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Abstract. This paper proposes a general architecture to extract knowledge from
graphic documents. The architecture consists of three major components. First, a
set of modules able to extract descriptors that, combined with domain-dependent
knowledge and recognition strategies, allow to interpret a given graphical doc-
ument. Second, a representation model based on a graph structure that allows
to hierarchically represent the information of the document at different abstrac-
tion levels. Finally, the third component implements a calligraphic interface that
allows the feedback between the user and the system. The second part of the pa-
per describes an application scenario of the above platform. The scenario is a
system for the interpretation of sketches of architectural plans. This is a tool to
convert sketches to a CAD representation or to edit a given plan by a sketchy
interface. The application scenario combines different symbol recognition algo-
rithms stated in terms of document descriptors to extract building elements such
as doors, windows, walls and furniture.

1 Introduction

Graphics Recognition is the subfield of Document Analysis that is concerned on the
interpretation of graphical structures present in documents like plans, maps, engineer-
ing drawings, musical scores, charts, etc. A lot of research has addressed the problem
of converting paper-based graphics documents to electronic formats. Classically, this
conversion involves activities organized in three levels: feature and low level primitive
extraction, primitive (symbol) recognition, and document understanding using domain
knowledge. Techniques from the fields of Image Processing, Pattern Recognition and
Artificial Intelligence formulate the above activities.

A number of high performant Graphics Recognition systems exist. Not only in aca-
demic domains but also as industrial applications. However, most of such systems are
highly domain-dependent. The development of general graphics recognition platforms
remains still a challenge. Some interesting approaches exist that are focused on that
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goal [1–3]. In the existing applications the methodological basis is mainly the same.
There is no reason to reinvent the wheel for each application, it is better to combine and
parametrize basic tools in terms of a domain-dependent strategy. On the other hand, the
concept of document is becoming more and more extensive. The classical idea of paper
document is currently complemented by electronic documents (pdf, html, etc.). Hence,
the idea of converting paper-based documents to electronic format is now extended to
the idea of understanding poorly structured documents from different sources. This re-
sults in new application scenarios as document browsing, indexing, editing by means of
on-line sketch-based interfaces, etc. However, these new scenarios continue using the
same core of techniques.

The above reasons justify the need for a general platform devoted to graphic docu-
ment analysis and recognition. This is the goal of the architecture proposed in this work.
Inspired by the idea of the french DocMining project [1], we propose an architecture
for document mining, i.e. a set of engines to extract different kinds of descriptors from
documents. The combination of such descriptor extractors with the domain-dependent
knowledge defines an application scenario.

On the other hand, the role of the user in the graphics recognition cycle is also a
key issue. The user intervention in a graphics recognition process should not be seen
as negative but a natural issue. A recognition and understanding process may need the
feedback from the user to set particular parameters, to validate decisions taken from the
system when there is uncertainty or just to interact with the system to edit the document
or drive the process. The sketchy interfaces paradigm is very relevant to the last issue,
i.e. the user interaction by means of pen strokes is a powerful tool to draw new graphic
documents, to digitally augment paper documents or to edit documents by sketchy ges-
tures. Our idea in the system architecture proposed in this paper is to include a sketchy
interface as a component of a graphics recognition system.

Taking into account the above considerations, in this paper we propose a general
architecture for knowledge extraction from graphic documents. This architecture fol-
lows a document mining paradigm and can be summarized in three major issues. First,
it consists of a set of engines to extract knowledge sources or descriptors. A descriptor
is a feature that afterwards is likely to have a particular meaning in the domain where
the document belongs to. Thus, a feature can be a segment after a vectorization pro-
cess, a shape, a colour or texture based segmented region, a perceptually salient pattern,
a text component, etc. The particular interpretation of a given document depends on
the combination of descriptors in terms of domain-dependent rules. The second issue
of our architecture is the definition of a hierarchical metadata model to represent any
graphic document. It consists in an abstract model that, using the set of descriptor ex-
traction engines, allows to convert a graphic document into a normalized document.
Finally, the third basis of our architecture is a tool for the integration of the user in the
document understanding cycle. As stated before, this tool is based on the sketchy inter-
facing paradigm and, hence allows to either design new diagrams or edit existing ones
by means of gestures.

The above architecture makes sense when it can be instantiated for a given scenario,
i.e. for a particular application. To illustrate it, the second part of this paper presents an
architectural plan analysis system. Architectural sketches have been the focus of sev-
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eral works on the recognition of sketched-based interfaces [4, 5]. These systems are
specifically designed to analyze and recognize architectural drawings and are based on
the application of specific rules about the domain. Our system aims to follow a general
framework which could be used in other applications. The scenario presented in this
paper is though as a tool to assist an architect in the early design phase of a new project.
Hence, in this stage, an architect uses to convert ideas to sketches. Actually, the system
presented in this paper is part of a more general platform that aims to get a 3D view
of a building from a sketched floor plan. Then the architect can navigate into the build-
ing using a Virtual Reality environment. Our proposed system combines the following
elements: first, a set of descriptor extraction modules and domain-dependent knowl-
edge to recognize building elements (graphic symbols) as walls, doors, windows, etc.
Second, a graph-based structure to represent the documents. And third, a sketch-based
interface paradigm to draw architectural floor plans or to interactively edit existing ones
by adding new elements. Our goal is not to describe a novel symbol recognition algo-
rithm but to propose a system in which classical graphics recognition techniques and
strategies are combined in a particular scenario consisting of interpreting architectural
sketches.

The remainder of this paper is organized in two parts. First, in section 2 we describe
the general system architecture. The second part of the paper describes the particular
use of the architecture elements in the scenario of sketched architectural plans inter-
pretation. Thus, section 3 presents the feature descriptors, and section 4 describes how
such descriptors are used in terms of domain-dependent knowledge to recognize build-
ing elements. Section 5 discusses the experimental evaluation and finally, section 6 is
devoted to conclusions.

2 System Architecture and Application Scenario

The system presented in this paper is a particular scenario of the general platform in-
troduced in Section 1. This general platform can be organized in three layers: the first
layer is devoted to acquisition of documents, whatever the acquisition mode: on-line
or off-line. The second layer has to do with extraction of relevant features. Finally,
the third layer consists of knowledge interpretation, using the extracted features. These
three layers are joined using a common data structure that allows to represent, store,
search and modify information at several levels of abstraction. The description of that
model is presented in Fig. 1.

The data model consists of a generic labelled non-directed graph able to represent
the information at different abstraction levels by changing the kind of nodes and edges
forming it. Both nodes and edges can be described by Graphic Objects. A Graphic
Object is a generic class with some derived classes: Symbol, Point, Line, Arc, Region
and Stroke. The Symbol class can be described by another graph, or by a Pattern class.
The Pattern class is a generic class describing a shape that can be specialized into a
graph, a grammar that describes the pattern by means of grammatical rules or a feature
vector. The Stroke class is formed by a set of points.

The second layer extracts the descriptors explained in Section 3, which are divided
in four types: Vector-based descriptors: mainly lines, arcs and their relationships. Per-
ceptual grouping descriptors as parallelism, collinearity, closed loops and overlapping.
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Fig. 1. Graph model to represent the normalized document.

These two descriptors need a vectorization [6] pre-process to obtain the segments and
arcs from the input document. Pixel-based descriptors, as Zernike moments and zoning.
Dynamic descriptors consisting of the chain of strokes drawn by a user together with
its temporal information and speed.

As it has been explained, the particular scenario of application of this general frame-
work is the early design of sketches in floor architectural plans. Sketches can be drawn
on-line or off-line. The aim of the platform is to allow the architects to design a plan
in a natural way, recognizing its parts and storing it as a normalized document. The
sketching interface paradigm allows the architect either to draw a new plan, to edit an
existing one or to interact with the system by a sketchy gestures language. From the
sketch the system is able to create a structured document consisting of its building ele-
ments. Such building elements are described in terms of domain-dependent knowledge
that mainly consists of prototype patterns and semantic rules, using the normalized data
structure described before. The specialization of the general architecture to this scenario
is graphically outlined in Fig. 2.

In the first layer, the document can be obtained off-line by scanning a hand-drawn
sketch made on a ”classical way” on a paper, or on-line with a digital tablet, a tablet PC
or a digital pen. Both ways cooperate in the creation process of the document. A first
version of a sketch can be created in both off-line and on-line way. Then the system
can recognize its parts and to store it in a data base to later recover and modify it in
the on-line way. When the document is edited with a sketchy interface, the recognition
process acts on the new input and not on all the already processed document.

Once the document is obtained its structure is computed in the second layer of the
architecture. The structure of this kind of documents is formed by the structural parts of
the building: walls, windows and doors, the furniture: tables, sofas, chairs, etc. and the
facilities as plugs, TV-connections, pipes, etc. Each kind of component can be identified
by means of a set of characteristics that in some cases are common to more than one
kind of symbol.
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Fig. 2. The particular architecture for an architectural plan analysis platform.

Finally the third layer extracts the knowledge from the descriptors and save it in the
normalized format. Three kind of recognition approaches are used. Rule-based recogni-
tion uses the information of parallelism to recognize windows and walls. String match-
ing recognizes doors and some furniture symbols from the vectorial and dynamic infor-
mation. Statistical classification recognizes some furniture symbols from pixel-based
descriptors. All these approaches are explained in more detail in Section 4.

The general data model described previously is used to get a description of the plan
at several levels of abstraction in the following way. The first level of abstraction is rep-
resented by a graph describing the layout of the sketch. The edges represent segments
and arcs appearing on the document and the nodes represent the points connecting them.
In a second level of abstraction the nodes in the graph can represent the closed regions
in the document, and the edges their relationships. At a higher abstraction level the
nodes represent rooms with its associated class of room: a kitchen, a bathroom, etc, and
the edges are the relations among them.

3 Feature Extraction Engines

An architectural drawing is composed of different types of elements: walls, doors, win-
dows, stairs, symbols describing furniture elements, etc. There is not a single represen-
tation scheme nor recognition method able to describe and identify all of them. Then,
according to the general system architecture described in section 2, several descriptors
are extracted from the drawing, in order to get an optimal representation of every kind
of element. These descriptors are combined to get a global representation of the draw-
ing, using the common data structure explained in section 2. We have grouped those
descriptors into four categories: vector-based descriptors, perceptual grouping descrip-
tors, pixel-based descriptors and dynamic descriptors.
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3.1 Vector-Based Descriptors

Vectors always play an important role in the description of technical drawings. There are
several approaches to vectorization [6]. In this case, we apply a vectorization process
based on thinning and polygonal approximation of the image skeleton. The result of
vectorization is a set of vectors (lines or arcs) and their relationships. They are organized
using the common graph structure described in section 2.

Vectorial representation is used for the description and recognition of those elements
describing the structure of the drawing, such as walls, doors and windows. It is also the
basis for obtaining perceptual grouping descriptors.

3.2 Perceptual Grouping Descriptors

Segmentation is a very important task in any graphics recognition system. The elements
of the drawing must be located before being recognized. Usually, segmentation follows
specific rules for each kind of drawing as the type of elements and their relationship
are different from one kind of drawing to another. Sometimes, segmentation is carried
out along with recognition, locating and recognizing the elements of the drawing at the
same time.

Another approach is to detect possible locations of elements in the drawing, and
then, verify the existence of the element in that position with some recognition method.
The detection of such possible locations are usually based on perceptual grouping tech-
niques where salient features are detected. These features are necessary, but not suf-
ficient, to determine the existence of a given element. Therefore, they can be used as
seeds to search for one specific element.

We have used this last approach and therefore, we have defined a set of descriptors
which will be employed later in segmentation tasks, such as the detection of walls, win-
dows and symbols. These descriptors are based on the vector-based descriptors obtained
as the result of vectorization:

– Parallelism: Detected when the difference in orientation between two nearby lines
is near 0 or 180, given some preselected threshold.

– Overlapping: The projection, either in the horizontal or vertical axis, of two lines
must overlap, and the between the length of overlapping and the shortest line must
be larger than a given threshold.

– Collinearity: this condition is detected when a parallelism between two non over-
lapping lines is found, and the difference in orientation between the line joining the
farther end points and both lines is near 0 or 180.

– Closed loops: they are detected trough the analysis of the vector graph. The loops
are represented as a graph of adjacent regions, using the common data structure.

3.3 Pixel-Based Descriptors

Some of the symbols which appear in architectural drawings are quite small. As we
are working with hand-drawn symbols, they cannot be represented by vectors, as the
variability of hand-drawing introduces too much distortion in the vectorization results.
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Therefore, these symbols must be described using several descriptors computed from
the binary image and not their vector representation. We have used two different kinds
of pixel-based descriptors: circular zoning and Zernike moments. Both methods rely on
a previous segmentation of the symbol, which is carried out by analysis of connected
components in the drawing.

Circular zoning is based on a method developed by Adam [7], and it allows to get
a rotation and scale invariant feature vector. Once the symbol is segmented, the image
is divided into concentric zones as illustrated in figure 3. For each zone, the number
of black pixels is counted and normalized according to the area of the zone. Thus, the
feature vector contains one value for each zone, representing the ratio of black pixels
in it.

T.V.
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e

b

f

a b
b

c d e f
.1 .5 .9 .2 .3 .3

Fig. 3. Representation of a symbol using circular zoning.

Circular zoning is not able to distinguish between all symbols, taking into account
the large amount of variability in hand-drawn symbols. Therefore, we have introduced
another set of invariant features based on Zernike moments in order to improve recog-
nition accuracy. Zernike moments [8] have been successfully used in the context of
OCR. They can be related to usual geometric moments, but they allow to reduce certain
degree of redundancy in the information conveyed by geometric moments. Moreover,
they can be easily used to define a rotation invariant feature vector. They are based on
the projection over the Zernike polynomials of the image mapped on the range of the
unit circle. We have taken Zernike moments from order 2 up to 6 (fourteen values), to
build the feature vector.

3.4 Dynamic Descriptors

As we have explained, the system can take both off-line and on-line input. For on-line
input, we can take advantage of the time information to improve recognition accuracy.
With that aim, we have also defined a set of dynamic descriptors, obtained from the
on-line input, organized at two levels of abstraction.

The first level of descriptors is simply the sequence of points at each moment of
time. This sequence of points is described with the usual chaincode representation. The
second level of descriptors aims to extract the structure of the on-line sequence. This
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way, each stroke (sequence of points) is divided into segments, each segment corre-
sponding to a straight line or an arc in the drawing. This segmentation is achieved by
locating the breaking points where a corner can be found, looking for changes in local
and global stroke curvature - see figure 4 -.

(a) (b)

Fig. 4. Division of strokes into segments. (a) Original image. (b) Segmentation.

4 Knowledge Extraction

Once descriptors have been extracted from the drawing, different processes must be
activated to identify and recognize all the elements in it. As we have used different set
of descriptors for each kind of element, we must also use different recognition methods
to locate and identify them. We can group these methods into three different kinds of
pattern recognition approaches: rule-based recognition, string matching and statistical
classification.

4.1 Rule-Based Recognition

This approach is used for the detection of the structure of the building: walls and win-
dows. It relies basically on the perceptual grouping descriptors. Starting from the paral-
lelism and overlapping descriptors, it consists in applying a set of rules to determine if
two or three parallel and overlapping vectors can be considered as a wall or a window,
respectively (see figure 5). Collinearity is used to join different lines belonging to the
same wall.

The set of rules applied are based on the distance between parallel and collinear
lines, the degree of overlapping between them, the aspect ratio of the rectangle enclos-
ing the wall or the window and the length of the segments composing them.

(a) Window. (b) Wall

Fig. 5. Detection of walls and windows with three or more lines.
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4.2 String Matching

String matching [9] is used for the recognition of two different kinds of elements in
the drawings: the detection of doors and the recognition of furniture symbols in on-line
drawings. The recognition of doors is based on the previously detected loops, repre-
sented as a string of vectors. Then, string matching relies on computing an edit distance
between the loop found in the image and the loop representing the model of a door. The
final distance value allows to determine if both loops are similar.

For symbols in on-line drawings, the string matching is applied after splitting each
stroke into a set of segments, and representing each segment with its chaincode. String
matching allows to define a distance measure between each segment in the symbol im-
age and each segment in the model of the symbol. This distance is computed weighting
the final edit cost resulting from the string matching with other measures, such as the
distance between end points of both segments and the difference in length between both
segments. Once we have computed the distance among all segments, we can find the as-
sociation between image segments and model segments yielding to the minimal global
distance. This global distance is used as a measure of classification.

4.3 Statistical Classification

The recognition of furniture symbols in off-line drawings relies on pixel-based descrip-
tors, namely circular zoning and Zernike invariant moments. As images will be rep-
resented as feature vectors, we must use some statistical method to classify them. We
have used the Mahalanobis distance as a criterion for classification, as it allows to take
into account the variability in each class, learned from a set of symbol samples.

5 Experimental Evaluation

This section is devoted to illustrate the performance of the application scenario of archi-
tectural sketch understanding. As described above, the system is a tool for early design
stages of architectural projects. The system converts sketches of floor plans to a CAD
representation consisting of building elements. We can distinguish three major cate-
gories of elements: structure (walls, doors and windows), furniture (chairs, beds, tables,
etc.), and facilities (electrical, illumination, etc.). Notice that since any of the above
elements has its own diagrammatic representation, the sketch understanding problem
actually consists of a symbol recognition problem. As it was noticed above, a key com-
ponent of our architecture is a sketchy interface. Actually, the system can work either
on-line or off-line and hence, the symbol recognition algorithms take into account such
a twofold input procedure. Conceptually, we use a digital pen and paper paradigm, i.e.
the system allows the user to input a scanned sketch, to interactively draw a new one or
edit an existing one by the use of a TabletPC, or even to use paper as input medium but
with paper augmented functionallity [10]. Figure 6 illustrates the sketch understand-
ing process. First, the initial paper sketch of Fig. 6(a) has been scanned. The different
feature extraction procedures and symbol recognition strategies described in sections
3 and 4 have been applied. Figure 6(b) shows the reprinted document once different
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symbols have been recognized. Afterwards, the user by means of a sketchy interface
in a TabletPC has edit the plan adding some elements, see Fig. 6(c). In that case, dy-
namic descriptors have been extracted and on-line symbol recognition methods have
been applied to get the final result of Fig. 6(d).

Let us now further analyze the performance of the system in a quantitative way.
This analysis is formulated in terms of the performance of the different symbol recog-
nition methods that are applied for the recognition of the graphical elements. To do so
we have used the following groud-truth. We have used a set of 25 classes of architec-
tural symbols. Ten different people have been asked to sketch at least ten instances of
each symbol. We have then collected a database with 4200 symbol images with differ-
ent distortion levels. Symbols have been drawn using a Logitech io pen device [10]. It
has allowed us to have for each sample an on-line and an off-line version. The symbol
recognition algorithms described in sections 3 and 4 have been applied to the samples
in the database. The off-line process formulated in terms of statistical classifiers had an
overall recognition rate of 69.3%. This rate was very sensitive to the symbol instances
used to learn pattern models. Thus, the learning set was constructed by taking one sym-
bol instance for each people and symbol class. This results in a very high intra-class
variability and hence a high inter-class confusion rate. It can be noticed if we reduce
the test set to the set of symbols drawn by only five people. In that case, the recognition
rate ranges from 76% to 81%, depending on the five people selected. In addition, when
a symbol is missclassified, we have considered the second option given by the clas-
sifier. If it is taken into account, the recognition rate achieves a 84%. This suggests a
system in which the models are personalized to a given user. Concerning to the on-line
recognition symbol recognition method, we have gotten an overall recognition rate of
99.08%, ranging from 95% in the symbol showing the worst performance to 100% in
the symbols showing the best performance. For some of the symbols, we have defined
two models in order to be able to adjust the method to different drawing styles. The
on-line system is able to recognize 200 images per second. These results are still very
preliminary and they can be improved introducing some variations in the classifiers.

6 Conclusions

A number of high performant graphics recognition systems exist. Most systems often
use ad-hoc methods and are very domain-dependent. However, if we further analyze the
existing systems we can notice that the methodological basis is almost the same, and
from one system to the other the differences are the tuning parameters and the domain-
dependent knowledge. In this paper we have proposed a general graphics recognition
architecture. The architecture combines a set of feature extraction modules that, com-
bined in terms of domain-dependent knowledge, allow to recognize document entities
in a given application scenario. A second important component of our architecture is the
definition of a relational metamodel that allows to hierarchically represent a document
at different abstraction levels (from features to entities). Finally, in our architecture we
have also been concerned in the HCI by defining a sketch-based interface that not only
allows to create technical drawings but also to edit existing ones by adding new ele-
ments or interpreting gestures as edit commands. The second part of the paper has been
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(a) (b)

(c) (d)

Fig. 6. Sketch recognition process: (a) Initial sketch, (b) recognized entities, (c) added entities
using a sketchy interface, (d) final result.
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devoted to describe an application scenario, in particular, a system to convert architec-
tural sketches, either off-line or on-line, to a CAD representation. The set of descriptors
used by the symbol recognition methods have been briefly described and finally the
performance evaluation of these methods has been analyzed. For this last part, a groud-
truth database of more than 4000 hand-drawn symbols have been used. The proposed
architecture is still in an early stage. In addition to introduce improvements in the sym-
bol recognition methods to increase the recognition rates, the improvements that we are
now working on are the inclusion of other descriptor extraction methods and the design
and development of a prototyping framework, i.e. a way to combine descriptor extrac-
tion modules with domain-dependent knowledge to generate application scenarios.
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