An Improved Correlation Attack
Against Irregular Clocked
and Filtered Keystream Generators

Havard Molland and Tor Helleseth

The Selmer Center*
Institute for Informatics,
University of Bergen,
Norway

Abstract. In this paper we propose a new key recovery attack on ir-
regular clocked keystream generators where the stream is filtered by a
nonlinear Boolean function. We show that the attack is much more ef-
ficient than expected from previous analytic methods, and we believe it
improves all previous attacks on the cipher model.

Keywords: Correlation attack, Stream cipher, Boolean functions, Irreg-
ular clocked shift registers.

1 Introduction

In this paper we present a new key recovery correlation attack on ciphers based
on an irregular clocked linear feedback shift register (LFSR) filtered by a Boolean
function. The cipher model we attack is composed of two components, the clock
control generator and the data generator and is shown in Fig. 1.

— The data generator sub system consists of LESR,, of length [, and the non-
linear multivariate function f. The internal state of LESR,, is filtered by a
Boolean function f. The output from f is the high linear complexity bit
stream v.

— The clock control sub system consists of LEFSRg of length I3 where the output
from LFSRs is sent through the clock function D(). The output from D() is
the clock control sequence of integers, ¢, which is used to clock LFSR,,.

The effect of the irregular clocking is that v is irregularly decimated and the
positions of the bits in the stream are altered. The result from this decimation
is the keystream z. The secret key in this cipher is the (I,+[s) initialization bits
for LFSR,, and LFSRy (I, Is).

To attack this encryption scheme we need to know the positions the keystream
bits z had in the stream v before v was irregularly decimated. The previous
effective algorithms are not specially designed to attack irregular clocked and

* This work was supported by the Norwegian Research Council.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 373-389, 2004.
© International Association for Cryptologic Research 2004



374 Havard Molland and Tor Helleseth

| LFSRy I+ [ LFSR, %

v Y z=0(¢v)
O(c,v) g

Fig. 1. The general cipher model we attack in this article

filtered generators. But there exist effective attacks on the data generator sub
system[6, 1,10, 3,4]. To deal with the irregular clocking, one of two techniques
are often used:

1. Do the attack on the data generator 2! times [7]. The attack is done
one time for each guess for the 2 possible initialization states for LFSR,. If
the attack on the sub system has complexity O(K) the full attack will have
complexity O(K - 2%).

2. Ignore the clock control generator [3,14,4]. If the attack on the data
generator subsystem needs M keystream bits, we can use the fact[14] that
we know the original v position of every 2% — 1 bit in the keystream z. Thus
we can only use every 2% — 1 keystream bit in the attack, which means that
we need (2= — 1) - M keystream bits to succeed.

None of these techniques are optimal. The first one leads to large runtime com-
plexity, the second leads to the need for a large number of keystream bits.

Our attack is not designed to attack the data generator subsystem only, but
is especially aimed at irregular clocked and filtered keystream generators as one
system. First we guess the initialization state Iy for LFSRg. From this we can
reconstruct the positions the bits in z had in v. Using the iteration algorithm
from[11] this reconstruction is done using just a couple of operations per guess,
exploiting the cyclic redundancies in LFSRg. This method is fully explained in
Section 4.3. This method gives the guess v = (.., %, 2;, ..., Zj, ..., oy Zhoy ooy %, 00),
where z;, 25, 2, are some keystream bits and the stars are the deleted bits. Then
we test v* to see if it is likely that the stream is generated by the data generator
subsystem LFSR, and f. Hence, we only use a distinguisher test on the the v*
stream to decide if the guess for Ig is correct. This is easier than to actually
decode the v* stream to find I, and then decide if we have found the correct
I;. When I is determined, we can use one of the previous attacks on the data
generator sub system to determine I,.

The distinguisher test is to evaluate a large number m of low weight parity
check equations on the bit stream v*. All equations are derived from one mul-
tiple h(x) of weight 4 of the generator polynomial g,(x). Surprisingly this test
works much better than expected from previous evaluation methods. In previ-
ous correlation attacks, the Piling up lemmal9] is often used to calculate the
correlation[1,7,6] which the algorithm must decode. Since our algorithm only
uses a distinguisher on v* we can use a correlation property of the function f



An Improved Correlation Attack 375

which gives much higher correlation between v* and the keystream z. Thus we
need fewer parity check equations. This correlation property exists even if the
function is correlation immune in the normal sense.

Our attack has complexity O(2% -m), independently of the length of LFSR,,.
A cipher based on the model we attack in this paper is LILI-128. To attack the
LILI-128 cipher our algorithm needs about 223 parity check equations. In LILI-
128, I, = 39, thus the runtime for our attack is 239423 a~ 262 parity checks, with
virtually no precomputation. We have implemented and tested the attack, and
it works on computers having under 300 MB of RAM, and needs only around
68 Mbyte of keystream data. The precomputation has low runtime complexity
and is negligible. When I; is found, we can use one of the previous algorithms
to attack the data generator sub system.

A comparable previous correlation attack by Johansson and Jénsson is pre-
sented in [7]. The runtime for the attack is 27! parity checks and the precom-
putations is 27 table lookups. The keystream length is approximately 23°. This
attack uses the first technique to handle the irregular clocking.

Recently new algebraic attacks have been proposed by Courtois and Meier|[3,
4]. This attack uses the second technique to handle the irregular clocking in
LILI-128. Although the attack has an impressive runtime complexity 23! - C' (an
optimistic estimation for some unknown constant C'), the attack needs about 26°
keystream bits to succeed, which is unpractical.

There is also a time-memory trade-off attack against LILI-128 by Markku-
Juhani Olavi Saarinen[14]. This attack needs approximately 2514 bits of com-
puter memory and 26 keystream bits. The runtime complexity is claimed to be
248 DES operations, which is not easy to compare with our runtime complexity.
But the high use of computer memory and keystream bits also makes this attack
unpractical.

2 A Correlation Property of Nonlinear Functions

Let V = FJ' and let f be a balanced Boolean function from V to F». We start
by analyzing the boolean function f(x) for a correlation property that we will
use in the attack. A similar property is analyzed in [18] where they look at the
nonhomomorphicity of functions. In this paper we identify the probability

p=P(f(x1) + f(x2) + f(x3) + f(xa) =0 [ x1 + X2 + X3 + x4 =0) (1)

which is crucial for our attacks success rate.

2.1 The Correlation Property

Let g =2" and let a-b = >"" | a;b; denote the inner product of a = (a1, as, ...
an) and b = (by, b, ..., by,). Define the Walsh coefficients of f by

fla) = (-1 eore=

xeV



376 Havard Molland and Tor Helleseth

Lemma 1. Let f be a function from V = F3 to Fy and let x; € F3' for i =
2,3,4. Let ¢ = 2" and let N denote the number of solutions of
X] +Xo+xX3+x4=0 (2)
f(x1) + f(x2) + f(x3) + f(x4) = 0. (3)
Then
¢
-1 4
7+ 2 Y (4)

Proof. Each term in the sum below gives a contribution 2¢ for each solution of
the system of equations, and zero otherwise. Therefore, we have

1

2gN = Z (Z(_1)8‘(x1+x2+x3+x4))(Z(_1)y(f(x1)+f(x2)+f(x3)+f(x4)))

X1,X2,X3,X4€V acV y=0

Z i Z (_1)yf(xl)+‘“+yf(X4)+a-x1+---+a<x4

aeV y=0x1,x2,x3,x4€V

_ ZZ Z Uf(x)-i-aX)

aeV y=0 xeV

=q'+ ) f(a)

acV

where the first term comes from the case y = 0 and a = 0, and the last term
from the case y = 1.

Corollary 1. If f(x) is a balanced function then the number of solutions N of
the system of equations above is,

q3

2(¢—1)

Proof. Since f(x) is balanced we obtain f(0) = Yoy (—

from Parseval’s identity that the average value of f (a)? is

3

q

N>L
> 5+

) ) = 0. Tt follows
i

T Hence it follows

from the Cauchy-Schwartz inequality that >, f(a)t > ( =, which

substituted in the lemma above gives the result.

)(q 1)

Corollary 2. The expected number of solutions N of the system of equations

above is,
3

¢ | 3¢*—2q
E(N)= —4 ——.

Proof. An average estimate of N can be found as follows. When there exist two
equal vectors x;; = x;, in Equation (2), the two other vectors x;,, z;, will also

be equal. When this occurs it follows that the Equation (3) will sum to zero.



An Improved Correlation Attack 377

This gives the unbalance that causes the high correlation. Equation (2) implies
x4 = X1 + X2 + x3 Then there are ¢(g — 1)(¢ — 2) triples in x1, X2, x3 where all
the x;’s are distinct and there are therefore 3¢? —2q triples with one or two pairs
X;, = X;,. Using this fact and substituting Equation (2) into Equation (3), we
can write

IN = Z i(_1)y(f(xl)+f(x2)+f(x3)+f(xl+x2+X3))
X1,X2,x3€V y=0
=g+ Z (_1)f(x1)+f(x2)+f(x3)+f(x1+x2+x3)
X1,X2,X3€V

— q3 + (3q2 _ 2q) + Z (_1)f(xl)+f(x2)+f(x3)+f(xl+X2+X3).

X1,X2,X3 distinct €V

Since for an arbitrary function f we can expect that f(x1), f(x2), f(x3), and
f(x1 +x2+x3) take on all binary quadruples approximately equally often when
X1 # X2 #* X3 # X1, we expect in the average the last term to be 0. This implies
the result.

Corollary 3. Let f be an arbitrary balanced function, and let p denote the prob-
ability

p = Prob(f(x1) + f(x2) + f(x3) + f(xa) = 0| x1 + X2 + X3 + x4 = 0),

then p is expected to be E(p) = %—!— 35(1_22 and its minimum is P > %—!— ﬁ.

Proof. Since Equation (2) has ¢* solutions, it follows from Corollary 1 that the

Eéév) = %4— %. Further from Corollary

3 3
2 we obtain that the minimum is ppin > (% + 2(;1—_1))/q3 =1+ 2(+_1).

expected probability is equal to E(p) =

Corollary 4. Given a specific balanced function f, the probability
p = Prob(f(x1) + f(x2) + f(x3) + f(x4) = 0| x1 + X2 + X3 + x4 = 0),
> f@*

. _ 1 \%
isp=35+ a€2q4

Dy f@*

Proof. Using the N from Lemma 1 we get p = % = % + 27

It is straightforward to extend Lemma 1 to compute the number of common
solutions of the two equations

X1 +Xg+--+x%x,=0
f(x1) + f(x2) + -+ + f(xw) = 0.

and show that the corresponding probability

Prob(f(x1) + f(x2) + -+ f(Xw-1) =0 [ x1 + X2 + -+ + X1 = 0),



378 Havard Molland and Tor Helleseth

D ey f@Y

5q7 , which reduces to the result of Corollary 4 when

equals p = % +
w = 4.

In the case w = 3, we can calculate the expected value of a balanced Boolean
function, with a given f(0), to be E(p) = 3 + %(—1)-’0(0). This implies that
the bias is the same for the case w = 3 as for w = 4. Similar arguments for
equations with w > 5 show that these equations give too low correlation, which
would lead to a high runtime complexity for our attack. It turns out that for
w = 3 the attack needs much more keystream bits to succeed, see the Sections
4.1 and 5.2. Since the correlation bias is exactly the same for w = 3 and w = 4

it is optimal to use w = 4.

2.2 Analysis of Some Functions

In Table 1 we have analyzed some functions using Corollary 4. This correlation
is surprisingly high. Let pap, = 0.53125 be the best linear approximation to
the LILI-128 function. Due to the design of the previous attacks[6,7,10] the
channel noise has been independent of the stream u generated by LFSR,,. Thus
the Piling up lemma [9], ppii = % + 21”*1(% — Dapp)", 1s used to evaluate the
crossover correlation 1 — ppi1 which the algorithms must be able to decode. Using
the Piling up lemma for weight w = 4 equations, the correlation ppy for LILI-128
will be ppii = 0.50000763. From Table 1 we have the correlation p = 0.501862.
The reason for the higher correlation, is that our attack only uses a distinguisher
on the data generator sub system, and not a complete decoder. Hence, in our
key recovery attack on the clock control system, we can use Corollary 4 from
Section 2.1 to calculate the correlation. To test the corollary we generated 2000
random and balanced Boolean tables for n = 10, and calculated the average
correlation. The result was that the average p was 0.501466 which is close to the
theoretical expected E(p) = 0.5001464.

Table 1. The probability P(f(x1)+ f(x2)+ f(x3)+ f(x4) =0 | x1 +x2+Xx3+x4 = 0)
calculated for some given functions. E(p) is the expected correlation for given ¢ = 2"
and p is the actual correlation for the given function

Function Number of | Best linear E(p) D
inputs bits n|approximation.
Geffe function 2 0.75 0.671875( 0.625
LILI-128 10 0.53125 0.501464(0.501862
LILI-IT 12 0.51367 0.500366{0.500190

3 A General Model

Here we define a general model for irregular clocked and filtered stream ciphers,
and some well known properties for the model.



An Improved Correlation Attack 379

3.1 General Model

Let gu(z) and gs(z) be the feedback polynomials for the shift registers LFSR,,
of length I, and LFSRg of length ls. We let Iy = (so, $1,...,8,-1) and I, =
(ug, u1, ..., u;,—1) be the initialization states for LFSRs and LFSR,,. The initial-
ization states (Is,I,) define the secret key for the given cipher system.

From gs(x) we can calculate a clock control sequence c in the following way.
Let ¢; = D(Li(Is)) € {a1,a2,...,aa}, a; > 0, be a function where the input
Li(I) is the inner state of LFSRy after ¢ feedback shifts and A is the number of
values that ¢; can take. Let p; be the probability p; = Prob(c; = a;).

LFSR,, produces the stream u = (ug, u1, ...) which is filtered by f. The output
from fis vg = f(Uksig, Uktiy, - Ukti,_, ), OF the equivalent vy, = f(L¥(1,)). The
clock ¢; decides how many times LFSR,, is clocked before the output bit vy is
taken as keystream bit z;. Thus the keystream z; is produced by z; = vy,
where k(t) is the total sum of the clock at time ¢, that is k(t) «— k(t — 1) + ¢.
This gives the following definition for the clocking of LFSR,,.

Definition 1. Given bit stream v and clock control sequence c, let z = Q(c,V)
be the function that generates z of length M by

Qe,v): 2zt vy, 0t < M
where k(t) = Z;:O ¢ — 1.

Ifa; > 1, 1 <j < A, the function Q(c,v) can be considered as a deletion
channel with input v and output z. The deletion rate is

1
Pi=1—-——. (5)
Zj:l bja;

The D() function described above can in this model be among others the shrink-
ing generator, the step-1/step-2 generator and the stop and go generator. Next
we define the (not complete) reverse of Definition 1.

Definition 2. Given the clock control sequence ¢ and keystream z, let the func-
tion v* = Q*(c,z) be the (not complete) reverse of Q, defined as

Q7 (c,2) : vy — 21, 0 <t < M,

where k(t) = Zi‘:o cj —1, and vy, = * for the entries k in v* where v}, is deleted.
When this occurs we say that vy is not defined.

The length of v* will be N* = ZMol cj. Given a stream z of length M, the
expected length N of the stream v is

B0Y) = 5= sz]aj (6)



380 Havard Molland and Tor Helleseth

Note that the only difference between this definition and Definition 1, is that v
and z have switched sides. Thus Q*(c, z) is a reverse of Q(c, v). But since some
bits are deleted, the reverse is not complete and we get the stream v*.
The probability for a bit v} being defined is Prob(v}) = 1 — P4. This happens
when k = k(t) holds for some ¢, 0 < ¢ < M. It follows that the sum vy + vy, +
-+ Vg4, Will be defined if and only if all of the bits in the sum are defined.

Thus the sum will be defined for given k in v* with probability
Paet = (1 — Pa)". (7)

4 The Attack

4.1 Equations of Weight 4

To succeed with our attack we need to find exactly one weight 4 equation
Au b Uk + Ukt jy + Uktjy + Uktjs =0 (8)

that holds over all u generated by LFSR,, for k£ > 0. This corresponds to finding a
multiple h(z) = a(x)gy(z) of weight 4. There exist several algorithms for finding
such a multiple, see among others [13,2,5,17,12].

In this paper we use the fast search algorithm in [12,11], which is a modified
version of the David Wagner’s Generalized Birthday Algorithm[17]. If the stream
u has length N, this algorithm has runtime complexity O(N log N) and memory
complexity O(N), where N is of order 2'+/3. The algorithm is effective in practice,
and we have succeeded in finding multiples of the generator polynomial of high
degree, see Section 6.3 for an example. We refer to Appendix C in [11] for the
details for this search algorithm.

Next, we let the input vector xj, to the Boolean function f(x) be

X = (uk+i07 uk+i1 DERER) uk?-l—infl )7 (9)

where (ig, i1, ...,in,_1) defines the tapping positions from the internal state L¥(I,,)
of LFSR,, after k feedback shifts. Substituting the vector (9) into the Equation
(8) we have that X + Xp4j, + Xktjo + Xitj; = 0 always holds for £ > 0. Since
vg = f(x) we have from Corollary 4 that the equation

Av @ U+ Vk+j, + Vk+ 5o + Vit jg 0, (10)
7 4
will hold for k > 0 with probability p = 1 + Za%\/ff@_

Remark 1. In [8] the multiple of g,(z) of weight w = 3 is exploited to define
an iterative decoding attack on regularly clocked LFSRs filtered by Boolean
functions. The constrained system

w—1
> Xpyj, =0 (11)
a=0

Zhtje = f(Xntjo ), 0 < a<w



An Improved Correlation Attack 381

is analyzed. This system is similar to the one we use in this paper, but it is used
differently. Since there are limited solutions to this system, the a posteriori prob-
abilities for each of the input bits (Ukj, +igs Uk+jotis s Whtjotin 1) 11 Kitijn
can be calculated. Then these probabilities are put into a Gallager like prob-
abilistic decoding algorithm(SOJA) which outputs I,. However the correlation
property in Corollary 4 is neither identified or exploited in [8].

4.2 Naive Algorithm

Let I, be a guess for the initialization state I,. Given the keystream z of length
M, we generate ¢, = D(LL(I)), 0 < t < M and v* = Q*(&z) of length
N = Ztﬂigléi Then we test if v* is likely to have been generated by LFSR,,
using the following method.

Find m entries in v* where the equation is defined. From this we get a set of
m equations. We test the m equations, and let the metric for the guess be the
number of equations that hold. When we have the correct guess for Iy we expect
pm of the equations to hold, where p is calculated using Corollary 4. Thus, this
is a maximum likelihood decoding algorithm.

The runtime complexity for the attack will be of order 2% - (m + N), since
we have to generate the bit stream v* of length N for each of the 2% guesses. In
a real attack, N will be a large number and the naive algorithm will have very
high runtime complexity.

4.3 Some Observations

If we use the technique in the previous section the attack has the runtime
2. (m 4+ N). In [11, Sec. 3.3] two important observations were made that re-
duce the complexity down to 2% -m. Since N > m, these observations will speed
up the attack considerably. We start with an initial guess I = (1,0, ...,0) and
let the 7’th guess be the internal state of LESR after i feedback shifts, that is
I = L),

Let ¢ = (¢}, cl,...,ch,_;) be the i’th guess for the clock control sequence
defined by ¢; = D(L*(1,0,...,0)), 0 < t < M. Let vi = Q*(c’,z) be the
corresponding guess for v* of length N; = >~ glci. We can now give a iterative
method for generating vi*! from v*.

Lemma 2. We can transform v into vitt = Q*(c'™!, z) using the following
method: Delete the first ¢y entries (x,...,%,z0) in V', append the cﬁ\'/yil = cYy
entries (x,...,%, zpr) at the end, and replace z; with z—1 for 1 <t < M.

Proof. See Appendix B.1 in [11].

Lemma 2 shows that we can generate each v using just a few operations instead
of N operations, when implemented properly (See Appendix A.1 for the imple-
mentation details). This gives a fast method for generating all possible guesses
for v* given a keystream z. But using this lemma we still have to search for m



382 Havard Molland and Tor Helleseth

entries in v* where the equations are defined. Since on average we must search
through 1/Pger entries in v* per equation, we want to avoid this search. In the
next theorem we show how this can be done. The theorem proves that we can
reuse the equation set for v? in v**!,

Theorem 1. If the sum
Uk + Uk+k1 —+ ...+ Uk+kw71 = 2t —+ Zt+j1 + ...+ Zt+jw71 = ’Vz,t
is defined over v', then the sum

Vg—ci e T Vg, e = 2t—1F Zt4ji—1- T 2ty 1 -1 = Yat—1

is defined over viTt.

Proof. See Appendix B.2 in [11].

The main result from this theorem is that the equation set defined over v* will
be defined over vi*! when we shift the equations ¢}, entries to the left over vi+!.
This means that we can just shift the equations one entry to the left over z, and
we will have a sum that is defined for the guess I, = D(Lit1(1,0, ...,0). Thus,
the theorem shows that we can avoid a lot of computations if we let the ¢’th
guess for the inner state of LFSRg be Li(1,0,...,0).

Remark 2. To use the lemma and theorem above we do not put the actual bit
values z; and restore them to the position k(¢) in v* given by Q*(c,z). Instead
we store the inder z; (the pointer to the position ¢ in z) in vy). This means
that UZ( #) holds the position ¢, which the keystream bit z; have in z. But when
we evaluate an equation we use the indices to put in the actual bit values.

4.4 An Efficient Algorithm

Assume we have found an equation Ay : Vg + Vgtj, + Vktjo + Vktjs = 0. The
equation holds over v with probability p calculated using Corollary 4. Let the
first guess for the initialization state for s be I = (1,0,0,...,0), generate c”
by ¢ = D(LL(1,0,...0)), t < M, and v° = Q*(c,z). Next we try to find m
entries (K1, ka2, ..., k) in v0 where the equation ), is defined. From this we get
the equation set
0 0 0 0 ~
Uk, + YUk 441 + Uky 442 + Uky4js 0

0
Uk, + Uka+i1 + Uko+jia + Ukotjs ™ 0 (12)

0 0 0 0 ~
Uk Vi T Vhiptdn T Vhpgs = 0-

Since every wvg,4j, in this equation set is defined in v and z = Uk(t), We can
replace vy, 45, with the corresponding bit z;, from the keystream z. Thus, vV is



An Improved Correlation Attack 383

a sequence of pointers to z and we can write the equations over z as the equation

set (2 :
Zty1 + 210 + Zt1,3 + Zt1.4 ~ 0

Zta1 + Ztyo + Ztas + 2ty 0 (13)

Pty F Zts T Pt s T 2ty A 0.

We are now finished with the precomputation. Let metricpest be the number of
equations in {2 that hold. We iterate as follows:

Input The keystream z of length M, the equation A, the equation set {2, the
index sequence v°, the states L°(1,0,...0) and LM (1,0...,0), and let 5 « 0.

1. Calculate c4t' | = ¢y, = D(LM+(1,0,...,0)).

2. Use Lemma 2 to generate vit! = Q*(c*1,z) and lower all indexes in the
equation set {2 by one. Theorem 1 guarantees that the equations are defined
over vitl,

3. If the first equation in {2 gets a negative index, then remove the equation

from 2. Find a new index at the end of vi*! where X is defined, and add

the new equation over z to f2.

Calculate metric as the number of equations in (2 that hold.

If metricpest > metric, set metricyes; «— metric and It = Li(10,0,...0).

Set i «— i+ 1 and go to step 1.

Output I? as the initialization state for LFSRs.

NSOt

Remark 3. The algorithm is presented this way to make it readable and to show
the basic idea. To reach the complexity O(2% - m) a few technical details on
the implementation of the algorithm are needed. These details are given in Ap-
pendix A.

5 Theoretical Properties

5.1 Success Formula

We can let an (unusual) encoder be defined by removing the Boolean function
from the cipher. Then we can use coding theory to evaluate the attack. Let the
initialization state Iy for LFSRy define the information bits in such a system.

Let y = (Yo, Y1, ---»Ynr—1) be the (not filtered) irregular clocked stream from
LFSR,, that is y = Q(c,u) and ¢; = D(LL(L;)). Then the bitstream y defines
the codeword that is sent over a noisy channel. Let the keystream z = Q(c,v)
(the filtered version of y) be the received codeword.

Assume we have the wrong guess for I, then approximately m/2 of the equa-
tions in the set (13) will hold. Now assume we have have guessed the correct
I;. According to the observation in Section 2.1 the equations in the set (13) will
hold with probability p = 5 + Y.y f(a)*/2¢4*, independently of the initializa-
tion bits I,.



384 Havard Molland and Tor Helleseth

Let p define the channel 'noise’. The uncertainty is defined by H(p) =
—plogp—(1—p)log(1—p), and the channel capacity is given by C(p) = 1—H(p).
We can approximate C(p) with C(p) &~ 2(p—3)?/In 2. Following Shannon’s noisy
coding theorem we can set up this bound for success.

Proposition 1. The attack will succeed with probability > % if the number of
parity check equations m is

I 0.347
Clp)  (-3)?

m > mgy =

where p ~ 1 + D yev F)*/2¢* and q = 2", where n is the number of input bits
in f(x).

When m is close to 2 - my we expect the probability for success to be close to 1,
see [15]. The simulations of our algorithm show that if we set m = 2.1 - mg the
success rate is approximately 99%.

5.2 Keystream Length

If the generator polynomial g,(z) has weight w > 4, we must find a multiple
h(z) of gu(z) of weight 4 and a degree l;,. We need at least the v stream to be
of length [},. In addition, to find m entries in v where the equation is defined v
must at least have length

N > Iy + m/ Pyet. (14)

From the expectation (6) of N we get E(M) = N(1—Py) = (1—Pa)ln+m/(1—
Py4)3, which proves the following proposition:

Proposition 2. Let an equation over v be defined by h(z) of weight 4 and degree
ln. To obtain an equation set 2 of m equations over z, the length of the z stream
must be

M > (1 — Py)ly+m/(1 - Py)3. (15)

The keystream length M depends on the number of equations m, the deletion
rate Py and the degree I}, of h(z) . The degree [}, is then again highly dependent
on the search algorithm we use to find h(x). When we use the search algorithm
in [11,17] the degree Iy, of gn(z) will be of order I, = 22T1)/3 which is close to
the theoretical expected degree 2t/(W=1) [5] for w = 4.

5.3 Runtime Complexity

The runtime complexity for our attack is

—) (16)

parity check tests, where p is calculated using Corollary 4. Note that the runtime
is independent of the length [, of LFSR,,.



An Improved Correlation Attack 385

5.4 Memory Complexity

If we implement the attack directly as described in Sections 4.3 and 4.4 the
algorithm will need around 32N + 4 % 32m bits of computer memory. The reason
for the 32N term is that v¥ = zq, *, , 21, 22, ..., %, zps—1 of length N is a sequence
of pointers of 32 bits. In appendix A.2 we show how we can store v’ using
N memory bits without affecting the runtime complexity. The total amount of
memory bytes needed is then

N

6 Simulations of the Attack

The LILI-128 cipher[16] is based on the general model we attack in this paper.
To be able to compare our attack with previous attacks, we have tested the
attack on this cipher.

6.1 The LILI-128 Cipher

In the LILI cipher the clock control generator is defined by
gs(z) = 2% + 2% + 2% + 23 4 21T 4 215 421 42?11,

and ¢; = D(S¢+12, St420) = 1+ St412 + 28¢420. The data generator sub system is
gu(@) = 2% + 283 4 250 4 55 1 253 4 42 1 0% 4 g

and vy = f(Uk, Ukt1, Ukt 3, Uk47, Uk 4125 U420, Uk+305 Uk+44, Uk+65, Uk+80), de-
fined by a Boolean table of size 1024. Further on we get Py = 0.6, and Pyer =
0.0256 for w = 4, and p = 0.501862. The number of keybits in the secret key
(Is,I,) is 39 + 89 = 128.

6.2 Simulations

We have done the simulations on some versions of the LILI-128 cipher with
LEFSRs of different lengths to empirically verify the success formula in Section
5.1. See Table 2 for the simulations. Note that we use the full size LFSR, from
the LILI cipher in the three attacks in the bottom of the table. For [y = 11 and
p = 0.501862 we get mo = 1.1 - 10°.

We have implemented the attack in C code using the Intel icc compiler on a
Pentium IV processor. Using the full 32-bit capability and all the implementation
tricks explained in Appendix A our implementation uses only approximately 7
cycles per parity check test. Hence the algorithm works fast in practice and will
take 7 - 2k=m processor cycles.

Each attack is run 100 times, and the table shows that the estimated success
rate holds and that the algorithm is efficient.



386 Havard Molland and Tor Helleseth

Table 2. We have tested the attack on the LILI-128 Boolean function with p =
0.501862. Note that the runtime for finding I is independent of the length [, of LFSR.,,
and the length M of the keystream. The attack on a full LFSR,, of length 89 and re-
duced LFSRs of length 11 took 12 seconds

ls | lu | Keystream length M Osliczefsigz m|Runtime|2's - m
11]60 24T 59 mo| 6 sec.|] 2°1
11]60 2251 100 2.2-mo| 13 sec.| 2%
1140 2240 51 mo| 6 sec.| 2%
1140 2250 100 2.2-mo| 13 sec.| 232
10(89 229 99 2.1-mg 6 sec|] 232
11|89 229 99 2.1-mo| 12 sec| 2%
12|89 229 99 2.1-mo| 24 sec| 257

6.3 A Complete Attack on LILI-128

Preprocessing. For the LILI cipher, we have found a multiple h(x) = a(z)gy(x)
which corresponds to the recursion w; + ¢ 1139501803 + ¢ +210123252 + Ut 11243366916
= 0 and we have that

Prob(v; + V14139501803 + V4210123252 + Vi+1243366916 = 0) = 0.501862.  (18)

This precomputation took only 5 hours and 40 Gbyte hard disk space. We see
that I, = 1243366916.

Finding I;. We have p = 0.501862, and mo = 39/C(0.501862) ~ 3.9 - 105 ~
2219 To be almost sure to succeed we use m = 2.1mg equations. Hence, the
runtime for attacking LILI-128 is

939 . 923 _ 962

parity checks. Using our implementation this corresponds to 252 - 7 processor
cycles. Using Proposition 2 with Py = 0.6 we need a keystream of length M =~
229, The attack needs about 290 Mbyte of RAM. It can easily be parallelized
and distributed among processors with virtually no overhead, since there is no
need for communcation between the processor, and no need for shared memory.
If we have 1024 Pentium IV 2.53 GHz processors, each having access to about
290 MB of memory, the attack would take about 4.5 months using 68 Mbyte of
keystream data.

Finding I, when I is known. Our attack only finds the initialization bits Ig
for LESRs. It is possible to combine the Quick Metric from [12] with the previous
attack against LILI in [7] to find I, when I is given. Since this is not the scope
of this paper we will not go into details, and we refer to [7,12] for the exact
description. The preprosessing stage will have complexity of order 247 memory



An Improved Correlation Attack 387

lookups, and runtime complexity of order 242-5 parity checks. The complexity
for the method above is much lower than the complexity for finding Iy and will
therefore have little effect on the overall runtime for a full attack.

7 Conclusion

We have proposed a new key recovery correlation attack on irregular clocked
keystream generators where the stream is filtered by a nonlinear Boolean func-
tion. Our attack uses a correlation property of Boolean functions, that gives
higher correlation than previous methods. Thus we need fewer equations to suc-
ceed. The property holds even if the function is correlation immune. Using this
property together with the iteration techniques from [11] we get a low runtime
and low memory complexity algorithm for attacking the model. The algorithm
outputs the initialization bits Iy for LFSRg. Knowing Iy there exist previous
algorithms which can determine I, efficiently.

Acknowledgment

We would like to thank Matthew Parker, John Erik Mathiassen and the anony-
mous referees for many helpful comments.

References

1. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation
attacks on stream ciphers. In Fast Software Encryption, FSE 2000, volume 1978
of Lecture Notes in Computer Science, pages 181-195. Springer-Verlag, 2001.

2. Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An
algorithmic point of view. In Advances in Cryptology - EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 209-221. Springer-Verlag, 2002.

3. Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology-CRYPTO’ 2003, volume 2729 of Lecture Notes in Com-
puter Science, pages 176-194, 2003.

4. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear
feedback. In Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 345-359, 2003.

5. J.D Goli¢. Computation of low-weight parity-check polynomials. Electronic Letters,
october 1996. 32(21):1981-1982.

6. T. Johansson and F. Jonsson. Theoretical analysis of a correlation attack based
on convolutional codes. In Proceedings of 2000 IEEE International Symposium on
Information Theory, IEEE Transaction on Information Theory, page 212, 2000.

7. Fredrik Jonsson and Thomas Johansson. A fast correlation attack on LILI-128. In
Inf. Process. Lett. 81(3), pages 127-132, 2002.

8. Sabine Leveiller, Gilles Zémor, Philippe Guillot, and Joseph Boutros. A new crypt-
analytic attack for pn-generators filtered by a boolean function. In Selected Areas
in Cryptography: 9th Annual International Workshop, SAC 2002, volume 2595 of
Lecture Notes in Computer Science, pages 232-249. Springer-Verlag, 2003.



388 Havard Molland and Tor Helleseth

9. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology-EUROCRYPT 93, volume 765 of Lecture Notes in Computer Science,
pages 386-397. Springer-Verlag, 1994.

10. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In Ad-
vances in Cryptology-EUROCRYPT’88, volume 330 of Lecture Notes in Computer
Science, pages 301-314. Springer-Verlag, 1998.

11. Havard Molland. Improved linear consistency attack on irregular clocked keystream
generators. In Fast Software Encryption, FSE 2004, To appear in LNCS. Springer-
Verlag, 2004. Available at http://www.ii.uib.no/ “molland/crypto

12. Havard Molland, John Erik Mathiassen, and Tor Helleseth. Improved fast correla-
tion attack using low rate codes. In Cryptography and Coding, IMA 2003, volume
2898 of Lecture Notes in Computer Science, pages 67-81, 2003.

13. W.T. Penzhorn and G.J Kuhn. Computation of low-weight parity checks for corre-
lation attacks on stream ciphers. In Cryptography and Coding, IMA 1995, volume
1025 of Lecture Notes in Computer Science, pages 74-83. Springer-Verlag, 1995.

14. Markku-Juhani Olavi Saarinen. A time-memory tradeoff attack against LILI-128.
In Fast Software Encryption, FSE 2002, volume 2365 of Lecture Notes in Computer

Science, pages 231-236, 2002.

15. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Trans. on Comp., C-34:81-85, 1985.

16. L. Simpson, E. Dawson, J. Goli¢, and W. Millan. LILI keystream generator. In
SAC’2000, volume 2012 of Lecture Notes in Computer Science, pages 231-236.
Springer-Verlag, 2002. Available at http://www.isrc.qut.edu.au/lili.

17. D. Wagner. A generalized birthday problem. In Advances in cryptology-CRYPTO’
2002, volume 2442 of Lecture Notes in Computer Science, pages 288-303, 2002.

18. Xian-Mo Zhang and Yuliang Zheng. The nonhomomorphicity of boolean functions.
In Selected Areas in Cryptography, SAC 98, volume 1556 of Lecture Notes in Com-
puter Science, pages 280-295. Springer-Verlag, 1998.

Appendix
A Implementation Details

To reach the runtime complexity O(2% - m) and memory complexity down to
N + 128m bits, the implementation of the algorithm has some tricks. Since not
all of these tricks are obvious we give more detailed descriptions of them below.

A.1 Runtime Details

Sliding window. In Lemma 2 we get vi*! by among other things deleting the
¢ first bits of v?. This is done using the sliding window technique, which means
that we move the viewing to the right instead of shifting the whole sequence to
the left. This way the shifting can be done in just a couple of operations. To
avoid heavy use of memory, we slide the window over an array of fixed length
N, so that the entries that become free at the beginning of the array are reused.
Thus, the left and right indexes of the sliding window after ¢ iterations will be

(left,right) = (imod N,i+ N; mod N),

where N > Nj, for all i, 0 < i < 2.



An Improved Correlation Attack 389

The same sliding window technique is also used on the equation set when
equations are deleted and added to the equation set.

Updating the indices. In Lemma 2 every pointer z;4; in v* is replaced with z;
for every 0 < t < M, which would take M operations. If we skip the replacements
we note that after ¢ iterations the entry z; in v* will become z;y,. It is also
important to note that when we write v = (..., 29..., 2¢, ..., 20, -..), the entries
20y -y 2ty -y 20 are pointers from v* to z. They are not the actual key bits.
Thus, in the implementation we do not replace z; with z;_1. But when we after ¢
iterations in the search for equations find an equation v,i—i—v,i_HI +...+v,’;+jw7] =0
that is defined, we replace the corresponding equation z;, + 2, + ... + 2, with
Zt,—i + Zto—i + ... + 2t,—i, tO cCOMpensate.

Reducing the memory access time. When we test an equation we must use
pointers to pointers to the keystream. Then each equation test will have high
memory access time. We can reduce this significantly by testing the equations
on 32 states simultaneously. This is possible since the next state I'*1 is tested
by shifting all the equations one entry to the left over z. We can now take the
bits z¢,, 2t 41, 2t,4+31 for each of the term 1 < a < 4 in the equations and
put them into 32 bit registers. Now we can test the states and add one to the
metrics of the states that satisfy the equation. This speeds up the runtime by a
factor of approximately 20.

A.2 Memory Details

Reducing the use of memory. Instead of storing all the pointers, we set 1
in v where the bits are defined and 0 otherwise. When we search in v* to find
entries where the equation )\, is defined, we keep track of where in z the four
terms in A, points to by counting the number of 1’s we pass during the search.
This is done for each of the 4 terms in the equation A,. This way we always
know where in z the given equation of v* points to. Using this trick the number
of memory bits needed during an attack is reduced from 32N + 128m bits to

N +128m

Implementing this trick will not affect the runtime of the attack.



	1 Introduction
	2 A Correlation Property of Nonlinear Functions
	2.2 Analysis of Some Functions

	3 AGeneralModel
	3.1 General Model

	4 The Attack
	4.1 Equations of Weight 4
	4.2 Naive Algorithm
	4.3 Some Observations
	4.4 An Efficient Algorithm

	5 Theoretical Properties
	5.1 Success Formula
	5.2 Keystream Length
	5.3 Runtime Complexity
	5.4 Memory Complexity

	6 Simulations of the Attack
	6.1 The LILI-128 Cipher
	6.2 Simulations
	6.3 A Complete Attack on LILI-128

	7 Conclusion
	Acknowledgment
	References
	Appendix
	A Implementation Details
	A.1 Runtime Details
	A.2 Memory Details





