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Abstract. In this paper we show how the usage of Residue Number
Systems (RNS) can easily be turned into a natural defense against many
side-channel attacks (SCA). We introduce a Leak Resistant Arithmetic
(LRA), and present its capacities to defeat timing, power (SPA, DPA)
and electromagnetic (EMA) attacks.
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1 Introduction

Side-channel attacks rely on the interactions between the component and the
real world. Those attacks formerly appeared in the network security world and
eventually came within the smartcard and embedded system world to become
the most pertinent kind of attacks on secure tokens. Some attacks monitor the
computation through its time execution or its power consumption in order to
discover secrets, as shown by P. Kocher in [19,18]. Some others try to modify
the component’s behavior or data, through fault injection as pointed out first
by D. Boneh, R. A. DeMillo, and R. J. Lipton in [6] in the case of public-key
protocols, and extended to secret-key algorithms by E. Biham and A. Shamir
in [5]. From noise adding to whole algorithm randomization, different ways have
been considered to secure the implementations against side channels [19], and
especially against power analysis [18,12]. One difficult task when preventing from
SCA is to protect from differential power analysis (DPA) introduced by P. Kocher
in [18] and its equivalent for electromagnetic attacks (EMA) [9,1], and recent
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multi-channel attacks [2]. These specific attacks take advantage of correlations
between the internal computation and the side channel information.

The purpose of Leak Resistant Arithmetic (LRA) is to provide a protection
at the arithmetic level, i.e. in the way we represent the numbers for internal com-
putations. We show how the usage of Residue Number Systems (RNS), through
a careful choice of the modular multiplication algorithm, can easily be turned
into a natural defense against SCA. In the same time, our solution provides
fast parallel implementation and enough scalability to support key-size growth
induced by the progress of classical cryptanalysis and computational power. In
addition, another advantage of LRA is that classical countermeasures still apply
at the upper level. We illustrate this fact in Sect. 3.3 through an adaptation to
LRA of the Montgomery ladder [23], which has been analyzed in the context of
side-channels [15], and which features (C safe-error and M safe-error protected)
make it a first-class substitute to the square-and-multiply algorithm.

This paper puts together previous works from J.-C. Bajard and L. Imbert
on RNS Montgomery multiplication and RSA implementation [3,4], and P.-Y.
Liardet original idea of addressing SCA using RNS, proposed in September 2002
in [20]. The same idea has been independently investigated by M. Ciet, M. Neeve,
E. Peeters, and J.-J. Quisquater, and recently published in [8]. In Sect. 3.1, we
address the problem of the Montgomery factor when RNS bases are randomly
chosen, and we propose solutions which make it possible to randomly select new
RNS bases during the exponentiation in Sect. 3.3.

2 The Residue Number Systems

In RNS, an integer X is represented according to a base B = (m1, m2, . . . , mk) of
relatively prime numbers, called moduli, by the sequence (x1, x2, . . . , xk), where
xi = X mod mi for i = 1...k. The conversion from radix to RNS is then easily
performed. The Chinese Remainder Theorem (CRT) ensures the uniqueness of
this representation within the range 0 � X < M , where M =

∏k
i=1 mi. The

constructive proof of this theorem provides an algorithm to convert X from its
residue representation to the classical radix representation:

X =
k∑

i=1

xi Ti

∣
∣T−1

i

∣
∣
mi

mod M, (1)

where Ti = M/mi and
∣
∣T−1

i

∣
∣
mi

is the inverse of Ti modulo mi. In the rest of
the paper, |X|m denotes the remainder of X in the division by m, i.e. the value
(X mod m) < m.

One of the well known advantages of RNS is that additions, subtractions and
multiplications are very simple and can be efficiently implemented on a parallel
architecture [17]. Furthermore, only the dynamic range of the final result has to
be taken into account since all the intermediate values can be greater than M .
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On the other hand, one of the disadvantages of this representation is that we
cannot easily decide whether (x1, . . . , xk) is greater or less1 than (y1, . . . , yk).

For cryptographic applications, modular reduction (X mod N), multiplica-
tion (XY mod N) and exponentiation (XE mod N) are the most important op-
erations. Many solutions have been proposed for those operations. For example,
it is well known that they can be efficiently computed without trial division using
Montgomery algorithms [22].

Let us briefly recall the principles of Montgomery multiplication algorithm.
Given two integers βk, N such that gcd(βk, N) = 1, and 0 � XY < βkN , Mont-
gomery multiplication evaluates XY (βk)−1 mod N by computing the value Q <
βk such that XY +QN is a multiple of βk. Hence, the quotient (XY +QN)/βk is
exact and easily performed. The result is less than 2N . More detailed discussions
on Montgomery reduction and multiplication algorithms can be found in [21,7].

2.1 RNS Montgomery Multiplication

In this section we recall a recent RNS version of the Montgomery multiplication
algorithm, previously proposed in [3,4]. In the RNS version of the Montgomery
multiplication, the value

M1 =
k∏

i=1

mi, (2)

is chosen as the Montgomery constant (instead of βk in the classical representa-
tion). Hence, the RNS Montgomery multiplication of A and B yields

R = ABM−1
1 mod N, (3)

where R, A, B and N are represented in RNS according to a predefined base B1.
As in the classical Montgomery algorithm we look for an integer Q such that
(AB + QN) is a multiple of M1. However, the multiplication by M−1

1 cannot be
performed in the base B1. We define an extended base B2 of k extra relatively
prime moduli and perform the multiplication by M−1

1 within this new base B2.
For simplicity we shall consider that both B1 and B2 are of size k. Let us define
B1 = (m1, . . . , mk) and B2 = (mk+1, . . . m2k), with M2 =

∏k
i=1 mk+i, and

gcd(M1, M2) = 1.
Now, in order to compute Q, we use the fact that (AB + QN) must be a

multiple of M1. Clearly Q = −ABN−1 mod M1, and thus

qi = −aibin
−1
i mod mi, ∀i = 1 . . . k. (4)

As a result, we have computed a value Q < M1 such that Q = −ABN−1 mod
M1. As pointed out previously we compute (AB + QN) in the extra base B2.
Before we can evaluate (AB + QN) we have to know the product AB in base
B2 and extend Q, which has just been computed in base B1 using (4), in base
1 According to the CRT testing the equality of two RNS numbers is trivial.
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B2. We then compute R = (AB + QN)M−1
1 in base B2, and extend the result

back to the base B1 for future use (the next call to Montgomery multiplication).
Algorithm 1 describes the computations of our RNS Montgomery multiplication.
It computes the Montgomery product ABM−1

1 mod N , where A, B, and N are
represented in RNS in both bases B1 and B2.

Algorithm 1 : MM(A, B, N,B1, B2), RNS Montgomery Multiplication
Input : Two RNS bases B1 = (m1, . . . , mk), and B2 = (mk+1, . . . , m2k), such that

M1 =
∏k

i=1 mi, M2 =
∏k

i=1 mk+i and gcd(M1, M2) = 1; a positive integer N
represented in RNS in both bases such that 0 < 4N < M1, M2 and gcd(N, M1) =
1; (Note that M1 can be greater or less than M2.) two positive integers A, B
represented in RNS in both bases, with AB < M1N .

Output : A positive integer R represented in RNS in both bases, such that R ≡
ABM−1

1 (mod N), and R < 2N .
1: T ← A⊗RNS B in B1 ∪ B2

2: Q← T ⊗RNS (−N−1) in B1

3: Extend Q from B1 to B2

4: R← (T ⊕RNS Q⊗RNS N)⊗RNS M−1
1 in B2

5: Extend R back from B2 to B1

Steps 1, 2 and 4 of algorithm 1 consist of full RNS operations and can be
performed in parallel. As a consequence the complexity of the algorithm clearly
relies on the two base extensions of lines 3 and 5.

Many different methods have been proposed to perform the base extension.
Among those based on the CRT, [24] and [16] use a floating-point like dedicated
unit, [26] proposes a version with an extra modulo greater than k (this method
is not valid for the first extension of Algorithm 1), [25] perform an approximated
extension, and [3] allow an offset for the first base extension which is compensated
during the second one. Other solutions have been proposed which use the mixed
radix system (MRS) [10]. The great advantage of the MRS approach is that the
modification of one modulus, only requires the computation of at most k new
values.

In [8], Posch and Posch’s RNS Montgomery algorithm [25] is used, together
with J.-C. Bajard et al. base extensions [3], which requires the computation of
Ti and T−1

i for each modulus mi, where Ti = M/mi is about the same size as
M , i.e. about 512 bits. In the context of random bases, precomputations are
inconceivable (their choices of parameters lead to more than 235 possible values
for M). So we suppose that they evaluate these values at each base selection.
Note that our algorithm uses the MRS conversion to avoid this problem.

2.2 Modular Exponentiation

The RNS Montgomery multiplication easily adapts to modular exponentiation
algorithms. Since the exponent is not represented in RNS, we can consider any
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classic method for modular exponentiation, from the basic binary (square-and-
multiply) algorithm to other fast exponentiation methods [11]. As with any
Montgomery based exponentiation algorithm, the first step in the evaluation
of XE mod N , is to transform the input X into the so-called Montgomery rep-
resentation: X ′ = XM1 mod N (X ′ is sometimes referred to as the N -residue
of x according to M1). This is done using a Montgomery multiplication with
X and (M2

1 mod N) as inputs. This representation has the advantage of being
stable over Montgomery multiplication:

MM(X ′, Y ′, N, B1, B2) ≡ XY M1 mod N.

At the end of the exponentiation, the value Z ′ = XEM1 mod N is converted
back into the expected result Z = XE mod N using a last call to Montgomery
multiplication with Z ′ and 1 as inputs.

3 Leak Resistant Arithmetic

One advantage of the RNS algorithms presented in previous sections is to offer
many degrees of freedom for the randomization of processed data. In this section
we propose two approaches based on the random selection of the RNS bases,
which provides randomization, both at the circuit level (spatial randomization)
and the data level (arithmetic masking). They represent a good trade-off between
randomization strength and implementation cost. We consider two approaches:

– Random choice of the initial bases: Randomization of the input data
is provided by randomly choosing the elements of B1 and B2 before each
modular exponentiation.

– Random change of bases before and during the exponentiation:
A generic algorithm is proposed offering many degrees of freedom in the
implementation and at the security level.

3.1 Solving the Problem of the Montgomery Factor

A random draw of B1 and B2 is seen as a permutation γ, over the predefined set
B of size 2k. The first k elements give B1,γ =

(
mγ(1), . . . , mγ(k)

)
, and the next k

ones give B2,γ =
(
mγ(k+1), . . . , mγ(2k)

)
. We denote M1,γ and M2,γ the products

of the elements of B1,γ and B2,γ respectively:

M1,γ =
k∏

i=1

mγ(i), M2,γ =
2k∏

i=k+1

mγ(i).

Before we give more details on SCA aspects, we solve an important problem
due to the random choice of B1 and B2. As pointed out before, modular exponen-
tiation of any input X usually starts with an initial modular multiplication to
get into the Montgomery representation, according to the so-called Montgomery
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factor. As mentioned before, we would have to perform the Montgomery multi-
plication of X and (M2

1,γ mod N). But since M1,γ is the product of k randomly
chosen moduli, we do not know (M2

1,γ mod N) beforehand. The huge number of
possibilities for M1,γ (further evaluated) makes the precomputation of the prod-
ucts of all the subsets of k elements of B unconceivable. On-the-fly evaluation
of (M2

1,γ mod N), after the random choice of B1,γ , would be very expensive and
would require dedicated hardware.

The solution we propose is achieved through a call to our RNS Montgomery
multiplication where the roles of the bases B1,γ and B2,γ are exchanged. The
following proposition holds:

Proposition 1. For every permutation γ over B, the Montgomery representa-
tion of X according to B1,γ , i.e. the value X M1,γ mod N , is obtained with (note
the order of B1,γ and B2,γ in the call to MM):

MM(X, M mod N, N, B2,γ , B1,γ), (5)

where M =
∏2k

i=1 mi.

Proof. It suffices to remark that ∀γ, we have M = M1,γM2,γ . Thus:

MM(X, M mod N, N, B2,γ , B1,γ) = XM1,γM2,γM−1
2,γ mod N = XM1,γ mod N.

��
It is important to note that M mod N does not depend on γ. This value is
precomputed for each mi. We obtain the result in RNS for the two bases, and we
continue the exponentiation, with the two bases B1,γ and B2,γ playing their usual
role as in MM(., ., N,B1,γ , B2,γ). This solution only requires the precomputation
of 2k small constants, of the size of the mjs: for j = 1...2k, we store the values
|M mod N |mj

, where M =
∏2k

j=1 mj .
We remark that this problem of the Montgomery factor is not mentioned

in [8]. Using their notations, the precomputation of M̃2 mod p and M̃2 mod q
for all the possible RNS bases would require the precomputation of

(69
9

)
> 235

values of 512 bits each (more than 6.5 TBytes). We must then assume that
M̃2 mod p and M̃2 mod q (or X M̃ mod p and X M̃ mod q) are computed using
other techniques, like Barrett or Quisquater, as precisely pointed out in [13]. This
would require dedicated hardware (protected against SCA), and thus, drastically
increase the size of the circuitry. In this case, the advantages of the RNS solution
seems very limited. Using the same parameters, our algorithm only requires
144 Kbytes of memory, and one call to RNS Montgomery (which has to be done
anyway).

3.2 Initial Random Bases

Taking into account the order of the elements within the bases, a set B of 2k
moduli, leads to 2k! different bases B1,γ and B2,γ of k moduli each. Since two
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consecutive exponentiations are performed with two different permutations, γ
and γ′, identical input data leak different information through the side-channel.
Actually, after step 2 of algorithm 1, we have computed Q = (qγ(1), . . . , qγ(2))
in B1,γ , where qγ(i) = q mod mγ(i) for i = 1...k. Then, for each mγ(j) in B2,γ , we
evaluate

|q|mγ(j)
=

∣
∣t1 + mγ(1)(t2 + mγ(2)(t3 + · · · + mγ(k−1)tk) · · · )∣∣

mγ(j)
, (6)

where the tis are evaluated as follows, with µs,t = m−1
γ(s) mod mγ(t):

t1 = |q|mγ(1)
= qγ(1) (7)

t2 =
∣
∣(qγ(2) − t1)µ1,2

∣
∣
mγ(2)

(8)

...

tk =
∣
∣(· · · (qγ(k) − t1)µ1,k − · · · − tk−1)µk−1,k

∣
∣
mγ(k)

(9)

From (6) to (9), we remark the influence of γ on the computations. It is clear that
the values µs,t used to evaluate the tis are different for each new permutation.
Moreover, although all of them need to be precomputed, only about half of them
(those with s > t) are used in (7) to (9). The same remark applies for (6) where
all the operands differ from one permutation to another. It is also important
to note that equations (6) to (9) require modular arithmetic to be performed
modulo different values at each permutation. Initial random bases will thus give
very different traces through the side-channel, even with identical input data.
This significantly increases the number of experiments the attacker should try
in order to retrieve secret information.

Initial random bases also provides data randomization. Selecting two bases
of k moduli each within a set of exactly 2k moduli, gives

(2k
k

)
= (2k)!

k!k! pairs
(M1,γ , M2,γ), i.e.

(2k
k

)
different Montgomery representations. Let us explain why

this parameter corresponds to the level of randomization of the input data pro-
vided by our arithmetic. Randomizations of the message and the exponent are
well known techniques to defeat DPA [19]. These randomizations prevent from
chosen and known plain-text SCA targeting a secret carried out by the exponent
during the exponentiation. In classical arithmetic solutions, such a masking can
be obtained by choosing a pair of random values (ri, rf ), with ri ≡ r−1

f (mod N),
and by multiplying (modulo N) the message X by ri before the exponentiation,
such that Xri mod N has a uniform distribution2. Similar techniques are used
to randomize the exponent and the modulus. The size of the random factor(s)
must be chosen large enough to ensure a good level of randomization.

In our case, M1,γ plays the same role as the random factor ri. The first step of
the exponentiation which converts X into XM1,γ mod N , thus provides message
randomization. Since M1,γ is the product of randomly selected moduli, and can
2 A final multiplication by re

f mod N is required at the end.
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take
(2k

k

)
different values, we can consider that the output XM1,γ mod N has

a uniform distribution (if k is large enough). It is important to note that the
randomization of X is free since the first call to MM(...) must be performed
anyway.

Table 1 gives randomization rates of different base sizes, and the correspond-
ing size of the factor ri in classic arithmetic solutions, computed as �log2(

(2k
k

)
)�.

For example, we remark that k = 34 (|B| = 68), provides about the same ran-
domization level as a random factor ri of 64 bits.

Table 1. Randomization level of different base sizes, and their equivalent in classic
arithmetic masking solutions.

size of B (2k
k

)
equiv. size of ri (in bits)

36 9075135300 33
44 2104098963720 40
52 495918532948104 48
60 118264581564861424 56
68 28453041475240576740 64
80 107507208733336176461620 76

In terms of memory requirements, initial random bases require the precom-
putation of 2k moduli mi of n bits each, 2k−1 modular inverses |m−1

i |mj
(i �= j)

for each mj , and 2k values |M mod N |mi
; a total of 2k(2k + 1) n-bit integers.

Table 2 gives the total memory requirements for different values of k and n and
the corresponding RSA equivalent dynamic range (computed as k(n − 1), which
is the size of the lower bound of M1,γ considering 2n−1 ≤ mi < 2n). For example,
a set B of 2k = 68 moduli of 32 bits each (which correspond to approximately
1054-bit numbers in classical binary representation) requires about 18 Kbytes of
memory.

Table 2. Memory requirements for various parameters k and n, and the corresponding
RSA equiv. size.

k n = size of the mis (in bits) memory (in KBytes) dynamic range
30 18 8 > 510
25 32 10 > 775
34 32 18 > 1054
17 64 9.5 > 1071
32 64 33 > 2016

We remark that the space complexity is in O(k2n). Thus, it is better to
consider smaller bases with larger moduli. Of course, the complexity of the basic
cells which perform the arithmetic over each mi increases at the same time. A
tradeoff between the two parameters k and n has to be found, according to the
hardware resources.
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3.3 Random Bases During Exponentiation

In this section, we show how we can randomly change the RNS bases during the
exponentiation. As for the initial random bases version presented in the previous
section, we must solve another problem, the on-the-fly conversion between two
different Montgomery representations.

Let us assume that initial random bases have been selected and that the expo-
nentiation algorithm has computed until, say Y = XαM1,γ mod N over the two
bases (B1,γ , B2,γ). In order to continue with two new random bases (B1,γ′ , B2,γ′),
we have to switch from the old Montgomery representation (according to M1,γ)
to the new one (according to M1,γ′). In other words, the question is: given
XαM1,γ mod N , how can we compute XαM1,γ′ mod N?

A straightforward solution is to get out of the old Montgomery representation
with

MM(Y, 1, N, B1,γ , B2,γ) = Xα mod N = Z,

and to enter into the new Montgomery representation with

MM(Z, M mod N, N, B2,γ′ , B1,γ′) = XαM1,γ′ mod N

using the solution proposed in Sect. 3.2. The exponentiation can then continue
according to M1,γ′ until the next base change. The main drawback of this solu-
tion is that we loose the randomization of Xα mod N between the two calls to
MM(...).

A better solution consists in inverting the order of the two calls to MM(...).
Actually, if we first call (note the order of B1,γ and B2,γ)

MM(XαM1,γ mod N, M mod N, N, B2,γ′ , B1,γ′),

we obtain
XαM1,γM1,γ′ mod N.

We then call
MM(XαM1,γM1,γ′ mod N, 1, N, B1,γ , B2,γ)

and get the expected result

XαM1,γ′ mod N.

As a result, the value Xα mod N is always masked by a random quantity.
In order to illustrate the fact that our arithmetic easily adapts to existing

countermeasures at the upper level, Algorithm 2 is a RNS variant of an expo-
nentiation algorithm (adapted from the Montgomery ladder [23]), proposed by
M. Joye and S.-M. Yen [15]. The permutations are indiced according to the bits
of the exponent. We start with the initial random permutation γl and we use
γi and γi+1 to represent the old and new ones at each iteration (note that γi+1
can be equal to γi if no new permutation is selected.). Note that this generic al-
gorithm offers many implementation options in the frequency of base exchange.
Although it is always possible to pay the price for a new permutation of B at
each iteration, this is our feeling that such an ultimate option does not neces-
sarily provides a better security, although this seems difficult to prove at the
algorithmic level.
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Algorithm 2 : RME(X, C, N, B), Randomized Modular Exponentiation
Input : A set B = {m1, . . . , mk, mk+1, . . . , m2k} of relatively prime integers ; an

integer X less than N represented in RNS for all mj ∈ B, with 4N < M1,γ , where
M1,γ =

∏k
i=1 mγ(i) for all permutation γ of B ; a positive exponent E =

∑l−1
i=0 ei2i.

Output : A positive integer Z = XE mod N represented in RNS over B.
1: Select randomly γl

2: U0 ←MM(1, M mod N, N,B2,γl ,B1,γl)
3: U1 ←MM(X, M mod N, N,B2,γl ,B1,γl)
4: for i = l − 1 down to 0 do
5: b← ei

6: Ub ←MM(Ub, Uei , N,B1,γi+1 ,B2,γi+1)
7: if new γi randomly selected then
8: U0 ←MM(U0, M mod N, N,B2,γi ,B1,γi)
9: U0 ←MM(U0, 1, N,B1,γi+1 ,B2,γi+1)

10: U1 ←MM(U1, M mod N, N,B2,γi ,B1,γi)
11: U1 ←MM(U1, 1, N,B1,γi+1 ,B2,γi+1)
12: else
13: γi = γi+1

14: end if
15: Uei ←MM(Uei , Uei , N,B1,γi ,B2,γi)
16: end for
17: Z ←MM(U0, 1, N,B1,γ0 ,B2,γ0)

4 Implementation Aspects

In this section we propose an efficient addressing scheme which shows that our
algorithms can be implemented rather efficiently at a reasonable hardware cost.

In a highly parallel implementation, the circuit can be built with 2k identical
basic cells. If k is large it might not be possible to build a circuit having actually
2k cells. In this case, it is always possible to implement the algorithms with
fewer cells, at the price of less parallelization, by adding control to deal with the
available cells. Each elementary cell can perform the basic modular arithmetic
operations. It receives three operands x, y, m, one control bit and return either
the sum or the product3 (depending on the control bit) of x and y modulo m
(see Fig. 1).

The precomputed values are stored in a multiple access memory and are
addressed through a permutation table which implements γ. Each elementary cell
has an identification number and performs the operation modulo the value given
by γ for this number. For example, in Fig. 1, the jth cell performs the modular
multiplication x µi,j mod mγ(j), where µi,j (see 3.2 for details) is retrieved from
the memory through the permutation table. When the value µi,j = |m−1

γ(i)|mγ(j)

is required, the indices i, j are passed to γ which returns the value stored at
the address (γ(i), γ(j)). When i = j, the memory blocks can be used to store
the |M mod N |mi . The advantage of using a permutation table is that the cells
3 We can also consider a multiply-and-add operation which returns xy + z mod m.
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Elementary modular arithmetic cellsPermutation tableMultiple−access memory

Cell |x µi,j |mγ(j)

∣
∣
∣
∣
m

−1
γ(i)

∣
∣
∣
∣
mγ(j)

i

j

γ(i)

mγ(j)

γ(j)

µi,j
Basic

#j

x

Fig. 1. Sketch of a RNS-based cryptoprocessor with a network of elementary cells
exchanging data with the memory through a permutation table.

do not have to deal with the permutations themselves. Each time we randomly
select a new couple of bases, we just need to reconfigure the permutation table.

5 Side-Channel Analysis

In LRA, timing attacks are prevented by masking the input data. Actually,
since M1,γ comes from a randomly chosen subset of B, the first Montgomery
multiplication provides randomization of the message at no extra cost4. Note
also that timing attacks can still be prevented at the algorithmic level with LRA
as presented in Sect. 3.3 with the adaptation of the exponentiation method
proposed in [15].

LRA provides natural resistance to SPA, DPA and EMA, by generating a
very high level of randomization, both at the data level and the order of the
computations.

The first feature brought by the proposed LRA is the randomization of the
bases. If we assume that the architecture has exactly 2k elementary cells, each
cell performs its computations with a randomly drawn modulo. Hence, if the
same computation is performed several times, a given cell never computes the
same calculation. This leads to protections that act at different levels. First, we
have the so-called spatial protection, since a given location, i.e. a cell, behaves
differently for the same calculation (same input data); this helps to foil EMA
focusing on the activity of an elementary cell. Moreover, the random choice of the
bases leads to the randomization of the message. This is a well known technique
to defeat DPA as well as SPA.

4 If further masking is required, a random multiple of φ(N) can easily be added to
the exponent (represented in classical binary representation) before each modular
exponentiation.
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The second feature, which acts against SPA and DPA, is due to the random
bases changes during the exponentiation. Actually, the values from an iteration
to another within the exponentiation algorithm are no longer correlated. By
the way, it thwarts classical DPA in iterative attacks e.g. on RSA algorithms.
Moreover, many implementation options in the frequency of base exchange allow
the user to easily increase the level of randomization.

Previous attacks on public key protocols using Fault injection [6] works well
when the values are stored in the classic positional binary number representa-
tion. For example, the attack on non-CRT implementation of RSA makes the
assumption that the flip of one bit of a register during the exponentiation changes
a value z to z ± 2b for an unknown bit b. Since RNS is not such a positional
number system, this assumption is not valid anymore and known fault attacks
do not apply. Moreover, the use of (redundant) residue number and polynomial
systems for error checking/correcting has been investigating in the past (see
[14], [27]) and would apply perfectly to our system in order to reinforce the re-
sistance against fault-based attacks (in the case of the CRT signature scheme
for example). Even though fault injection issues has not been addressed here, it
is not unreasonable to think that the LRA could also be used to defeat them.
A deeper analysis is required in order to see how this goal can be accurately
achieved.

6 Conclusions

We presented a new defense against side channel analysis adapted to public key
cryptosystems operating over large finite rings or field (RSA, ElGamal, ECC over
large prime fields, etc). For that purpose we introduced a Leak Resistant Arith-
metic (LRA) based on Residue Number Systems (RNS). We provided concrete
algorithms together with example of implementation. Our approach allows the
usage of many implementation optimizations at the field operator level with-
out introducing weaknesses. The computation overhead due to our technique
is shown to be negligible regarding to the overall computation time. We have
shown that the LRA provides self robustness against EMA, DPA and SPA at
the field implementation level. Moreover, at an upper level, usual protections
against SCA easily adapt.
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