
S. Marinai and A. Dengel (Eds.): DAS 2004, LNCS 3163, pp. 322–331, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Recognizing Freeform Digital Ink Annotations

Michael Shilman1 and Zile Wei2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98102 USA
shilman@microsoft.com

2 EECS Department, UC Berkeley, Berkeley, CA 94720 USA
zile@eecs.berkeley.edu

Abstract. Annotations on digital documents have clear advantages over annota-
tions on paper. They can be archived, shared, searched, and easily manipulated.
Freeform digital ink annotations add the flexibility and natural expressiveness
of pen and paper, but sacrifice some of the structure inherent to annotations cre-
ated with mouse and keyboard. For instance, current ink annotation systems do
not anchor the ink so that it can be logically reflowed as the document is resized
or edited. If digital ink annotations do not reflow to keep up with the portions of
the document they are annotating, the ink can become meaningless or even mis-
leading. In this paper, we describe an approach to recognizing digital ink anno-
tations to infer this structure, restoring the strengths of more structured digital
annotations to a preferable freeform medium. Our solution is easily extensible
to support new annotation types and allows us to efficiently resolve ambiguities
between different annotation elements in real-time.

Introduction

While the vision of the paperless office remains a distant hope, many technologies
including high-resolution displays, advances in digital typography, and the rapid pro-
liferation of networked information systems are contributing to a better electronic
reading experience for users. One important area of enabling research is digital docu-
ment annotation. Digital annotations persist across document versions and can be
easily searched, shared, and analyzed in ways that paper annotations cannot.

Many digital annotation systems employ a user interface in which the user selects a
portion of the document and a post-it-like annotation object is anchored at that point,
as shown in Fig 1(a). The user enters text into the post-it by typing on the keyboard.
Later, as the document is edited, the post-it reflows with the anchor. While this
method is widely used among commercial applications, it is a cumbersome user inter-
face. Consequently, many users choose to print out their documents and mark them up
with a pen on paper, losing the benefits of digital annotations in the process.

A user interface in which users sketch their annotations in freeform digital ink
(Fig 1(b)) on a tablet-like reading appliance (Fig 1(c)) overcomes some of these limi-
tations. By mimicking the form and feel of paper on a computer, this method stream-
lines the user interface and allows the user to focus on the reading task. For instance,
in describing their xLibris system, Schilit et al introduce the term active reading, a
form of reading in which critical thinking, learning, and synthesis of the material
results in document annotation and note-taking. By allowing users to mark directly on
the page they add “convenience, immersion in the document context, and visual
search.” [1]

Recognizing Freeform Digital Ink Annotations 323

(a)

(b) (c)

Fig. 1. (a) Digital text annotated and edited with "formal" annotations, and (b) equivalently
with informal, freeform annotations. (c) A tablet-like computer with pen to annotate documents
with digital ink.

Ink Annotation Recognition

In this paper, we describe a technique for recognizing freeform digital ink annotations
created using a paper-like annotation interface on a Tablet PC. Annotation recognition
includes grouping digital ink strokes into annotations, classifying annotations into one
of a number of types, and anchoring those annotations to an appropriate portion of the
underlying document. For example, a line drawn under several words of text might be
classified as an underline and anchored to the words it is underlining. We describe the
full set of annotation types and anchoring relationships we wish to support in the
System Design section.

There are several reasons why we wish to recognize digital ink annotations, includ-
ing annotation reflow, automatic beautification, and attributing the ink with actionable
editing behaviors.

Our primary goal is to reflow digital ink, as shown in Fig 2(a) and (b). Unlike their
physical counterparts, digital documents are editable and viewable on different de-
vices. Consequently the document layout may change. If digital ink annotations do
not reflow to keep up with the portions of the document they are annotating, the ink
can become meaningless or even misleading. Recognizing, anchoring, and reflowing
digital ink annotations can avoid this disastrous outcome. Golovchinsky and Denoue
first observed this problem in [2], but we have observed that the simple heuristics they
report are not robust to a large number of real-world annotations and they do not pro-
pose a framework in which to incorporate new types of annotations.

A second goal of recognition is to automatically beautify the annotations, as shown
in Fig 2(c). While freeform inking is a convenient input medium, Bargeron reports
that document authors prefer a stylized annotation when reading through comments
made by others [3].

A third goal for recognizing digital ink annotations is to make the annotations ac-
tionable. Many annotations convey desired changes to the document, such as “delete
these words” or “insert this text here.” The Chicago Manual of Style [4] defines a
standard set of editing symbols. By automatically recognizing annotations, we can
add these behaviors to the ink to further streamline the editing process.

Fulfilling these goals in a system is a broad task that incorporates many facets
other than recognition. There are user interface issues such as when and how to show

324 Michael Shilman and Zile Wei

the recognition results and how to correct those results. There are software architec-
ture issues such as how to properly integrate such functionality into a real text editor.
There are other algorithmic issues such as how to reflow the ink strokes. However,
after building a full working system we have found it useful to separate the annotation
recognition as a well-encapsulated software component. In this paper we describe that
component in detail, including its architecture, algorithm, and implementation.

Paper Organization

The paper is organized as follows. We begin with a problem statement: the realm of
possible annotation types and document contexts is extremely large, and in the Sys-
tem Design section we first describe and justify the subset we have chosen to recog-
nize. We then give an overview of the system architecture to introduce our approach.
We have chosen a recognition approach in which multiple detectors offer competing
hypotheses, and we resolve those hypotheses efficiently via a dynamic programming
optimization. Next, we evaluate the approach both quantitatively and qualitatively on
a set of files. Finally we conclude and outline future work.

System Design

In order to support the application features described in the previous section, includ-
ing reflow, beautification, and actioning, we have designed a software component to
segment, classify, and anchor annotations within a document context. In this section
we describe the design of that component. We have scaled back our problem to han-
dle a fixed vocabulary of annotation types: horizontal range, vertical range, container,
connector, symbol, writing, and drawing. In this section, we define each of these an-
notation types, define the document context that is required to perform recognition,
and justify this restricted approach.

(a) User Annotations (b) Reflowed Annotations (c) Cleaned Annotations

Fig. 2. Annotations reflow and cleaning. (a) Original user annotations (b) are properly reflowed
as the document is edited and then (c) cleaned by the system based on its automatic interpreta-
tion.

Recognizing Freeform Digital Ink Annotations 325

Annotation Types

While the set of all possible annotations is no doubt unbounded, certain common
annotations such as underlines and highlights immediately come to mind. To define a
basic set of annotations, we refer to the work of Brush and Marshall [5], which indi-
cates that in addition to margin notes, a small set of annotations (underline / highlight
/ container) are predominantly used in practice. We have found that it is useful to
further divide the category of margin notes into writing and drawings for the purposes
of text search and reflow behavior. Thus we pose the problem of annotation recogni-
tion as the classification and anchoring of horizontal range, vertical range, container,
callout connector, symbol, writing, and drawing annotations. We illustrate examples
of these types with a sample annotated document shown in Fig 3.

Fig. 3. Common annotation types. Horizontal range (red), vertical range (green), container
(orange), callout connector (blue), symbol (magenta), and writing (purple) and drawing (cyan)
marginalia.

Document Context

Annotation is a common activity across a wide variety of documents including text
documents, presentation slides, spreadsheets, maps, floor plans, and even video (e.g.,
weathermen and sports commentators). While it is impossible to build an annotation
recognizer that spans every possible document, it is desirable to abstract away the
problem so that its solution can be applied to a number of common document types.

Defining this appropriate abstraction for document context is difficult: it is unlikely
that any simple definition will satisfy all application needs. Nevertheless, we define a
document context as a tree structure that starts at the page. The page contains zero or
more text blocks and zero or more graphics objects. Text blocks contain one or more
paragraphs, which contain one or more lines, which contain one or more words. Each
of these regions is abstracted by its bounding box (Fig 4). At this point we do not
analyze the underlying text of the document: this has not been necessary and makes
our solution language-independent.

326 Michael Shilman and Zile Wei

This definition of context is rich enough to support a wide variety of documents,
including but not limited to, word processing documents, slide presentations, spread-
sheets, and web pages.

Fig. 4. Simple document context. A basic document context contains words (light blue fill),
lines of text (solid black border), paragraphs (dashed blue border), blocks (dashed green bor-
der), and images/pictures/charts (solid red border).

Recognition Architecture

Given this design, we have implemented an encapsulated software component for
annotation recognition. The component receives strokes and document context as its
input and produces a parse tree with anchors into the document context as its output,
as shown in Fig 5. This abstraction it is easy to incorporate the recognition component
into different applications. So far, the annotation recognizer has been deployed in the
Callisto plug-in to the web browser Microsoft Internet Explorer [3].

Writing Layout Analysis
and Classification

Markup
Detection

ink

layout

document
context

anchors

ink grouping

ink grouping +
anchors

Fig. 5. High-level annotations recognition architecture. A first step separates writing and draw-
ing strokes and groups writing into words, lines, and paragraphs. A second step analyzes ink
relative to a document context, classifies markup elements, and anchors the annotations to the
document context.

The recognition component itself consists of several stages, as shown in Fig 5. Ini-
tially, strokes are run through a component for handwriting layout analysis and classi-
fication that groups separates writing strokes and drawing strokes and groups writing

Recognizing Freeform Digital Ink Annotations 327

strokes into words, lines, and paragraphs, as described in [6]. This stage produces an
initial structural interpretation of the ink without considering the underlying document
context.

Once the strokes have been divided into writing and drawing, a markup detection
stage looks for common annotation markup (horizontal range, vertical range, con-
tainer, connector, and symbol) relative to the abstraction of the document context, it
produces a revised structural interpretation of the ink, and links the structures to ele-
ments in the document context abstraction. We describe the markup detection in the
following section.

Annotation Recognition

Markup detection segments and classifies ink into a set of annotation types including
horizontal range, vertical range, container, and connector.

One possible approach to markup detection would be to generate all possible com-
binations of strokes and classify each with respect to the different classes, maximizing
some utility or likelihood over all hypotheses. This approach suffers from several
practical problems. First, it is combinatorial–even generic spatial pruning heuristics
may not be enough to make the system run in real-time. Second, it relies on enough
data to train a reasonable classifier and garbage model.

Since we wanted to generate an efficient system that could keep up with user anno-
tation in real-time and did not have large quantities of training data available, we
opted for a more flexible solution. Our markup detection is implemented as a set of
detectors. Each detector is responsible for identifying and anchoring a particular an-
notation type among the ink strokes on the page, and uses a technique specific to its
annotation type in order to prune the search space over possible groups. When a de-
tector identifies a candidate for a particular annotation type, it adds the resulting hy-
potheses with an associated confidence to a hypothesis map, as shown in Fig 7. For
example, in Fig 7(c), a connector detector hypothesizes that strokes could be connec-
tors on their own (both are relatively straight and have plausible anchors at each of
their endpoints, or that they could together form a single connector. We say that a pair
of hypotheses conflict if they share any of the same strokes.

Detectors

Each annotation type has a set of characteristic features that allow it to be distin-
guished from other annotations and from random strokes on the page. These features
can be divided into two categories: stroke features and context features.

Stroke features capture the similarity between a set of ink strokes and an idealized
version of an annotation. For example, the idealized version of an underline is a
straight line, so the stroke features measure the distance between a set of strokes that
might be an underline and the best straight line that approximates those strokes, i.e.
the total regression error on the points in those strokes.

Context features capture the similarity of the best idealized version of a set of
strokes and a true annotation on the document context. For example, a stroke might be
a perfect straight line, but it is not an underline unless that line falls beneath a set of
words in the document.

328 Michael Shilman and Zile Wei

Thus the procedure for each detector is to ascertain a best idealized version of the
strokes according to its type using stroke features, and then see how well that ideal-
ized version fits with the document context using context features. The stroke and
context features for each of the annotation types we support are described in Fig 6.

Fig. 6. Detector features. (a) The original ink annotations on the document. (b) The idealized
annotations overlayed on the ink annotations, and the document context bounding boxes. (c)
Vertical range context features include , the angle between the ideal and the lines of text, g,
the gap between the ideal and the lines, as well as the sum of the lengths of the overlapping
portions of the ideal (in red) and sum of the lengths of the non-overlapping regions (in blue).
(d) Horizontal range context features include , the angle between the ideal and the lines of
text, g, the gap between the ideal and the lines, as well as the sum of the lengths of the overlap-
ping portions of the ideal (in red) and sum of the lengths of the non-overlapping regions (in
blue). (e) Callout context features include g, the distance of the arrowhead to a context word
along the tangent of the tip of the arrow. (f) Container context features include the area over-
lapping with the context words (light blue) and the non-overlapping area with the context words
(pink).

Resolution

Once all of the detectors have executed, the most likely annotations are extracted
from the map through a resolution process and the result is committed to the output,
as shown in Fig 7(d). The resolution is designed to pick the best candidates when
there are conflicting hypotheses. It is a unifying framework by which detectors can be
added modularly to support new annotation types.

Resolution is designed to maximize number of explained strokes, maximize the
overall confidence, and minimize the number of hypotheses. This can be expressed as
the maximization of an energy function:

confidence explained strokes hypothesesi
i

E α β= + −∑ (1)

Recognizing Freeform Digital Ink Annotations 329

In Equation 1, and are empirically-determined weights. We maximize this
function exactly using dynamic programming. Since there is no special ordering of
the strokes, we can impose one arbitrarily and solve using the following recurrence
relation:

’

0 if is empty
()

max((’) (’)) otherwise
S

S
E S

C S E S S β
=  + − −

 (2)

In Equation 2, S represents a subset of strokes on the page, S’ is a hypothesis con-
taining the stroke in S with minimum ID, or no explanation for that stroke, and C is
the confidence of that explanation plus times the strokes it explains, or 0 if the
minimum stroke is left unexplained.

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

X3X2X1

S1 S2 S3 S4 S5

H VC X3X2X1 N

…

…

(a) Initial map (b) After connector detection

(c) After all detectors

S1
S2

S3
S4

S5

S1
S2

S3
S4

S5

S1
S2

S3
S4

S5

S1 S2 S3 S4 S5

H VC X3X2X1 N

S1 S2 S3 S4 S5

H VC X3X2X1 N

(d) After resolution

S1
S2

S3
S4

S5

Fig. 7. Hypothesis framework. (a) Initially map is empty. (b) Connector detection inputs three
conflicting hypotheses (X1, X2, X3). (c) The rest of the detectors execute, adding container
(C), horizontal range (H), vertical range (V), and margin notes (N) to the map. (d) Resolution
selects the most likely hypotheses (C, X2, and N).

330 Michael Shilman and Zile Wei

Evaluation

Our evaluation goals were two-fold. First, we wanted to understand the accuracy of
the complete system. Second, we wanted to understand the effectiveness of the reso-
lution process. We thus measured the accuracy of each of the detectors, and compared
those numbers with the final system accuracy.

Our test set consisted of ~100 heavily annotated web pages containing 229 under-
lines, 250 strikethroughs, 422 containers, 255 callouts and 36 vertical ranges. To
simplify accounting, we unify grouping errors and labeling errors into one unit. In
other words, an annotation is correct if it is grouped and labeled properly, otherwise it
results in a false negative and possibly multiple false positives.

Table 1. Results from running the individual detectors prior to resolution.

 Correct False positive False negative
Underline 219 183 10
Strikethrough 244 99 6
Blob 400 6 22
Callout 206 529 49
Margin bar 35 219 1

Table 2. System results after resolution incluing percentage changes from the data in Table 1.
Percentages are obtained by Nfinal – Ninital / Ntrue.

 Correct False positive False negative
Underline 206 (-5.7%) 24 (-69.4%) 16(+2.6%)
Strikethrough 229 (-6%) 35 (-25.6%) 9(+1.2%)
Blob 396 (-0.9%) 6 (0%) 25(+0.7%)
Callout 177 (-11.3%) 31 (-195%) 77(+11%)
Margin bar 35 (0%) 140 (-225%) 1(0%)

These results show that the system has reasonably high accuracy despite the inher-
ent ambiguity in the problem, our small quantities of training data, and the compro-
mises we have made in choosing our techniques such that the system could operate in
real-time. Pre-resolution our detectors performed adequately for most classes except
for callout – we have not been able to identify good features for callouts since most
strokes on the page have objects at one endpoint or the other (callouts with arrow-
heads are substantially easier to detect). We hope to learn useful features once we
have collected a larger data set. The results further show that resolution significantly
decreases the number of false positives without substantial change to the false nega-
tives. This indicates that it is a reasonable strategy for this problem.

Conclusions and Future Work

We have presented an approach to recognizing freeform digital ink annotations on
electronic documents, along with a practical implementation. The resulting recognizer
facilitates all of the operations common to traditional digital annotations, but through
the natural and transparent medium of digital ink.

Recognizing Freeform Digital Ink Annotations 331

Rather than constraining the user, we employ an extensible framework for annota-
tion recognition which achieves high accuracy even for complex documents. Our
work approximates an exhaustive search of possible segmentations and classifica-
tions. This makes it possible to analyze a full page of ink in real-time, and can be
applied to many other ink recognition problems.

We have implemented our approach in a reusable software component, have inte-
grated the component into a full system for annotating web pages within Microsoft
Internet Explorer, and have evaluated its accuracy over a collection of annotated web
pages.

However, there are many ways we hope to extend this work both from an analysis
standpoint and from a system standpoint. From an analysis standpoint, we have made
numerous compromises both for efficiency and due to sparse amounts of labeled data.
We are currently collecting and labeling annotation data and hope to explore fast data-
driven alternatives our current heuristics for detection and resolution.

From a system standpoint, we have yet to corroborate our intuitions with user stud-
ies of the full system. In addition, many of the structures that we recognize, such as
boxes and connectors, are also common to other types of sketching such as flow
charts and engineering diagrams. Our efficient inference algorithm should also extend
to these domains. Furthermore, it should be possible for users to customize the system
with their own annotation styles if they are not supported by our basic set. Finally, we
are interested in examining other creative ways in which annotations can be used once
they are robustly recognized.

Acknowledgments

We gratefully acknowledge David Bargeron, Bert Keely, Paul Viola, Patrice Simard,
Sashi Raghupathy, and David Jones for brainstorming and collaboration on this work.

References

1. W. Schilit, G. Golovchinsky, and M. Price. “Beyond Paper: Supporting Active Reading
with Free Form Digital Ink Annotations.” Proc. of ACM CHI 1998. ACM Press. pp. 249-
256.

2. G. Golovchinsky, L. Denoue, “Moving Markup: Repositioning Freeform Annotations,”
Proc. of ACM UIST 2002. ACM Press, pp. 21-30.

3. D. Bargeron, T. Moscovich. “Reflowing Digital Ink Annotations.” Proc. of CHI 2003, ACM
Press, pp. 385-393.

4. University of Chicago Press. The Chicago Manual of Style. The University of Chicago
Press, Chicago, IL, USA, 13th edition, 1982.

5. C. Marshall and A. Brush. “From Personal to Shared Annotations.” In Proc. of CHI 2002,
ACM Press, pp. 812-813.

6. M. Shilman, Z. Wei, S. Raghupathy, P. Simard, D. Jones. “Discerning Structure from Free-
form Handwritten Notes.” Proc of ICDAR 2003, pp. 60-65.

	Introduction
	Ink Annotation Recognition
	Paper Organization

	System Design
	Annotation Types
	Document Context
	Recognition Architecture
	Annotation Recognition
	Detectors
	Resolution

	Evaluation
	Conclusions and Future Work
	References

