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Abstract. The concept of zero-knowledge (ZK) has become of funda-
mental importance in cryptography. However, in a setting where entities
are modeled by quantum computers, classical arguments for proving ZK
fail to hold since, in the quantum setting, the concept of rewinding is
not generally applicable. Moreover, known classical techniques that avoid
rewinding have various shortcomings in the quantum setting.
We propose new techniques for building quantum zero-knowledge (QZK)
protocols, which remain secure even under (active) quantum attacks.
We obtain computational QZK proofs and perfect QZK arguments for
any NP language in the common reference string model. This is based
on a general method converting an important class of classical honest-
verifier ZK (HVZK) proofs into QZK proofs. This leads to quite practical
protocols if the underlying HVZK proof is efficient. These are the first
proof protocols enjoying these properties, in particular the first to achieve
perfect QZK.
As part of our construction, we propose a general framework for building
unconditionally hiding (trapdoor) string commitment schemes, secure
against quantum attacks, as well as concrete instantiations based on
specific (believed to be) hard problems. This is of independent interest,
as these are the first unconditionally hiding string commitment schemes
withstanding quantum attacks.
Finally, we give a partial answer to the question whether QZK is possible
in the plain model. We propose a new notion of QZK, non-oblivious
verifier QZK, which is strictly stronger than honest-verifier QZK but
weaker than full QZK, and we show that this notion can be achieved by
means of efficient (quantum) protocols.

1 Introduction

Since its introduction by Goldwasser, Micali and Rackoff [14], the concept of
zero-knowledge (ZK) proof has become a fundamental tool in cryptography. In-
� Research was carried out while at the Centre for Advanced Computing - Algorithms

and Cryptography, Department of Computing, Macquarie University, Australia.
�� BRICS stands for Basic Research in Computer Science (www.brics.dk) and FICS

for Foundations in Cryptography and Security, both funded by the Danish Natural
Sciences Research Council.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 254–272, 2004.
c© International Association for Cryptologic Research 2004



Zero-Knowledge Proofs 255

formally, in a ZK proof of a statement, the verifier learns nothing beyond the
validity of the statement. In particular, everything the verifier can do as a result
of the interaction with the prover during the ZK proof, the verifier could also
do “from scratch”, i.e., without interacting with the prover. This is argued by
the existence of an efficient simulator which produces a simulated transcript of
the execution, indistinguishable from a real transcript. ZK protocols exist for
any NP language if one-way functions exist [2, 3, 15], also more efficient solu-
tions are known for specific languages like Quadratic-Residuosity [14] or Graph-
Isomorphism [15].

From a theoretical point of view, it is natural to ask whether such classical
protocols are still secure if cheating players are allowed to run (polynomial time
bounded) quantum computers. But the question also has some practical rele-
vance: although quantum computers may not be available to the general public
in any foreseeable future, even a single large scale quantum computer could be
used to attack the security of existing protocols.

To study this question, two issues are important. First, the computational
assumption on which the protocol is based must remain true even if the adversary
is quantum. This rules out many assumptions such as hardness of factoring or
extracting discrete logs [23], but a few candidates still remain, for instance some
problems related to lattices or error correcting codes. In general, it is widely
believed that quantum one-way functions exist, i.e., functions that are easy to
compute classically, but hard to invert, even on a quantum computer.

A second and more difficult question is whether the proof of security remains
valid against a quantum adversary. A major problem in this context comes from
the fact that in the classical definition of ZK, the simulator is allowed to rewind
the verifier in order to generate a simulated transcript of the protocol execution.
However, if prover and verifier are allowed to run quantum computers, rewinding
is not generally applicable, as it was originally pointed out by Van de Graaf [27].
We discuss this in more detail later, but intuitively, the reason is that when
a quantum computer must produce a classical output, such as a message to
be sent, a (partial) measurement on its state must be done. This causes an
irreversible collapse of the state, so that it is not generally possible to reconstruct
the original state. Moreover, copying the verifier’s state before the measurement
is forbidden by the no-cloning theorem. Therefore, protocols that are proven
ZK in the classical sense using rewinding of the verifier may not be secure with
respect to a quantum verifier. This severe breakdown of the classical concept of
ZK in a quantum world is the motivation of this work.

It is well known that rewinding can cause “problems” already in a classi-
cal setting. In particular, it has been realized that rewinding the verifier limits
the composability of ZK protocols. As a result, techniques have been proposed
that avoid rewinding the verifier, for instance the non-black-box ZK technique
from [1], or – in the common reference string model – techniques providing con-
current ZK [13, 22, 9], non-interactive ZK [4] or universally-composable (UC)
ZK [5, 6, 11] and related models [21]. One might hope that some of these ideas
would translate easily to the quantum setting.
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However, the non-black box technique from [1] is based on the simulator us-
ing the verifier’s program and current state to predict its reaction to a given
message. Doing so for a quantum verifier will collapse its state when a measure-
ment is done to determine its next message, so it is not clear that this technique
will generalize to a quantum setting. The known constructions of UCZK pro-
tocols and non-interactive ZK are all based on computational assumptions that
are either false in a quantum setting or for which we have no good candidate
for concrete instantiations: the most general sufficient assumption is the exis-
tence of one-way trapdoor permutations (i.e. as far as we know) but all known
candidates are easy to invert on a quantum computer. Regardless of this type
of problem, great care has to be taken with the security proof: despite the fact
that the simulator in the UC model must not use rewinding, it is not true that
a security proof in the UC model automatically implies security against quan-
tum adversaries - we discuss this in more details later in the paper. Finally, the
technique for concurrent ZK from [9] avoids rewinding the verifier but instead
rewinds the prover to prove soundness, leading to similar problems.

Before describing our results, we note that quantum zero-knowledge proof
systems were already studied from a complexity theoretic point of view by Wa-
trous in [26]. The proof systems considered there all assume the prover to be
computationally unbounded and the zero-knowledge condition is only enforced
against honest verifiers. Clearly, these restrictions make those proof systems
unsuitable for cryptographic applications. In this paper, we focus on efficient
quantum zero-knowledge protocols in a cryptographic setting.

We propose three distinct techniques applicable to an important class of
(classical) honest-verifier ZK (HVZK) proofs (in which the verifier is guaranteed
to follow the protocol), namely so-called Σ-protocols (3-move public-coin pro-
tocols). We convert such protocols into quantum zero-knowledge (QZK) proofs,
which are ZK (as well as sound) even with respect to (active) quantum attacks.
In all cases, the new proof protocol proceeds in three moves like the underly-
ing Σ-protocol, and its overhead in terms of communication is reasonable. To
the best of our knowledge, these are the first (practical) zero-knowledge proofs
withstanding active quantum attacks.

The first technique assumes the existence of an unconditionally hiding trap-
door string commitment scheme (secure against quantum attacks) and can be
proven secure in the common-reference-string (CRS) model. It requires only clas-
sical computation and communication and achieves perfect or statistical QZK,
assuming the underlying Σ-protocol was perfect or statistical HVZK, and is an
interactive argument (computationally sound). The communication overhead of
the new QZK protocol in comparison with the underlying Σ-protocol is essen-
tially given by communicating and opening one string commitment. The tech-
nique directly implies perfect or statistical QZK arguments for NP.

This first approach requires addressing the problem of constructing uncondi-
tionally hiding and computationally binding trapdoor string commitment
schemes withstanding quantum attacks. This is non-trivial since the classical
definition of computational binding cannot be used for a quantum adversary as
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it was pointed out in [12] with respect to bit commitments and in [8] with respect
to string commitments. In fact, it was not even clear how computational binding
for a string commitment should be defined. In [8], a computational binding con-
dition was introduced with their application in mind but no concrete instance
was proposed.

We propose a new definition of computational binding that is strong enough
for our (and other) applications. On the other hand, we propose a generic
construction for schemes satisfying our definition based on special-sound Σ-
protocols for hard-to-decide languages, and we give examples based on concrete
intractability assumptions. Our construction yields the first unconditionally hid-
ing string commitment schemes withstanding quantum attacks, under concrete
as well as under general intractability assumptions. Moreover, since our defini-
tion implies the one from [8], our schemes can be used to provide secure quantum
oblivious transfer.

The second technique assumes the existence of any quantum one-way func-
tion and is also secure in the CRS model. It requires classical communication
and computation and produces computational QZK interactive proofs for any
NP language. It can be efficiently instantiated under more specific complexity
assumptions.

The last technique requires no computational assumption and is provably se-
cure in the plain model (no CRS). However, it requires quantum computation and
communication and does not achieve full QZK but what we call non-oblivious
verifier QZK. This new notion is weaker than QZK but strictly stronger than
honest-verifier QZK (as defined in [26]). Essentially, a non-oblivious verifier may
arbitrarily deviate from the protocol but still generates all private and pub-
lic classical random variables available to the honest verifier according the same
distribution. The (quantum) communication complexity of the non-oblivious ver-
ifier QZK proof essentially equals the (classical) communication complexity of
the underlying Σ-protocol.

The paper is organized as follows. In Sect. 2, we introduce some relevant
notations. We also argue why rewinding causes a problem in a quantum setting
and why UCZK does not imply QZK. In Sect. 3, we define and construct the
unconditionally hiding (trapdoor) commitment schemes used in Sect. 4 for QZK
proofs in the common-reference-string model. Finally, the non-oblivious verifier
QZK proof in the plain model is presented in Sect. 5.

Due to space limitations, some descriptions and discussions appear in a short-
ened form in this proceedings version, they appear in full in the full version [10].

2 Preliminaries

2.1 Zero-Knowledge Interactive Proofs

The Classical Case: We assume the reader to be familiar with the classical
notions of (HV)ZK interactive proofs (and arguments) and of (special-sound)
Σ-protocols. We merely fix some notation and terminology here. For an intro-
duction to these concepts we refer to the full version of this paper [10] or to the
literature.
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Let R = {(x,w)} be a binary relation. Write LR = {x | ∃w : (x,w) ∈ R} for
the language defined by R. For x ∈ LR, any w such that (x,w) ∈ R is called
a witness (for x ∈ L), and we write WR(x) = {w | (x,w) ∈ R} for the set of
witnesses for x ∈ L. We assume that the size of the witnesses for x ∈ L are
polynomially bounded by the size of x, and that R is poly-time testable.

We refer to a Σ-protocol (P,V) for a language L by a triple (a, c, z), where we
understand a, c and z as the processes of choosing/computing the first message
a, the (random) challenge c and the corresponding answer z, respectively, as
specified by the protocol (with some input x ∈ L), and we write a ← a, c ← c
and z ← zx(a, c), respectively, for the execution of these processes. Furthermore,
we write verifyx for the verification predicate which is applied by V and whose
output accept or reject, respectively 0 or 1, determines whether V should
accept the proof or not. We stress that when considering a computationally
bounded (honest) prover P as we do here the answer z is typically not computed
by P as a function of a, c and x (as the notation z ← zx(a, c) might suggest),
but rather as a function of the randomness used to generate a, of the challenge
c and of a witness w ∈ WR(x). Per default, we understand a Σ-protocol to
be unconditionally sound. Clearly, for a fixed x �∈ L, the soundness error ε of
such a Σ-protocol is given by the maximum over all possible first messages a of
the fraction of the possible challenges c for a that allow an answer z which is
accepted by V.

It is known that statistical ZK Σ-protocols only exist for languages L ∈
co-AM. Most of the well-known Σ-protocols are proof-system for languages that
are trivial on a quantum computers. However, some languages like graph isomor-
phism (i.e. GI) have special sound Σ-protocols and are not known to be trivial
on a quantum computer. This is also the case for some recently proposed lattice
problems [19]. It is not known whether co-AM can be efficiently recognized by
a quantum computer.

The Quantum Case: ZK quantum interactive proof systems are defined as the
natural generalization of their classical counterpart and were introduced and first
studied by Watrous [24, 26]. Quantum ZK (QZK) is defined as for the classical
case except that the quantum simulator is required to produce a state that
is exponentially close, in the trace-norm sense, to the verifier’s view. Formal
definitions for QZK proof systems can be found in the full version [10].

2.2 The Problem with Quantum Rewinding

Rewinding a party to a previous state is a common proof technique for showing
the security of many different kinds of protocols in the computational model.
In general, this technique cannot be applied when the party is modeled by a
quantum computer. Originally observed by Van de Graaf [27], this implies that
security proofs of many well-established classical protocols do not hold if one
party is running a quantum computer even if the underlying assumption under
which the security proof holds withstands quantum attacks.

Rewinding is in general not possible since taking a snapshot of a quantum
memory is tantamount to quantum cloning. Unlike in the classical case, there
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is no way to copy a quantum memory regardless of what the memory contains.
The only generic way to restore a quantum memory requires to re-generate it
from scratch. Proceeding that way may not be possible efficiently.

One consequence of the no quantum rewinding paradigm is particularly rel-
evant to us. Sequential repetitions of an HVZK Σ-protocol for a language L
results in a ZK protocol for L with negligible soundness error. It follows that
this straightforward construction is not guaranteed to be secure against quantum
verifiers.

Another example is the use of rewinding for proving secure applications of
computationally binding commitment schemes. Such a security proof is done by
showing that an attacker that breaks the application can be used to compute two
different openings of a commitment and thus to break the binding property of
the commitment scheme. This reduction, however, requires typically to rewind
of the attacker, and thus by the no quantum rewinding paradigm does not yield
a valid security proof in a quantum setting.

More details can be found in the full version [10].

2.3 UCZK Does Not Imply QZK

In [5], Canetti proposes a new framework for defining and proving cryptographic
protocols secure: the universal composability (UC) framework. This framework
allows to define and prove secure cryptographic protocols as stand-alone proto-
cols, while at the same time guaranteeing security in any application by means
of a general composition theorem. The UC security definition essentially requires
that the view of any adversary attacking the protocol can be simulated while
in fact running an idealized version of the protocol, which essentially consists
of a trusted party called ideal functionality. The simulation should be indistin-
guishable for any distinguisher, called environment, which may be on-line, and
provides the inputs and receives the outputs. Furthermore, the UC definition
explicitly prohibits rewinding of the environment and thus of the adversary (as
it may communicate with the environment). This restriction is crucial for the
proof of the composition theorem. We refer to [5] for more details.

Since the UC framework forbids rewinding the adversary, it seems that UCZK
implies QZK, assuming the underlying computational assumption withstands
quantum attacks. This intuition is false in general. The reason being that even
though the UC framework does not allow the simulator to rewind the adversary,
it is still allowed to use rewinding as a proof-technique in order to show that the
simulator produces a “good” simulation. For instance, it is allowed to argue that
if an environment can distinguish the simulation from a real protocol execution,
then by rewinding the environment together with the adversary one can solve
efficiently a problem assumed to be hard. We illustrate this on a concrete example
in [10].

3 Unconditionally Hiding (Trapdoor) Commitments

In this section we study and construct classical (trapdoor) commitment schemes
secure against quantum attacks. In contrast to quantum commitment schemes,
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such schemes do not require quantum computation (in order to compute, open
or verify commitments), but they are guaranteed to remain secure even under
quantum attacks. Our construction, which is based on hard-to-decide languages
with special-sound Σ-protocols, yields the first unconditionally hiding string
commitment schemes withstanding quantum attacks. In Sect. 4, we use these
commitments to construct QZK proofs. A further application of our commitment
schemes is given in [10], where it is shown how they give rise to quantumly secure
oblivious transfer.

3.1 Defining Security in a Quantum Setting

Informally, by publishing a commitment C = commitpk(s, ρ) for a random ρ,
a commitment scheme allows a party to commit to a secret s, such that the
commitment C reveals nothing about the secret s (hiding property) while on the
other hand the committed party can open C to s by publishing (s, ρ) but only
to s (binding property).

Formally, a commitment scheme (of the kind we consider) consists of two
poly-time algorithms: A key-generation algorithm G which takes as input the se-
curity parameter � and specifies an instance of the scheme by generating a public-
key pk, and an algorithm commit which allows to compute C = commitpk(s, ρ)
given a public-key pk as well as s and ρ chosen from appropriate finite sets S and
R (specified by pk). S is called the domain of the commitment scheme. Classi-
cally, the hiding property is formalized by the non-existence of a distinguisher
which is able to distinguish C = commitpk(s, ρ) from C = commitpk(s′, ρ′) with
non-negligible advantage, where s, s′ ∈ S are chosen by the distinguisher and
ρ, ρ′ ∈ R are random. On the other hand, the binding property is formalized by
the non-existence of a forger able to compute s, s′ ∈ S and ρ, ρ′ ∈ R such that
s �= s′ but commitpk(s, ρ) = commitpk(s, ρ′). If the distinguisher respectively the
forger is restricted to be poly-time, then the scheme is said to be computation-
ally hiding respectively binding, while without restriction on the distinguisher
respectively the forger, it is said to be unconditionally hiding respectively bind-
ing.

In order to define security of such a commitment scheme (G, commit) in a
quantum setting, the (computational or unconditional) hiding property can be
adapted in a straightforward manner by allowing the distinguisher to be quan-
tum. The same holds for the unconditional binding property, which is equivalent
to requiring that every C uniquely defines s such that C = commitpk(s, ρ) for
some ρ. However, adapting the computational binding property in a similar man-
ner simply by allowing the forger to be quantum results in a too weak definition.
The reason being that in order to prove secure an application of a commitment
scheme, which is done by showing that an attacker that breaks the application
can be transformed in a black-box manner into a forger that violates the binding
property, the attacker typically needs to be rewound, which cannot be justified
in a quantum setting by the no-quantum-rewinding paradigm as discussed in
Sect. 2.2. The following definition for the computational binding property of a
commitment scheme with respect to quantum attacks is strong enough to prove
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secure applications (as in Sect. 4 and in [10]) based on the security of the un-
derlying commitment scheme, but it is still weak enough in order to prove the
binding property for concrete commitment schemes (see Sect. 3.2 and 3.3).

Let (G, commit) be a commitment scheme as introduced above, and let S
denote its domain. Informally, we require that it is infeasible to produce a
list of commitments and then open (a subset of) them in a certain specified
way with a probability significantly greater than expected. We formalize this
as follows. Let Q be a predicate of the following form. Q takes three inputs:
(1) a non-empty set A ⊆ {1, . . . , N} where N is upper bounded by a polyno-
mial in �, (2) a tuple sA = (si)i∈A with si ∈ S, and (3) an element u ∈ U
where U is some finite set; and it outputs Q(A, sA, u) ∈ {0, 1}. We do not
require Q to be efficiently computable. Consider a polynomially bounded quan-
tum forger F in the following game: F takes as input pk, generated by G,
and announces commitments C1, . . . , CN . Then, it is given a random u ∈ U ,
and it outputs A, sA = (si)i∈A and ρA = (ρi)i∈A. F is said to win the
game if Q(A, sA, u) = 1 and Ci = commitpk(si, ρi) for every i ∈ A. We re-
quire that every forger has essentially the same success probability in win-
ning the game as when using an ideal (meaning unconditionally binding) com-
mitment scheme (where every Ci uniquely defines si). In the latter case, the
success probability is obviously given by pideal = maxs∈SN |satQ(s)|/|U| with
satQ(s) = {u ∈ U | ∃ A : Q(A, sA, u) = 1}, where sA stands for the restriction of
s to its coordinates si with i ∈ A. In this definition, Q models a condition that
must be satisfied by the opened value in order for the opening to be useful for
the committer. For each application scenario, such a predicate can be defined.

Definition 1. A commitment scheme (G, commit) is called computational Q-
binding if for every predicate Q, every polynomially bounded quantum forger F
wins the above game with probability preal = pideal+adv, where adv, the advantage
of F , is (negative or) negligible (in �).

It is not hard to verify that in a classical setting (where F is allowed to
be rewound), the classical computational binding property is equivalent to the
above computational Q-binding property. Furthermore, it is rather obvious that
the computational Q-binding property for a commitment scheme with domain
S implies the computational Q-binding property for the natural extension of the
scheme to the domain Sk (for any k) by committing componentwise. Note that
this desirable preservation of the binding property does not hold for the binding
property introduced in [8].

Finally, we define a trapdoor commitment scheme1 as a commitment scheme
in the above sense with the following additional property. Besides the public-
key pk, the generator G also outputs a trapdoor τ which allows to break either
the hiding or the binding property. Specifically, if the scheme is unconditionally
binding, then τ allows to efficiently compute s from C = commitpk(s, ρ), and if
it is unconditionally hiding, then τ allows to efficiently compute commitments
C and correctly open them to any s.
1 Depending on its flavor, a trapdoor commitment scheme is also known as an ex-

tractable respectively as an equivocable or a chameleon commitment scheme.



262 Ivan Damg̊ard, Serge Fehr, and Louis Salvail

3.2 A General Framework

In this section, we propose a general framework for constructing unconditionally
hiding and computationally Q-binding (trapdoor) string commitment schemes.
For that, consider a language L = LR and assume that

1. L admits a (statistical) HVZK special-sound Σ-protocol Π = (a, c, z) 2,
2. there exists an efficient generator Gyes generating x ∈ L together with a

witness w ∈WR(x) (more precisely, Gyes takes as input security parameter �
and outputs x ∈ L of bit size � and w ∈WR(x)), and

3. for all poly-size quantum circuits D and polynomials p(�) > 0, if � is large
enough then there exists xno �∈ L of bit size � such that for xyes generated by
Gyes (on input �)

∣
∣Pr (D(xyes) = yes)− Pr (D(xno) = yes)

∣
∣ < 1/p(�).

Note that 3. only requires that for every distinguisher D it is hard to distinguish
a randomly generated yes-instance x ∈ L from some no-instance x �∈ L, which
in particular may depend on D.

Given such L, the construction in Fig. 1 provides an unconditionally hiding
trapdoor commitment scheme. We assume that c samples challenge c randomly
from {0, 1}t for some t.

G is given by Gyes, where the generated x ∈ L is parsed as public key pk and
w ∈ WR(x) as trapdoor τ . The domain S is defined to be S = {0, 1}t.
commitpk: To commit to s ∈ S = {0, 1}t, use the HVZK simulator for Π to
generate (a, c, z). Set C = (a, s⊕ c) to be the commitment for s.

A commitment C = (a, d) is opened to s by announcing the corresponding
values c and z, and such an opening is accepted if and only if s ⊕ c = d and
verifyx(a, c, z) = accept.

Fig. 1. Trapdoor commitment scheme (G, commit).

If Π is special HVZK, meaning that (a, c, z) can be simulated for a given c,
then the commitment scheme can be slightly simplified: (a, c, z) is generated
such that c = s and C is simply set to be C = a.

Theorem 1. Under assumption 3., (G, commit) in Fig. 1 is an unconditionally
hiding and computationally Q-binding trapdoor commitment scheme.

2 As will become clear, the prover’s efficiency in the Σ-protocol does not influence
the efficiency of the resulting commitment scheme as far as the committer and the
receiver are concerned. An efficient prover is only required if one wants to take
advantage of the trapdoor.
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As will become clear from the proof below, if the underlying Σ-protocol Π
is perfect HVZK, then (G, commit) is perfectly binding in the sense that there
exists no distinguisher with non-zero advantage, meaning that a commitment C
for s is statistically independent of s.

Proof. It is clear that a correct opening is accepted. It is also rather obvious that
the scheme is unconditionally hiding: The distribution of (a, c, z) generated by
the HVZK simulator is statistically close to the distribution of (a, c, z) generated
by the protocol. There, however, c is chosen independently of a. Therefore, a
gives essentially no information on c and thus C = (a, s⊕ c) gives essentially no
information on s (as s⊕ c acts as a one-time pad). The trapdoor property can
be seen as follows. Knowing the trapdoor τ = w, put C = (a, d) where a ← a
and d is randomly sampled from {0, 1}t. Given arbitrary s ∈ {0, 1}t, compute
c = d ⊕ s and z ← zx(a, c) using the witness w (and the randomness for the
generation of a). It is obvious that (s, c, z) opens C correctly to s.

It remains to show the computational Q-binding property. We show that if
there exists a forger F that can break the Q-binding property of the commit-
ment scheme (without knowing the trapdoor) for some predicate Q according to
Definition 1, then there exists a circuit D that contradicts assumption 3. D is
illustrated in Figure 2 and is quantum if and only if F is.

D: The input is x, either in L or not in L.

1. Invoke F with public-key pk = x in order to get commitments C1, . . . , CN ,
2. Pick random u ∈ U and announce it to F ,
3. F announces A ⊆ {1, . . . , N} and, for i ∈ A, tries to open Ci to si such

that Q(A,sA, u) = 1 for sA = (si)i∈A,
4. Verify the openings and whether indeed Q(A,sA, u) = 1, if successful then

output yes and otherwise no.

Fig. 2. Distinguisher D for x ∈ L versus x �∈ L.

If x is generated by Gyes then pk = x is a valid public-key for the commitment
scheme with the right distribution and thus Pr (D(x) = yes) = preal = pideal+adv
where adv is F ’s advantage. On the other hand, if x �∈ L, then by the special
soundness property of Π , given a there is only one c that allows an answer z
such that verifyx(a, c, z) = accept. Hence, for any Ci there is only one si ∈ S to
which Ci can be successfully opened. Therefore, Pr (D(x) = yes) ≤ pideal. If adv
is (positive and) non-negligible, then this contradicts 3. �	

We would like to point out once more that our definition of the (computa-
tional) binding property inherits the following feature. If a commitment scheme
with domain S is computational Q-binding, then its natural extension to a
commitment scheme with domain Sk by committing componentwise (with the
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same pk) is also computational Q-binding. In particular, any computational Q-
binding bit commitment scheme gives rise to a computational Q-binding string
commitment scheme.

3.3 Concrete Instantiations

We propose three concrete languages which are believed to be hard to de-
cide as required in the above section and which admit HVZK special-sound
Σ-protocols. The first language is based on a problem from coding theory: the
Code-Equivalence (CE) problem. It requires to decide whether two generator
matrices generate the same code up to a permutation of the coordinates, and it
is known to be at least as hard (in the worst case) as the Graph-Isomorphism
(GI) problem. Furthermore, it admits a similar Σ-protocol as GI. Finally, and
in contrast to GI, there is a generator believed to produce hard yes-instances.
More details are given in [10].

The next two languages are gap versions of the famous lattice problems
Shortest-Vector and Closest-Vector, where the no-instances are promised to be
“not too close” to the yes-instances.Σ-protocols for these problems were recently
proposed in [19], where the generation of hard instances is also addressed. Again,
more details are given in [10].

These languages give rise to concrete instantiations of the commitment
scheme developed in the above section, based on concrete computational as-
sumptions.

4 Quantum Zero-Knowledge Proofs

4.1 Common-Reference-String Model

The common-reference-string (CRS) model assumes that there is a string σ (hon-
estly) generated according to some distribution and available to all parties from
the start of the protocol. In the CRS model, an interactive proof (or argument)
is (Q)ZK if there exists a simulator which can simulate the (possibly dishonest)
verifier’s view of the protocol execution together with a CRS σ having correct
joint distribution as in a real execution.

4.2 Efficient QZK Arguments

We show how to convert any HVZK Σ-protocol into a quantum zero-knowledge
(QZK) argument. The construction is based on a trapdoor commitment scheme
and can be proven secure in the CRS model.

It is actually very simple. P and V simply execute the Σ-protocol, but instead
of sending message a in the first move, P sends a commitment to a, which he
then opens when he sends the answer z to the challenge c in the third move. The
zero-knowledge property then follows essentially by observing that the simulator
(who knows the trapdoor of the commitment scheme) can cheat in the opening
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of the commitment. So far, the strategy for the QZK proof is the same as in
Damg̊ard’s concurrent ZK proof [9]; the proof of soundness however will be
different since [9] requires to rewind the prover, which cannot be justified in
our case by the no-quantum-rewinding paradigm. In order not to rely on the
special HVZK property (as introduced and explained in Sect. 3.2), the protocol
is slightly more involved than sketched here, though the idea remains.

Let a HVZK Σ-protocol Π = (a, c, z) for a language L = LR be given. Let
ε denote its soundness error. We assume without loss of generality that a and c
sample first messages a and challenges c of fixed bit lengths r and t, respectively.
Furthermore, let an unconditionally hiding and computationally Q-binding trap-
door commitment scheme (G, commit) be given (where the knowledge of the
trapdoor allows to break the binding property of the scheme). We assume that
its domain S contains {0, 1}r+t. Consider Protocol 1 illustrated in Fig. 3.

Protocol 1: V has input x, claimed to be in L; P has input x and w ∈ WR(x).
The CRS is set to be pk where pk is generated by G.

1. P computes a ← a and chooses cP ← c. Then it commits to the concate-
nation a‖cP of a and cP by C = commitpk(a‖cP , ρ), and sends C to V.

2. V chooses cV ← c and sends it to P.
3. P computes z ← zx(a, c) for c = cP ⊕ cV and sends (a, cP , ρ) and z to V.
4. V accepts iff C = commit(a‖cP , ρ) and verifyx(a, cP ⊕ cV , z) = accept.

Fig. 3. QZK proof protocol in the CRS model.

As mentioned above, Protocol 1 can be slightly simplified in case Π is special
HVZK in that P commits to a (rather than to a‖cP ) and computes z with respect
to the challenge c = cV provided by V.

Theorem 2. Under the assumption that (G, commit) is an unconditionally hid-
ing and computationally Q-binding trapdoor commitment scheme, Protocol 2 is
a QZK (quantum) argument for L in the CRS model. Its soundness error is
ε′ = ε+ negl where negl is negligible (in the security parameter).

Concerning the flavor of QZK, Protocol 2 is computational QZK if the under-
lying Σ-protocol Π is computational HVZK, and it is statistical QZK provided
that Π is statistical or perfect HVZK. In case (G, commit) is perfectly (rather
than unconditionally) hiding, the flavor of QZK of Protocol 2 is exactly given
by the flavor of HVZK of Π .

Proof. As mentioned above, the zero-knowledge property is rather straight for-
ward: The simulator generates a public-key for the commitment scheme together
with a trapdoor and outputs the public-key as CRS. Then, on input x ∈ L, it
generates a commitment C (which he can open to an arbitrary value using the
trapdoor) and sends it to Ṽ. On receiving cV from Ṽ, the simulator simulates
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an accepting conversation (a, c, z) for the original Σ-protocol using the HVZK
property, it sets cP = c ⊕ cV and computes ρ such that C = commit(a‖cP , ρ)
using the trapdoor, and it sends (a, cP , ρ) and z to Ṽ.

For the soundness property, it has to be shown that given a (quantum) prover
P̃, which succeeds in making (honest) V accept the proof for an x �∈ L with a
probability exceeding ε by a non-negligible amount, P̃ can be used to break
the Q-binding property of the commitment scheme for some predicate Q. Fix
x �∈ L. We define Q as follows. N = 1, and U is given by the set of all possible
challenges cV sampled by c. For s ∈ S and u = cV ∈ U , where s is parsed as
s = a‖cP with a ∈ {0, 1}r and cP ∈ {0, 1}t, we set Q({1}, s, u) = 1 if and only
if the challenge c = cP ⊕ cV for the first message a allows an answer z such
that verifyx(a, c, z) = accept. Note that A = {1} is the only legitimate choice
for A. By construction of Q, making V accept the proof means that P̃ opens C
(correctly) to a‖cP such that Q({1}, a‖cP , cV ) = 1. Furthermore, pideal = ε. It
follows that if P̃ succeeds in making V accept the proof with probability greater
that ε by a non-negligible amount, then P̃ is a forger F that breaks the Q-binding
property of (G, commit). This completes the proof. �	

4.3 QZK Arguments for All of NP

Consider a (generic) ZK argument for anNP -complete language using (ordinary)
unconditionally hiding commitments. For instance, consider the classical inter-
active proof for Circuit-Satisfiability due to Brassard, Chaum and Crépeau [3]:
the prover “scrambles” the wires and the gates’ truth tables of the circuit and
commits upon it, and he answers the challenge c = 0 by opening all commit-
ments and showing that the scrambling is done correctly and the challenge c = 1
by opening the (scrambled) wires and rows of the gates’ truth tables that are
activated by the satisfying input. Following the lines of the proof of Theorem 2
above, it is straightforward to prove that replacing the commitment scheme in
this construction by an unconditionally hiding and computationally Q-binding
commitment scheme results in a QZK argument in the CRS model for Circuit-
Satisfiability, and thus for all languages in NP .

4.4 Computational QZK Proofs

We sketch how to construct rather efficient computational QZK proofs for lan-
guages that allow (computational) HVZK Σ-protocols based on specific in-
tractability assumptions, as well as computational QZK proofs for all of NP
based on any quantum one-way function.

Consider any of the languages L = LR with HVZK Σ-protocol on which
the commitment construction from Sect. 3.2 is based, except that we allow the
Σ-protocol to be computational HVZK. Assume in addition that there is also a
generator Gno that produces no-instances that cannot be distinguished from the
yes-instances produced by Gyes.

Then, put a no-instance xno in the reference string. The prover can now
prove any statement S that can be proved by an HVZK Σ-protocol Π by us-
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ing a standard witness-indistinguishable HVZK proof for proving that S is true
or xno ∈ L [7]. Here, we allow the Σ-protocol Π to be computational HVZK,
in particular Π might be the Σ-protocol for Circuit-Satisfiability sketched in
Sect. 4.3 above but based on an unconditionally binding and computationally
hiding commitment scheme (secure against quantum attacks), which can be con-
structed from any (quantum) one-way function (see below).

This is clearly unconditionally sound, and can be simulated, where the sim-
ulator uses a yes-instance xyes in place of xno and uses its witness w ∈WR(xyes)
to complete the protocol without rewinding. A distinguisher would have to con-
tradict the HVZK property of one of the underlying Σ-protocols, or the indis-
tinguishability of yes- and no-instances.

This can be instantiated efficiently if we are willing to assume about the
coding or lattice problem or some other candidate problem that it also satisfies
this stronger version of indistinguishability of yes- and no-instances. But it can
also be instantiated in a version that can be be based on any one-way function:
First, the (unconditionally binding and computationally hiding) commitment
scheme of Naor [20] is also secure against quantum adversaries, and exists if
any one-way function exists. So consider the language of pairs (pk,O) where pk
is a public-key for the commitment scheme and O is a commitment of 0. This
language has a computational HVZK Σ-protocol using generic ZK techniques,
driven by Naor’s commitments. Furthermore, the set of no-instances (pk,E)
where E is a commitment to 1 is easy to generate and hard to distinguish from
the yes-instances.

5 Relaxed Honest-Verifier Quantum Proofs

It is a natural question whether QZK proof systems exist without having to
rely upon common reference strings. In this section, we answer this question
partially. We define a quantum interactive proof system associated to any Σ-
protocol. Our scheme is QZK against a relaxed version of honest verifiers that
we call non-oblivious. Intuitively, a non-oblivious verifier is a verifier having
access to the same classical variables than the honest verifier. We show that any
HVZK Σ-protocol can be turned into a non-oblivious verifier QZK proof using
quantum communication.

5.1 Quantum Circuits for Σ-Protocols
Assume L = LR has a classical HVZK Σ-protocol Π = (a, c, z). We specify
unitary transforms Zx(a), and Tx(a), depending on a ← a, which implement
quantum versions of the computations specified by z and verify. Throughout, we
assume without loss of generality that c samples c uniformly from {0, 1}t for
some t.

The answer z ← zx(a, c) to challenge c when a was announced during the
first round can be computed quantumly through some unitary transform Zx(a)
depending upon the initial announcement a. That is, provided quantum registers
P and X , we have:

Zx(a) : |c〉P |y〉X �→ |c〉P |y ⊕ zx(a, c)〉X .
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Similarly, the testing process performed by V can also be executed by a quan-
tum circuit Tx(a) depending on the announcement of a. Transformation Tx(a)
stores the output of the verification process in an extra one-qubit register T :

Tx(a) : |z〉X |c〉V |t〉T �→ |z〉X |c〉V |t⊕ verifyx(a, c, z)〉T .

If z ← zx(a, c) and verifyx(a, c, z) can be classically computed in polynomial time
(given the randomness of the computation of a and a witness w ∈ WR(x) for
the former), circuits Zx(a) and Tx(a) can be implemented by poly-size quantum
circuits.

5.2 EPR-Pairs Based Proofs

The idea behind the protocol is as follows. P chooses a ← a and sends the
answer to all possible challenges in quantum superposition to V. V then verifies
quantumly that all answers in the superposition are correct. In a further step,
P convinces V that the state contains the answer to more than one challenge.
Since Π is assumed to be special sound, it follows that x ∈ L.

Concretely, P starts by choosing a ← a and by preparing t EPR pairs in
state:

|Ωt〉P,V = 2−t/2
∑

c∈{0,1}t

|c〉P |c〉V = 2−t/2
∑

c∈{0,1}t

|c〉P× |c〉V×. (1)

The two equivalent ways of writing |Ωt〉 shows that it exhibits the same corre-
lation between registers P and V in both the computational and the diagonal
bases. This property will be used later in the protocol. Now, P adds an extra
register X initially in state |0〉X before applying Zx(a) upon registers P and X .
This results in state,

|ψa〉= 2−t/2
∑

c∈{0,1}t

Zx(a) |c〉P |0〉X ⊗ |c〉V = 2−t/2
∑

c∈{0,1}t

|c〉P |z〉X ⊗ |c〉V , (2)

where every z in the superposition is computed as z ← zx(a, c). P then announces
a and sends registers V and X to V allowing him to apply the verification
quantum circuit Tx(a) after adding an extra register T initially in state |0〉T .
That is,

|ψT
a 〉 =

(

IP ⊗ Tx(a)
)|ψa〉|0〉T = 2−t/2

∑

c∈{0,1}t

|c〉P ⊗ Tx(a)|z〉X |c〉V |0〉T

= 2−t/2
∑

c∈{0,1}t

|c〉P ⊗ |z〉X |c〉V |verifyx(a, c, z)〉T = |ψa〉 ⊗ |0〉T .

V then measures register T in the computational basis and rejects if |0〉T is not
observed. Provided P was honest, the test will always be successful by assumption
on the original Σ-protocol Π , and the verification process does not affect the
state |ψa〉. V then returns register X back to P, who can recover t shared EPR
pairs by running Zx(a)†, the inverse of Zx(a). Finally, P measures register P in



Zero-Knowledge Proofs 269

the diagonal basis and announces the outcome to V. V does the same to register
V and verifies that the same outcome is obtained. By the properties of EPR
pairs (1), it follows that the measurements coincide provided P was honest. A
compact description of the protocol is given by Protocol 2 in Fig. 4.

Protocol 2: V has input x, claimed to be in L; P has input x and w ∈ WR(x).

1. P computes a first message a ← a and prepares the quantum state
|ψa〉P,X,V = 2−t/2

∑

c|c〉P |z〉X |c〉V as in (2) where z ← zx(a, c), and he
sends a and the registers X and V to V,

2. V runs the verification circuit Tx(a) and rejects if a non-zero outcome is
obtained. If the test was successful then V returns register X to P,

3. P runs (Zx(a)†⊗ IV )|ψa〉 = |Ωt〉P,V ⊗ |0〉X , measures the P register in the
diagonal basis and announces the outcome cP ∈ {0, 1}t to V.

4. V accepts iff register V measured in the diagonal basis produces outcome
cV = cP .

Fig. 4. Non-oblivious verifier QZK proof.

5.3 Soundness
Consider x /∈ L. We show that in Protocol 2, any prover P̃ has probability at
most 2−t to convince V, given that Π is special sound. Let a be announced
by P̃ at step 1. By the special soundness property of Π , if P̃ passes the test
at step 2. then the state shared between P̃ and V is of the following form:
|ψ̃a〉 = |γa,x〉P,X⊗|c〉V |0〉T , where c is the unique challenge that can be answered
given the announcement of a. Since after register X has been sent back to P̃,
register V is in pure state, it follows that only one answer is possible when V is
measured in the computational basis. That is, |c〉 is guaranteed to be observed.
However, V’s final test involves a measurement of that same register in the
diagonal basis, and it is easy to see that the outcome of a measurement in the
diagonal basis applied to |c〉 is uniformly distributed over {0, 1}t. This is a special
case of the entropic uncertainty relations [18]. It follows:
Theorem 3. If Π is a special-sound HVZK Σ-protocol for language L = LR

where c samples in {0, 1}t, then Protocol 2 is a quantum interactive proof for L
with soundness error 2−t.
It should be mentioned that Π being special sound is not a strict necessary
condition for Protocol 2 to be sound. A more careful analysis can handle the
case where Π is “not too far away” from special sound. For simplicity, in this
paper we only address the case of special sound Σ-protocols.

5.4 Non-oblivious Verifier Quantum Zero-Knowledge

Classical Σ-protocols with large challenges are not known to be ZK against a
dishonest verifier. This is due to the fact that rewinding allows the simulator
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to succeed only if it has a non-negligible probability to guess the challenge that
the verifier will pick. This is true even with respect to verifiers that submit a
uniformly distributed challenge c ∈ {0, 1}t and are able to do the verification
test as prescribed. To see this, let σ : {0, 1}� → {0, 1}� be a one-way permutation
and let us assume for simplicity that t = � and a samples a from {0, 1}t. If Ṽ
announces challenge c = a⊕σ(m) for random m ∈ {0, 1}� and a← a announced
by P as first message, then the simulator must generate (a, c, z,m) since it is
part of Ṽ’s view. However, the simulator typically can compute a only after
having picked c, which means that it has to compute m as m = σ−1(c⊕a). Note
that even though c ⊕ a is not necessarily uniformly distributed, it seems that
the simulator has typically not enough control over the value c ⊕ a in order to
compute m.

Notice that a verifier Ṽ acting as described above rejects a false statement
with the same probability and chooses the challenge c with the same distribution
as an honest verifier, yet there is no known efficient simulator for Ṽ. In this
section we show that Protocol 2 is quantum zero-knowledge provided that Ṽ is
non-oblivious of the value cV needed for the verification at step 4. More generally,
we define non-oblivious verifiers the following way:

Definition 2. A verifier Ṽ is said to be non-oblivious if it produces the same
(public and private) variables as honest V according the same distribution.

As illustrated above, in contrast to an honest verifier a non-oblivious verifier
can produce his variables in an arbitrary manner, as long as they are correctly
distributed.

In Protocol 2, a non-oblivious verifier Ṽ has access to the string cV so it can
be made available to the simulator. Indeed, this allows to produce a simulation of
the interaction between P and Ṽ. It is straightforward to verify that the simulator
described in Fig. 5 generates the same view as when Ṽ interacts with P:

Simulator: Input is x ∈ L.

1. Run the HVZK simulator for Π in order to get triplet (a, c, z), and send a
together with the quantum state |c〉|z〉 to Ṽ,

2. If Ṽ rejects P then halt, otherwise throw away the state sent by Ṽ,
3. Extract cV using the non-obliviousness of Ṽ and announce cP = cV .

Fig. 5. Simulator for Protocol 2.

Theorem 4. Protocol 2 built from a special-sound (statistical/perfect) HVZK
Σ-protocol Π is (statistical/perfect) QZK provided Ṽ is non-oblivious.

A weaker assumption about Ṽ’s behavior would be obtained if the only con-
straint was that Ṽ detects false statements with the same probability as the
honest verifier V. Let us say that such a verifier is verification-enabled. In gen-
eral, a verification-enabled verifier Ṽ is not necessarily non-oblivious since in
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order to verify P̃’s announcement, cP does not necessarily have to be deter-
mined by Ṽ without P’s help. However, it can be shown that for Σ-protocols
with challenges of polylogarithmic size, any verification-enabled Ṽ in Protocol 2
is also non-oblivious.
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