain parts of an organization.

We further sketch some extensions of our algebra; in particular, we incorporate the
sequential composition of privacy policies, which has been introduced in [4], and we
explore its relationship to our remaining operators.

Further related literature. Policy composition has been treated before, in particular for
access control [7, 8, 10, 19, 15, 26], systems management [20], separation-of-duty [23,
13], or IPSEC [12]. The algebra discussed below is clearly motivated by existing work
on algebras for access control polices [7, 24, 8, 25]. We are not aware of a similar pro-
posal for privacy policies although certain aspects have been addressed before, e.g., [18]
points out possible conflicts if EPAL policies from different origins have to be dealt
with. The publication closest to our algebra of privacy policies is [4], which introduces
a notion of sequential composition of privacy policies as well as the notion of policy
refinement. The present paper tries to extend this pool of algebraic tools. Compared
with existing access-control languages, the core contribution of new privacy-policy lan-
guages [11, 17, 16] is the notion of purpose and purpose-bound collection of data, which
is essential to privacy legislation. Other necessary features that prevent enterprises from
simply using their existing access-control systems and the corresponding algebras are
obligations and conditions on context information. Individually, these features were also
considered in literature on access control, e.g., purpose hierarchies in [6], obligations in
[5, 14, 22], and conditions on context information in [26].

2 Syntax and Semantics of E-P3P Enterprise Privacy Policies

Informally speaking, the aim of a privacy policy is to define by whom, for which pur-
poses, and in which way collected data can be accessed. Further on, a privacy policy
may impose obligations onto the organization using the data. Privacy policies formal-
ize privacy statements like “we use data of a minor for marketing purposes only if the
parent has given consent” or “medical data can only be read by the patient’s primary
care physician”. This section mainly recalls the abstract syntax and semantics E-P3P
[2, 4] of IBM’s EPAL privacy policy language [1] up to some augmentations needed to
achieve the desired algebraic properties, e.g., that obligations are already structured in
a suitable way. Motivated by recent changes in EPAL, our specification of E-P3P de-
viates from the one in [4] in the handling of so-called “don’t care” rulings: In analogy
to EPAL 1.2, we only allow the default ruling to return a “don’t care”, and we demand
that no obligations may be imposed in this case.
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2.1 Hierarchies, Obligations, and Conditions

First, we recall the basic notions of hierarchies, obligations, and conditions used in
E-P3P, and operations on them as needed in later refinements and operators of our al-
gebra. For conveniently specifying rules, the data, users, etc. are categorized in E-P3P
as in many access-control languages. The same applies to the purposes. To allow for
structured rules with exceptions, categories are ordered in hierarchies; mathematically
they are forests, i.e., multiple trees. For example, a user “company” may group sev-
eral “departments”, each containing several “employees”. The enterprise can then write
rules for the whole “company” with exceptions for some “departments”.

Definition 1 (Hierarchy). A hierarchy is pair (H, >H) of a finite set H and a transi-
tive, non-reflexive relation >H ⊆ H×H , where every h ∈ H has at most one immediate
predecessor (parent). As usual we write ≥H for the reflexive closure.

For two hierarchies (H, >H) and (G, >G), we define

(H, >H) ⊆ (G, >G) :⇔ (H ⊆ G) ∧ (>H ⊆ >G);
(H, >H) ∪ (G, >G) := (H ∪ G, (>H ∪ >G)∗);

where ∗ denotes the transitive closure. Note that a hierarchy union is not always a
hierarchy again. �

As mentioned above already, E-P3P policies can impose obligations, i.e., duties for an
organization/enterprise. Typical examples are to send a notification to the data subject
after each emergency access to medical data, or to delete data within a certain time
limit. Obligations are not structured in hierarchies, but by an implication relation. E.g.,
an obligation to delete data within 30 days implies that the data is deleted within 2
months. The overall obligations of a rule in E-P3P are expressed as sets of individual
obligations which must have an interpretation in the application domain. As multiple
obligations may imply more than each one individually, the implication relation (which
must also be realized in the application domain) is specified on these sets of obligations.
We also define how this relation interacts with vocabulary extensions.

Definition 2 (Obligation Model). An obligation model is a pair (O,→O) of a set O
and a transitive relation →O ⊆ P(O) × P(O), spoken implies, on the powerset of O,
where ō1 →O ō2 for all ō2 ⊆ ō1, i.e., fulfilling a set of obligations implies fulfilling all
subsets. For O′ ⊃ P(O), we extend the implication to O′ × P(O) by ((ō1 →O ō2) :⇔
(ō1 ∩ O →O ō2)).

For defining the AND and OR-composition of privacy policies in a meaningful way,
we moreover assume that P(O) is equipped with an additional operation ∨, such that
(P(O),∨,∪) is a distributive lattice; the operator ∨ reflects the intuitive notion of OR
(in analogy to the set-theoretical union ∪ which corresponds to AND). In particular, we
require the following:

– for all ō1, ō2 ⊆ O we have ō1 →O (ō1 ∨ ō2)
– for all ō1, ō2, ō

′
1, ō

′
2 ⊆ O we have (ō1 →O ō2) ∧ (ō′1 →O ō′2) implies both (ō1 ∨

ō′1) →O (ō2 ∨ ō′2) and (ō1 ∪ ō′1) →O (ō2 ∪ ō′2).
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Finally, we assume that all occurring obligation models (O,→O) are subsets of a fixed
(super) obligation model OM0 = (O0,→O0) such that →O is the restriction of →O0

to P(O) × P(O). �

The decision formalized by a privacy policy can depend on context data like the age of
a person. In EPAL this is represented by conditions over data in so-called containers
[1]. The XML representation of the formulas is taken from [26], which corresponds
to a predicate logic without quantifiers. In the abstract syntax in [2], conditions are
abstracted into propositional logic, which is too coarse for our purposes. Hence, as in in
[4] we use an extension of E-P3P formalizing the containers as a set of variables with
domains and the conditions as formulas over these variables.

Definition 3 (Condition Vocabulary). A condition vocabulary is a pair Var =
(V,Scope) of a finite set V and a function assigning every x ∈ V , called a variable, a
set Scope(x), called its scope.

Two condition vocabularies Var1 = (V1,Scope1), Var2 = (V2,Scope2) are com-
patible if Scope1(x) = Scope2(x) for all x ∈ V1 ∩ V2. For that case, we define their
union by Var1 ∪Var2 := (V1 ∪ V2,Scope1 ∪ Scope2). �

One may think of extending this to a full signature in the sense of logic, i.e., including
predicate and function symbols – in EPAL, this is hidden in user-defined functions that
may occur in the XACML conditions. For the moment, we assume a given universe of
predicates and functions with fixed domains and semantics.

Definition 4 (Condition Language). Let a condition vocabulary Var = (V,Scope)
be given.

– The condition language C(Var) is the set of correctly typed formulas over V us-
ing the assumed universe of predicates and functions, and in the given syntax of
predicate logic without quantifiers.

– An assignment of the variables is a function χ : V → ⋃
x∈V Scope(x) with χ(x) ∈

Scope(x) for all x ∈ V . The set of all assignments for the set Var is written
Ass(Var).

– For χ ∈ Ass(Var), let evalχ : C(Var) → {true, false} denote the evaluation
function for conditions given this variable assignment. This is defined by the un-
derlying logic and the assumption that all predicate and function symbols come
with a fixed semantics.

– For χ ∈ Ass(Var), we denote by cχ ∈ C(Var) some fixed formula such that
evalχ(cχ) = true and evalχ′(cχ) = false for all χ′ ∈ Ass(Var) \ {χ}. �

We do not consider partial assignments as is done in [4] since they do not occur in EPAL
1.2 any more.

2.2 Syntax of E-P3P Policies

An E-P3P policy is a triple of a vocabulary, a set of authorization rules, and a default rul-
ing. The vocabulary defines element hierarchies for data, purposes, users, and actions,
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as well as the obligation model and the condition vocabulary. Data, users, and actions
are as in most access-control policies (except that users are typically called “subjects”
there, which in privacy would lead to confusion with data subjects), and purposes are
an important additional hierarchy for the purpose binding of collected data.

Definition 5 (Vocabulary). A vocabulary is a tuple Voc = (UH ,DH ,PH ,AH ,
Var ,OM ) where UH , DH , PH , and AH are hierarchies called user, data, purpose,
and action hierarchy, respectively, and Var is a condition vocabulary and OM an obli-
gation model. �

As a naming convention, we assume that the components of a vocabulary Voc are al-
ways called as in Definition 5 with UH = (U, >U ), DH = (D, >D), PH = (P, >P ),
AH = (A, >A), Var = (V,Scope), and OM = (O,→O), except if explicitly stated
otherwise. In a vocabulary Voci all components also get a subscript i, and similarly for
superscripts. Differing from [4] we require that a set of authorization rules (short rule-
set) only contains authorization rules that allow or deny an operation, i.e., we do not
allow rules which yield a “don’t care” ruling. This reflects the latest version of EPAL.
Further on, motivated by EPAL’s implicit handling of precedences through the textual
order of the rules, we call a privacy policy well-formed if rules which allow for contra-
dicting rulings do not have identical precedences (actually, in EPAL two rules can never
have identical precedences).

Definition 6 (Ruleset and Privacy Policy). A ruleset for a vocabulary Voc is a subset
of Z × U × D × P × A × C(Var) × P(O) × {+,−}.

A privacy policy or E-P3P policy is a triple (Voc, R, dr) of a vocabu-
lary Voc, a rule-set R for Voc, and a default ruling dr ∈ {+, ◦,−}. The
set of these policies is called EP3P , and the subset for a given vocabulary
EP3P (Voc). Moreover, we call (Voc, R, dr) ∈ EP3P well-formed, if for all rules
(i, u, d, p, a, c, ō, r), (i, u′, d′, p′, a′, c′, ō′, r′) ∈ R with identical precedences and for
all assignments χ ∈ Ass(Var) the implication (evalχ(c) = true = evalχ(c′)) ⇒
(r = r′) holds. �

The rulings +, ◦, and − mean “allow”, “don’t care”, and “deny”; the value ◦ is special
in the sense, that it can only be assigned to the default ruling of a policy. As a naming
convention, we assume that the components of a privacy policy called Pol are always
called as in Definition 6, and if Pol has a sub- or superscript, then so do the components.

2.3 Semantics of E-P3P Policies

An E-P3P request is a tuple (u, d, p, a) which should belong to the set U×D×P×A for
the given vocabulary. Note that E-P3P and EPAL requests are not restricted to “ground
terms” as in some other languages, i.e., minimal elements in the hierarchies. This is use-
ful if one starts with coarse policies and refines them because elements that are initially
minimal may later get children. For instance, the individual users in a “department” of
an “enterprise” may not be mentioned in the CPO’s privacy policy, but in the depart-
ment’s privacy policy. For similar reasons, we also define the semantics for requests
outside the given vocabulary. We assume a superset S in which all hierarchy sets are
embedded; in practice it is typically a set of strings or valid XML expressions.
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Definition 7 (Request). For a vocabulary Voc, we define the set of valid requests as
Req(Voc) := U×D×P×A. Given a superset S of the sets U, D, P, A of all considered
vocabularies, the set of all requests is Req := S4.

For valid requests (u, d, p, a), (u′, d′, p′, a′) ∈ Req(Voc) we set

(u, d, p, a) ≤ (u′, d′, p′, a′) :⇔ u ≤U u′ and d ≤D d′ and p ≤P p′ and a ≤A a′.

Moreover, we set (u, d, p, a) <1 (u′, d′, p′, a′) if and only if there is exactly one x ∈
{u, d, p, a} such that x′ is the parent of x and for all y ∈ {u, d, p, a} \ {x} we have
y = y′. Finally, we refer to a valid request (u, d, p, a) ∈ Req(Voc) as leaf or leaf node
if u, d, p, and a are leaves in the respective hierarchy. We denote the set of all leaves of
Req(Voc) by L(Voc) and for q ∈ Req(Voc), we set L(q,Voc) := {q′ ∈ L(Voc) | q′ ≤
q} \ {q}. �

The semantics of a privacy policy Pol is a function evalPol that processes a request
based on a given assignment. The evaluation result is a pair (r, ō) of a ruling (also
called decision) and associated obligations; in the case of a “don’t care”-ruling (r = ◦)
we necessarily have ō = ∅, i.e., no obligations are imposed in this case. Our semantics
follows the E-P3P semantics in [4], but we restrict our definition to the (from the prac-
tical point of view most relevant) case of well-formed policies, which simply avoids a
separate treatment of conflicts among rules. We further permit the exceptional ruling
scope error which indicates that a request was out of the scope of the policy.

The semantics is defined by a virtual pre-processing that unfolds the hierarchies
followed by a request processing stage. We stress that this is only a compact definition
of the semantics and not an efficient real evaluation algorithm.

Definition 8 (Unfolded Rules). For a privacy policy Pol = (Voc, R, dr), the unfolded
rule set UR(Pol ) is defined as follows:

URD(Pol ) := {(i, u′, d′, p′, a′, c, ō, r) ∈ R | ∃(i, u, d, p, a, c, ō, r) ∈ R

with u ≥U u′ ∧ d ≥D d′ ∧ p ≥P p′ ∧ a ≥A a′};
UR(Pol ) := URD(Pol )

∪ {(i, u′, d′, p′, a′, c, ō,−) ∈ R | ∃(i, u, d, p, a, c, ō,−) ∈ URD(Pol )
with u′ ≥U u ∧ d′ ≥D d ∧ p′ ≥P p ∧ a′ ≥A a}. �

A crucial point in this definition is the fact that “deny”-rules are inherited both down-
wards and upwards along the four hierarchies while “allow”-rules are inherited down-
wards only. The reason is that the hierarchies are considered groupings: If access is
forbidden for some element of a group, it is also forbidden for the group as a whole.

Next, we define which rules are applicable for a request given an assignment of the
condition variables. These (unfolded) rules have the user, data, purpose, and action as
in the request, and we make

Definition 9 (Applicable Rules). Let a privacy policy Pol = (Voc, R, dr), a request
q = (u, d, p, a) ∈ Req(Voc), and an assignment χ ∈ Ass(Var) be given. Then the set
of applicable rules is

AR(Pol , q, χ) := {(i, u, d, p, a, c, ō, r) ∈ UR(Pol) | evalχ(c) = true}. �
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To formulate the semantics, it is convenient to define the maximum and minimum prece-
dence of a policy.

Definition 10 (Precedence Range). For a privacy policy Pol = (Voc, R, dr), let
max (Pol ) := max{i | ∃(i, u, d, p, a, c, ō, r) ∈ R} and min(Pol ) := min{i | ∃(i, u,
d, p, a, c, ō, r) ∈ R}. �

We can now define the actual semantics, i.e., the result of a request given an assignment:

Definition 11 (Semantics). Let a well-formed privacy policy Pol = (Voc, R, dr), a
request q = (u, d, p, a) ∈ Req, and an assignment χ ∈ Ass(Var) be given. Then the
evaluation result (r, ō) := evalPol (q, χ) of policy Pol for q and χ is defined by the
following algorithm, where every “return” is understood to abort the processing of the
algorithm.

1. Out-of-scope testing. If q �∈ Req(Voc), return (r, ō) := (scope error , ∅).
2. Processing by precedence. For each precedence level i := max (Pol ) down to

min(Pol ):
– Accumulate obligations. ōacc :=

⋃
(i,u,d,p,a,c,ō,r)∈AR(Pol,q,χ) ō

– Normal ruling. If some rule (i, u, d, p, a, c, ō, r) ∈ AR(Pol , q, χ) exists, return
(r, ōacc).

3. Default ruling. If this step is reached, return (r, ō) := (dr , ∅).
We also say that policy Pol rules (r, ō) for q and χ, omitting q and χ if they are clear
from the context. �

2.4 Refinement and Equivalence of Well-Formed Privacy Policies

Basically, refining a policy Pol means adding more details to it, i.e., enriching the vo-
cabulary and/or the set of rules without changing the meaning of the policy with respect
to its original vocabulary. To be useful for actual use cases, it is essential that operators
defined on privacy policies behave in a well-specified and an “intuitive” manner with
respect to refinement relations. Thus, before we can make concrete statements about
the refinement properties of the operators introduced in the next section, we need some
additional terminology, and end this section with recalling some definitions from [4].

Definition 12 (Compatible Vocabulary). Two vocabularies Voc1 and Voc2 are com-
patible if their condition vocabularies are compatible and UH 1 ∪ UH 2,DH 1 ∪
DH 2,PH 1 ∪ PH 2,AH 1 ∪ AH 2 are hierarchies again. �

The notion of compatible vocabularies is a technicality that turns out to be necessary to
specify operations that combine different policies which are not necessarily formulated
in terms of identical vocabularies, and this leads to

Definition 13 (Union of Vocabularies). The union of two compatible vocabularies
Voc1 and Voc2 is defined as Voc1 ∪ Voc2 := (UH 1 ∪ UH 2,DH 1 ∪ DH 2,PH 1 ∪
PH 2,AH 1 ∪ AH 2,Var1 ∪ Var2,OM ), where OM = (O,→O) is the obligation
model with the lattice (P(O),∨,∪) being generated by P(O1) and P(O2), and →O

being the restriction of →O0 to P(O) × P(O). �
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Next, we need the refinement of obligations whose definition requires some care, as a
refined policy may well contain additional obligations, whereas at the same time some
others have been omitted. As consequence of this observation, the definition of refine-
ment of obligations makes use of both obligation models, that of the original (coarser)
policy and that of the refined policy:

Definition 14 (Refinement and Equivalence of Obligations). Let two obligation
models (Oi ,→Oi) and ōi ⊆ Oi for i = 1, 2 be given. Then ō2 is a refinement of
ō1, written ō2 ≺ ō1 if and only if the following holds:

∃ō ⊆ O1 ∩ O2 : ō2 →O2 ō →O1 ō1.

We call ō1 and ō2 equivalent, written ō1 ≡ ō2, if and only if ō1 ≺ ō2 and ō2 ≺ ō1.
For r1, r2 ∈ {+,−, ◦, scope error}, we further define (r1, ō1) ≡ (r2, ō2) if and only if
r1 = r2 and ō1 ≡ ō2. �

We can now formalize the notion of (weak) refinement of well-formed policies. Our
definition of refinement closely resembles the one presented in [4], but it excludes par-
tial assignments and conflict errors, which are not supported by the latest EPAL version.
The notion of weak refinement has not been introduced before.

Definition 15 (Policy Refinement). Let two well-formed privacy policies Poli =
(Voci ,Ri , dri) for i = 1, 2 with compatible vocabularies be given, and set Pol∗i =
(Voc∗i ,Ri , dri) for i = 1, 2 where Voc∗i := (UH 1 ∪ UH 2,DH 1 ∪ DH 2,PH 1 ∪
PH 2,AH 1 ∪AH 2,Vari ,OMi).

Let r1, r2 ∈ {+,−, ◦, scope error} and ōi ⊆ Oi for i = 1, 2 be arbitrary. We say
that (r2, ō2) refines (r1, ō1) (in OM 1 and OM 2), written (r2, ō2) ≺ (r1, ō1), if and
only if one of the following two conditions holds

(1) (r1, ō1) ∈ {(scope error , ∅), (◦, ∅)} (2) r1 ∈ {+,−}, r2 = r1, ō2 ≺ ō1.

We say that (r2, ō2) weakly refines (r1, ō1) (in OM 1 and OM 2), written
(r2, ō2)≺̃(r1, ō1), if and only if one of the following three conditions holds:

(1) (r2, ō2) ≺ (r1, ō1) (2) r1 = +, r2 = − (3) (r1, ō1) = (+, ∅), r2 = ◦.

We call Pol2 a refinement of Pol1, written Pol2 ≺ Pol1 if and only if for every as-
signment χ ∈ Ass(Var1 ∪ Var2) and every authorization request q ∈ Req, we have
evalPol∗2 (q, χ) ≺ evalPol∗1 (q, χ). We call Pol2 a weak refinement of Pol1 if the same
holds with ≺ replaced by ≺̃. �

Intuitively, a privacy policy that weakly refines another policy is at least as restrictive
as the coarser one: Even if the original policy rules “allow” for a certain request, after a
weak refinement the same request may be denied, or – provided that no obligations get
lost – an “allow” can be transformed into a “don’t care”.

Finally, the equivalence of two well-formed privacy policies is defined in the obvi-
ous manner:
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Definition 16 (Policy Equivalence). Two well-formed privacy policies Pol1 and Pol2
are called equivalent, written Pol1 ≡ Pol2, if and only if they are mutual refinements,
i.e., Pol1 ≡ Pol2 :⇔ (Pol1 ≺ Pol2 ∧ Pol2 ≺ Pol1). �

While this notion of policy equivalence is rather intuitive, it turns out that in some sit-
uations only a weaker form of equivalence can be achieved, and we therefore conclude
this section with the definition of weak policy equivalence.

Definition 17 (Weak Policy Equivalence). Two well-formed privacy policies Pol1
and Pol2 are called weakly equivalent, written Pol1 ≈ Pol2, if and only if they
are equivalent on their joint vocabulary, i.e., if and only if (Voc1 ∪ Voc2,R1, dr1)
≡ (Voc1 ∪ Voc2,R2, dr2). �

3 Defining Operators

Basically, defining symmetric operations on privacy policies reflecting the intuitive no-
tions of conjunction (AND) and disjunction (OR) looks rather simple. Unfortunately,
with a straightforward yet intuitive approach it happens that the conjunction or disjunc-
tion of two privacy policies might no longer constitute a syntactically correct privacy
policy. From a practical point of view such a behavior is not desirable: First, available
tools to enforce a(n EPAL) privacy policy are designed to handle privacy policies only.
Thus, to handle compositions of privacy policies these tools had to be modified or new
tools had to be developed. The obvious solution to this problem – making use of a
wrapper program that queries several policies by means of existing tools and combines
their results appropriately – is not always acceptable. In particular such a workaround
might violate conditions that were necessary to pass some (expensive) certification pro-
cess. Secondly, the combined privacy policies can originate in rather different sources
which are separated though significant geographical distances. Consequently, in larger,
say multinational, projects, where policies of many different organizations have to be
combined, it can be infeasible or at least very inconvenient to store all (component)
policies that contribute to the ruling of the composition.

To circumvent these problems, it is desirable to work in a subset of EP3P that is
on the one hand closed under conjunction and disjunction as well as other suitable al-
gebraic operations, and on the other hand is still expressive enough to capture typically
used privacy policies. The following lemma, whose proof we omit due to lack of space,
characterizes the expressiveness (and therewith also limits) of E-P3P policies.

Lemma 1 (Expressiveness of E-P3P). Let Voc be a vocabulary and ϕ : Req(Voc) ×
Ass(Var) → {+, ◦,−} × P{O} be an arbitrary function. Then there exists a well-
formed privacy policy Pol = (Voc, R, dr) with evalPol(q, χ) = ϕ(q, χ) for all
(q, χ) ∈ Req(Voc) × Ass(Var) if and only if for all valid requests q ∈ Req(Voc)
and all assignments χ ∈ Ass(Var), the following four conditions are satisfied:

1. ϕ(q, χ) = (+, ō) ⇒ ∀q′ ≤ q : ϕ(q′, χ) = (+, ō′) (possibly with ō′ �= ō).
2. ϕ(q, χ) = (−, ō) ⇒ ∀q′ ≥ q : ϕ(q′, χ) = (−, ō′) (possibly with ō′ �= ō).
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3. ϕ(q, χ) = (−, ō) implies that one of the following conditions holds:
(a) q ∈ L(Voc),
(b) ∃q′ <1 q : ϕ(q′, χ) = (+, ō′) (possibly with ō′ �= ō),
(c) ∃C ⊆ {q′ <1 q, ϕ(q′, χ) = (−, ōq′)} : C �= ∅ ∧ ō′ =

⋃
q′∈C ōq′ .

4. If ϕ(q, χ) = (◦, ō), then ō = ∅. �

3.1 Conjunction, Disjunction and the Non-closedness of EPAL

Unlike in typical access control settings, for defining the conjunction and disjunction
of privacy policies, we have to take care of the “don’t care” ruling ◦, whose semantics
is different from both “allow” and “deny”. Motivated by the intuition behind the ruling
◦, we decided for definitions that are in analogy to the conjunction and disjunction in
a three-valued Łukasiewicz logic Ł3. To handle the obligations, we use the operator ∨
provided by the obligation model.

AND (+, ō′) (−, ō′) (◦, ∅)
(+, ō) (+, ō ∪ ō′) (−, ō′) (◦, ∅)
(−, ō) (−, ō) (−, ō ∪ ō′) (−, ō)
(◦, ∅) (◦, ∅) (−, ō′) (◦, ∅)

OR (+, ō′) (−, ō′) (◦, ∅)
(+, ō) (+, ō ∨ ō′) (+, ō) (+, ō)
(−, ō) (+, ō′) (−, ō ∨ ō′) (◦, ∅)
(◦, ∅) (+, ō′) (◦, ∅) (◦, ∅)

Intuitively, we do not want to give a positive answer to a request if one of the two
policies that are to be combined by AND denies the access. Further on, if one policy
allows the access, and the other one “does not care”, then returning a “don’t care” seems
plausible and is indeed needed to ensure the distributivity of the operators AND and
OR. Similarly, for OR we allow an access, if at least one of the two involved policies
allows the request. Moreover, we “do not care”, if one of the operands “does not care”
– except if the other operand explicitly “allows” the request.

Lemma 2. Fix some obligation model and denote by (P(O),∨,∪) the corresponding
lattice of obligations. Then (({+,−}× P(O)) ∪ {(◦, ∅)}, OR, AND) is a distributive
lattice. �

We omit the proof of this and most of the subsequent lemmas due to space limitations
and refer the reader to the long version of this paper [3].

The natural definition of conjunction of two privacy policies Pol1 and Pol2 would
be that whenever Poli rules (ri, ōi) for a given assignment and request, then the con-
junction of Pol1 and Pol2 should yield (r1, ō1) AND (r2, ō2), and similar for disjunc-
tion. However, an easy corollary of Lemma 1 yields that such a policy is not necessarily
a valid EPAL policy anymore, i.e., EPAL is neither closed under conjunction nor under
disjunction given the above definitions.

Corollary 1 (Non-closedness of EPAL). There exist policies Pol1, Pol2 such that
for any policy Pol, we have that there exists an assignment χ ∈ Ass(Var1 ∪
Var2) and a request q ∈ Req(V oc1 ∪ V oc2) such that evalPol(q, χ) �≡
evalPol1(q, χ) op evalPol2(q, χ) where op ∈ {AND, OR}. �

Proof. For showing the statement for conjunction, we consider the policies depicted at
the left-hand side of Figure 1. Let Pol i for i = 1, 2 such that each of DHi, PHi, AHi
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Fig. 1. Examples that EPAL is not closed under conjunction or disjunction.

consists of a single element, and let UHi contain two elements u1, u2 such that u1 is
a parent of u2. Further assume that the condition vocabulary and the obligation model
are empty. The rules in Pol1 allow user u2 to access the data whereas u1 is forbidden
to do so. The rules in Pol2 don’t care for both users. The conjunction would then yield
a policy in which u1 is not allowed to access the data whereas the policy does not care
for u2. This immediately yields a contradiction to Lemma 1. The claim can be shown
similarly for disjunction and the policies depicted at the right-hand side of Figure 1.

It is is easy to see that adapting the definition of AND and OR in obvious ways (like
redefining the occurrences of ◦) does not solve this problem without violating other
essential conditions, e.g., the distributivity of the operators. As a remedy we identify
the subset of well-founded privacy policies in the next section, which allows for a very
intuitive handling in terms of defining conjunction and disjunction of privacy policies.
Actually, for practical cases, the restriction to those privacy policies is not really an
obstacle, and in the next section we take a closer look at such policies.

3.2 Well-Founded Privacy Policies

The intuition underlying the notion of well-founded policies can be described as fol-
lows:

– Suppose the ruling specified for some group is “deny”, but none of the group mem-
bers is denied from accessing the respective data. Then this contradicts the idea
that in EPAL the group ruling is to reflect (“to group”) the rulings of the individual
group members.

– If each member of a group is permitted to perform some action, then intuitively the
group as a whole is permitted to perform this action, too.

– Assume that both the ruling specified for a group and for a member of this group is
“allow”, and assume further that the obligations of the group are not a superset of
the obligations of the group member. Then the group member may be able to avoid
certain obligations by submitting a query where the user is specified to be the group
as a whole. Typically, the availability of such a “workaround” is not desirable. On
the other hand, if the obligations of the group are stricter than the union of the
obligations of the group members and we (re)define the group obligations to be the
union of the individual obligations then no harm (in the sense that a group member
can gain additional privileges) is caused by querying the group.

Formally, well-founded policies are captured as follows:
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Definition 18 (Well-Founded Policy). Let Pol be a well-formed policy. Then we call
Pol well-founded if and only if for all (q, χ) ∈ Req(Voc) × Ass(Var) the following
conditions are fulfilled:

– If q is no leaf node and evalPol(q, χ) = (−, ō), then there exists q′ <1 q such that
evalPol(q′, χ) = (−, ō′) for some ō′.

– If evalPol(q′, χ) = (+, ōq′) for each q′ <1 q and arbitrary ōq′ , then
evalPol(q, χ) = (+, ō) for some ō.

– If evalPol(q, χ) = (r, ō), then ō =
⋃

q′<1q,evalP ol(q′,χ)=(r,ō′) ō′. �

Up to equivalence, well-founded policies are already uniquely determined by the rulings
of the leaf nodes:

Lemma 3. Let Pol1,Pol2 be well-founded privacy policies with Voc1 = Voc2 and let
evalPol1(q, χ) = evalPol2(q, χ) for every q ∈ L(Voc1) and every χ ∈ Ass(Var1).
Then Pol1 ≡ Pol2. �

Actually, the predetermined allow and deny rulings for the set of leaf nodes can be cho-
sen arbitrarily. The subsequent algorithm demonstrates how in principle a well-founded
policy can explicitly be written down that is consistent with any predetermined set of
rulings for all leaf nodes. Note however that the algorithm does not aim at generating
small policies; optimizing it for practical purposes is considered as future work.

Input: • a vocabulary Voc and
• a ruling (rq,χ, ōq,χ) ∈ ({+,−}× P(O)) ∪ {(◦, ∅)}

for all q ∈ L(Voc), χ ∈ Ass(V ar).
Output: a well-founded privacy policy Pol = (Voc,R, dr) such that for all

q ∈ L(Voc), χ ∈ Ass(V ar) the equality evalPol(q, χ) = (rq,χ, ōq,χ) holds.

/* Assign identical precedences to leaf rulings different from (◦, ∅) */
R := ∅
for each q := (u, d, p, a) ∈ L(Voc)

if (rq,χ, ōq,χ) �= (◦, ∅)
(1)then R := R ∪ {(0, u, d, p, a, cχ, ōq,χ, rq,χ)}

end if
end for

/* Insert missing positive rulings with low precedence */
for each χ ∈ Ass(Var) and each q := (u, d, p, a) ∈ Req(Voc) do

if rq′,χ = + for all q′ ∈ L(q,Voc)
(2)then R := R ∪ {(i, u, d, p, a, cχ,

⋃
q′∈L(q,Voc) ōq′,χ)}

such that i < i′

for all (i′, u′, d′, p′, a′, c′, +, ō′) ∈ R : q > (u′, d′, p′, a′)
end if

end for

return (Voc, R, ◦)
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Lemma 4. The above algorithm is totally correct, i.e., it terminates and for inputs as
specified in the algorithm, it computes a policy as specified in the output description. �

3.3 Conjunction and Disjunction of Privacy Policies

We now define the conjunction and disjunction of two well-founded privacy policies.
From Lemma 3 we know that it is sufficient to define the operations for those requests
that are leaves of the considered hierarchies since once the evaluations on the leaves
are fixed, the corresponding privacy policy is, up to equivalence, uniquely determined.
With the algorithm in Section 3.2 we can then explicitly compute a policy that is con-
sistent with the given evaluations of the leaf nodes. However, to make definitions of the
operators independent of an algorithmic specification, we will formulate the actual defi-
nitions in such a way that the result of a conjunction/disjunction of two privacy policies
constitutes an equivalence class of policies – not a specific privacy policy. For practical
purposes this is not really a problem as we can, e.g., use the algorithm from Section 3.2
to derive a concrete policy from the equivalence class.

The motivation for defining an AND operation on privacy policies is rather straight-
forward: Assume that an enterprise takes part in some project for which data has to be
accessed and processed that is controlled by some external project partner. Then the
access to and processing of such data shall only be allowed, if none of the individual
privacy policies of the participating enterprises is violated.

Definition 19 (Policy Conjunction). Let Pol1, Pol2 be two well-founded privacy poli-
cies such that Pol∗i = (Voc∗i ,Ri , dri) for i = 1, 2 with Voc∗i := (UH 1∪UH 2,DH 1∪
DH 2,PH 1 ∪ PH 2,AH 1 ∪ AH 2,Vari ,OMi) are also well-founded privacy policies.

Then the conjunction of Pol1 and Pol2, is the equivalence class (w. r. t. ≡) of all
well-founded privacy policies Pol on the joint vocabulary Voc := Voc1 ∪ Voc2 such
that for all leaf nodes q ∈ L(Voc) and for all assignments χ ∈ Ass(Var) we have
(r1, ō1) ≡ (r2, ō2), where

(r1, ō1) := evalPol (q, χ) and

(r2, ō2) := evalPol∗1 (q, χ) AND evalPol∗2 (q, χ).

By Pol1&Pol2 we denote any representative of this equivalence class (which can, e.g.,
be computed by means of the algorithm in Section 3.2). �

Note that this definition only imposes conditions on the leaf nodes, hence the question
arises to what extent “inner” queries obey the defining table for AND, too. Indeed, the
desired relations are fulfilled for arbitrary queries:

Lemma 5. Let Pol1, Pol2 be well-founded privacy policies that satisfy the require-
ments of Definition 19 and let Pol = Pol1 & Pol2. Then for all requests q ∈ Req(Voc)
and for all assignments χ ∈ Ass(Var) we have the equivalence evalPol(q, χ) ≡
evalPol∗1 (q, χ) AND evalPol∗2 (q, χ) with Pol∗i as in Definition 19. �

Similar to conjunction, the disjunction of privacy policies is essential for a variety of use
cases. For example, consider two departments of an enterprise that cooperate in some
project. For carrying out this project, it should then be possible to access data items
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whenever one of the individual privacy policies of the two departments grants such an
access. This idea of “joining forces” is captured by the following definition.

Definition 20 (Policy Disjunction). Let Pol1, Pol2 be two well-founded privacy poli-
cies such that Pol∗i = (Voc∗i ,Ri , dri) for i = 1, 2 with Voc∗i := (UH 1∪UH 2,DH 1∪
DH 2,PH 1 ∪ PH 2,AH 1 ∪ AH 2,Vari ,OMi) are also well-founded privacy policies.

Then the disjunction of Pol1 and Pol2 is the equivalence class (w. r. t. ≡) of all
well-founded privacy policies Pol on the joint vocabulary Voc := Voc1 ∪ Voc2 such
that for all leaf nodes q ∈ L(Voc) and for all assignments χ ∈ Ass(Var) we have
(r1, ō1) ≡ (r2, ō2) where

(r1, ō1) := evalPol (q, χ) and

(r2, ō2) := evalPol∗1 (q, χ) OR evalPol∗2 (q, χ).

By Pol1 +Pol2 we denote any representative of this equivalence class (which can, e.g.,
be computed by means of the algorithm in Section 3.2). �

Unfortunately, for the disjunction of privacy policies, we have no analogue to Lemma 5,
i.e., in general we cannot achieve an equivalence of the form evalPol (q, χ) ≡
evalPol∗1 (q, χ) OR evalPol∗2 (q, χ) for arbitrary requests q and assignments χ. In fact, it
is not difficult to construct examples where imposing such a “node-wise equivalence”
yields a contradiction to well-foundedness. Fortunately, also for the “inner nodes” the
policy obtained by disjunction is still rather close to what one would expect intuitively:

Lemma 6. Let Pol1, Pol2 be well-founded privacy policies that satisfy the require-
ments of Definition 19 and let Pol = Pol1 + Pol2. Then for all q ∈ Req(Voc) such
that evalPol(q, χ) = (−, ō) or evalPol∗1 (q, χ) OR evalPol∗2 (q, χ) = (+, ō) holds for
some ō, we have evalPol∗1 (q, χ) OR evalPol∗2 (q, χ) ≺ evalPol(q, χ). �

3.4 Scoping of a Privacy Policy

One of the most desirable operations in practice is to restrict the scope of a policy, i.e.,
to restrict large policies to smaller parts. Examples for this so-called scoping are om-
nipresent in practical policy management, e.g., deriving a department’s privacy policy
from the enterprise’s global privacy policy, or considering only those rules that specifi-
cally deal with marketing purposes. Formally, we define the following scoping operator:

Definition 21 (Scoping). Let Pol be a well-founded privacy policy and let V :=
(UH ′, DH ′, PH ′, AH ′) where UH ′, DH ′, PH ′, andAH ′ are arbitrary subhierar-
chies of UH , DH , PH , AH , respectively.

Then the scoping of Pol with respect to V is the equivalence class (with re-
spect to ≡) of all well-founded privacy policies Pol ′ on the vocabulary Voc′ :=
(UH ′, DH ′, PH ′, AH ′,Var , OM) such that for all leaves q ∈ L(Voc′) and for all
assignments χ ∈ Ass(Var) we have

evalPol′(q, χ) ≡ evalPol(q, χ).

By Pol |V we denote any representative of this equivalence class (which can, e.g., be
computed by means of the algorithm specified in Section 3.2). �
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Ideally, scoping would yield a privacy policy such that not only for the leaf nodes, but
also for the “inner” requests we always obtain equivalent rulings from Pol and Pol |V .
However, in general this contradicts the well-foundedness of the privacy policy derived
via scoping unless additional assumptions on the considered hierarchies are imposed:

Example 1. Consider a well-founded privacy policy Pol such that each of DH , PH ,
AH consists of a single element. For the sake of simplicity assume that the condi-
tion vocabulary is empty, and let UH contain three users u0, u1, u2. The rules in
Pol allow user u1 to access the data with obligations ō1, and user u2 can access the
data with obligations ō2. Finally the “superuser” u0 – the parent of u1 and u2 in the
user hierarchy UH – can access the data with obligations ō1 ∪ ō2 to ensure the well-
foundedness of Pol . If we scope this policy w. r. t., ({u0, u1}, DH, PH, AH), then
user u1 can still access the data with obligations ō1, but due to the well-foundedness
of Pol |({u0,u1},DH,PH,AH), now the superuser u0 can also access the data with obliga-
tions ō1, in other words the obligations ō2 are “lost”.

However, even without imposing additional constraints on the considered hierarchies,
we can exploit the well-foundedness of the policies to establish the following lemma:

Lemma 7. Let Pol be a well-founded privacy policy with vocabulary V oc and V :=
(UH ′, DH ′, PH ′, AH ′) a tuple of subhierarchies of UH , DH , PH , AH , respectively.
Then Pol≺̃Pol |V . �

In dependence on the precise kind of scoping considered, even stronger preservation
properties can be proven, e.g., if the scoped policy is well-founded again then we obtain
equivalent rulings also for inner requests. This is the case if we for instance apply a
scoping operation under which the leaf requests are invariant, i.e., if the considered
vocabularies are non-appending. Albeit this looks rather restrictive from a theoretical
point of view, for the kind of scoping needed in practice – say extracting a department’s
privacy policy from an enterprise’s privacy policy – this requirement is often met.

Lemma 8. Let Pol be a well-founded privacy policy, and V := (UH ′, DH ′, PH ′,
AH ′) a tuple of subhierarchies of UH , DH , PH , AH , respectively, such that
for Voc′ := (UH ′,DH ′,PH ′,AH ′,Var ,OM ) and all q ∈ Req(Voc′), we have
L(q,Voc) = L(q,Voc′). Then for all q ∈ Req(Voc′) and for all assignments
χ ∈ Ass(Var) we have evalPol(q, χ) ≡ evalPol |V (q, χ). �

3.5 Further Extensions of the Algebra

There are certainly further operators one would like to add to the set of available tools.
From a practical point of view, it is in particular desirable that the operators discussed
in this paper can be combined with the sequential form of composition of E-P3P poli-
cies proposed in [4]. Since we try to stay close to the latest version of EPAL that has
been submitted to W3C for standardization, the E-P3P variant underlying [4] is slightly
different from the variant that we consider here, hence some care has to be taken in
combining operations/results from [4] and the ones presented above. Fortunately, car-
rying over the operator for sequentially composing privacy policies from [4] – there
called ordered composition – to the situation considered here is straightforward.
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As a technical tool, [4] introduces policies with removed default rulings, which
means that an E-P3P policy is transformed into an equivalent one with default ruling
“don’t care”. However, from Lemma 3 we know how to represent any well-founded
privacy policy in this way, and so we can do without this technical trick here. As in
[4] we make use of the concept of precedence shift, which adds a fixed number to the
precedences of all rules in a policy. This can be used, for instance, to shift a department
policy downwards, so that it has lower precedences than the CPO’s privacy policy.

Definition 22 (Precedence Shift). Let Pol = (Voc, R, dr) be a privacy policy and
j ∈ Z. Then Pol + j := (Voc, R + j, dr ) with R + j := {(i + j, u, d, p, a, c, ō, r) |
(i, u, d, p, a, c, ō, r) ∈ R} is called the precedence shift of Pol by j. We define Pol −
j := Pol + (−j). �

To formalize the sequential composition of two well-founded policies Pol1, Pol2 with
compatible vocabularies, we assume that both of them have a “don’t care” default rul-
ing. If this is not the case, we first apply an algorithm like the one in Section 3.2 to
derive equivalent privacy policies which have a “don’t care” default ruling. After that,
we shift the two policies accordingly, and then join their vocabularies and rulesets:

Definition 23 (Sequential Composition). Let Pol1, Pol2 be well-founded privacy
policies with compatible vocabularies, where w. l. o. g. dr1 = ◦ = dr2. Let (Voc1,
R′′

1 , ◦) := Pol1 − max(Pol1) − 1 and (Voc2, R
′
2, ◦) := Pol2 −min(Pol1) + 1. Then

Pol1 <

⋃
Pol2 := (Voc1 ∪ Voc2, R

′′
1 ∪ R′

2, ◦)

is called the sequential composition of Pol1 under Pol2. �

Intuitively, a sequential composition of Pol1 under Pol2 should serve as a refinement
of Pol2 which is formally captured in the following lemma.

Lemma 9. For all well-founded privacy policies Pol1 and Pol2 with compatible vo-
cabularies and dr1 = ◦ = dr2, we have Pol1 <

⋃
Pol2 ≺ Pol2. �

Obviously, the sequential composition of two well-founded privacy policies is in gen-
eral no longer well-founded. So when combining <

⋃
with the operators + and & to form

more complex privacy policies, some care has to be taken. In general, the sequential
composition of policies should always be the last operation applied, as it is the only one
which does not preserve well-foundedness.

4 Algebraic Properties of the Operators

Since the operator definitions proposed in the previous section are quite intuitive, one
would not expect “unpleasant surprises” when using these operators to form more com-
plex privacy policies involving three, four, or more operands. As actual use cases often
involve more than only one or two different privacy policies, we have to ensure that our
operators do not yield non-intuitive behaviors in such scenarios. Fortunately, this is not
the case, and the usual algebraic laws apply:
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Lemma 10. Let Pol1, Pol2, Pol3 be well-founded E-P3P policies such that the fol-
lowing expressions are well-defined, i.e., the respective requirements in Definition 19
respectively Definition 20 are met. Then the following holds:

Idempotency : Pol1&Pol1 ≡ Pol1, (1)

Pol1 + Pol1 ≡ Pol1,

Commutativity : Pol1&Pol2 ≡ Pol2&Pol1, (2)

Pol1 + Pol2 ≡ Pol2 + Pol1,

Associativity : Pol1&(Pol2&Pol3) ≡ (Pol1&Pol2)&Pol3, (3)

Pol1 + (Pol2 + Pol3) ≡ (Pol1 + Pol2) + Pol3,

Distributivity : Pol1 + (Pol2&Pol3) ≡ (Pol1 + Pol2)&(Pol1 + Pol3), (4)

Pol1&(Pol2 + Pol3) ≡ (Pol1&Pol2) + (Pol1&Pol3),
Strong Absorption : Pol1 + (Pol1&Pol2) ≺ Pol1. (5)

�

It is worth noting that our proof of the strong absorption property relies on both
Lemma 5 and Lemma 6, and although it may look tempting, one cannot simply switch
the roles of conjunction and discjunction in the proof to derive a “dual” strong absorp-
tion law with the roles of & and + being exchanged.

In addition to purely algebraic properties of the operators, one can also establish
several refinement results. In particular we can prove the following relations, which
from the intuitive point of view are highly desirable:

Lemma 11. Let Pol1, Pol2 be well-founded privacy policies such that the respective
requirements of Definition 19 and Definition 20 are met. Then we have

Weak Multiplicative Refinement : Pol1&Pol2≺̃Poli (i = 1, 2), (6)

Weak Additive Refinement : Poli≺̃Pol1 + Pol2 (i = 1, 2). (7)

�

Finally, we state a refinement result which relates the sequential composition operator
to the operators for conjunction and disjunction:

Lemma 12. Let Pol1, Pol2 be well-founded policies such that the respective require-
ments of Definition 19, Definition 20, and Definition 23 are met. Then we have

Weak Operator Refinement : Pol1&Pol2 ≺̃ Pol1 <

⋃
Pol2 ≺̃ Pol1 + Pol2. (8)

�

5 Conclusion

Motivated by the need for practical life-cycle management systems for the collection of
enterprise privacy policies, we have introduced several algebraic operators for combin-
ing enterprise privacy policies, and we have shown that they enjoy the expected alge-
braic laws. Our operators allow for a convenient, modular use of existing EPAL policies
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as building blocks for new ones, and they hence avoid the difficulties that naturally arise
for the usually very complex monolithic privacy specifications.

An analysis of the expressiveness of EPAL further revealed that, somewhat surpris-
ingly, EPAL policies are not closed under intuitive notions of policy conjunction and
policy disjunction; however, such operations are crucial for actual use cases. We have
circumvented this problem by identifying a suitable subclass of EPAL policies that is
closed under desired algebraic operations. Further on, the introduced tools for com-
bining privacy policies satisfy natural requirements like associativity, commutativity,
and distributivity, as well as appropriate refinement relations. In addition to conjunction
and disjunction operators, our algebra provides a scoping operation which allows for
managing and reasoning about privacy requirements that involve only certain parts of
an organization. Finally, we have shown that the already existing notion of sequential
composition of privacy policies fits naturally into our setting. As future work we con-
sider it a worthwhile goal to add further operations to our algebra in order to further
facilitate a convenient handling of privacy policies.
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