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Abstract. In the bare public-key model (BPK in short), each verifier
is assumed to have deposited a public key in a file that is accessible by
all users at all times. In this model, introduced by Canetti et al. [STOC
2000], constant-round black-box concurrent and resettable zero knowl-
edge is possible as opposed to the standard model for zero knowledge. As
pointed out by Micali and Reyzin [Crypto 2001], the notion of soundness
in this model is more subtle and complex than in the classical model
and indeed four distinct notions have been introduced (from weakest to
strongest): one-time, sequential, concurrent and resettable soundness.
In this paper we present the first constant-round concurrently sound re-
settable zero-knowledge argument system in the bare public-key model
for N'P. More specifically, we present a 4-round protocol, which is opti-
mal as far as the number of rounds is concerned. Our result solves the
main open problem on resettable zero knowledge in the BPK model and
improves the previous works of Micali and Reyzin [EuroCrypt 2001] and
Zhao et al. [EuroCrypt 2003] since they achieved concurrent soundness
in stronger models.

1 Introduction

The classical notion of a zero-knowledge proof has been introduced in [1]. Roughly
speaking, in a zero-knowledge proof a prover can prove to a verifier the validity of
a statement without releasing any additional information. In order to prove that
a zero-knowledge protocol does not leak information it is required to show the
existence of a probabilistic polynomial-time algorithm, referred to as Simulator,
whose output is indistinguishable from the output of the interaction between the
prover and the verifier. Since its introduction, the concept of a zero-knowledge
proof and the simulation paradigm have been widely used to prove the security
of many protocols. More recently, it has been recognized that in several practical
settings the original notion of zero knowledge (which in its original formulation
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only considered one prover and one verifier that carried out the proof proce-
dure in isolation) was insufficient. For example, the notion of concurrent zero
knowledge [2] formalizes security in a scenario in which several verifiers access
concurrently the same prover and maliciously coordinate their actions so to ex-
tract information from the prover. Motivated by considerations regarding smart
cards, the notion of resettable zero knowledge (rZK, in short) was introduced
in [3]. An rZK proof remains “secure” even if the verifier is allowed to tamper
with the prover and to reset the prover in the middle of a proof to any previous
state and then asks different questions. It is easy to see that concurrent zero
knowledge is a special case of resettable zero knowledge and, currently, rZK is
the strongest notion of zero knowledge that has been studied. Unfortunately,
if we only consider black-box zero knowledge, constant-round concurrent zero
knowledge is only possible for trivial languages (see [4]). Moreover, the existence
of a constant-round concurrent zero-knowledge argument in the non-black-box
model (see [5] for the main results in the non-black-box model) is currently an
open question. Such negative results have motivated the introduction of the bare
public-key model [3] (BPK, in short). Here each possible verifier deposits a public
key pk in a public file and keeps private the associated secret information sk.
From then on, all provers interacting with such a verifier will use pk and the
verifier cannot change pk from proof to proof. Canetti et al. [3] showed that
constant-round rZK is possible in the BPK model. However, the fact that the
verifier has a public key means that it is vulnerable to an attack by a mali-
cious prover that opens several sessions with the same verifier in order to violate
the soundness condition. This is to be contrasted with the standard models for
interactive zero knowledge [1] or non-interactive zero knowledge [6] where, as
far as soundness is concerned, it does not matter whether a malicious prover is
interacting once or multiple times with the same verifier.

Indeed, in [7], Micali and Reyzin pointed out, among other contributions,
that the known constant-round rZK arguments in the BPK model did not seem
to be sound if a prover was allowed to concurrently interact with several instances
of the same verifier. In other words, the known rZK arguments in the BPK were
not concurrently sound.

Micali and Reyzin gave in [7] a 4-round argument system which is sequentially
sound (i.e., the soundness holds if a prover can play only sequential sessions)
and probably is not concurrently sound, and they also showed that the same
holds for the five-round protocol of Canetti et al. [3]. Moreover they proved that
resettable soundness cannot be achieved in the black-box model. In [8], Barak
et al. used non-black-box techniques in order to obtain a constant-round rZK
argument of knowledge but their protocol enjoys only sequential soundness.

In order to design a concurrently sound resettable zero-knowledge argument
system, Micali and Reyzin proposed (see [9]) the upper bounded public-key
(UPK, in short) model in which a honest verifier possesses a counter and uses
the same private key no more than a fixed polynomial number of times. A weaker
model than the UPK model but still stronger than the BPK model is the weak
public-key (WPK, in short) model introduced in [10]. In this model an honest
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verifier can use the same key no more than a fixed polynomial number of times
for each statement to be proved.

Other models were proposed in order to achieve constant-round concur-
rent zero knowledge. In particular, in [2,11] a constant-round concurrent zero-
knowledge proof system is presented by relaxing the asynchrony of the model or
the zero-knowledge property. In [12] a constant-round concurrent zero-knowledge
proof system is presented by requiring a pre-processing stage in which both the
provers and the verifiers are involved. In [13] a constant-round concurrent zero-
knowledge proof is presented assuming the existence of a trusted auxiliary string.
All these models are considered stronger than the BPK model.

Our results. In this paper we present the first constant-round concurrently sound
resettable zero-knowledge argument system in the BPK model for AP. In par-
ticular we show a 4-round argument that is optimal in light of a lower bound for
concurrent soundness proved in [7]. We stress that our result is the best one can
hope for in terms of combined security against malicious provers and verifiers if
we restrict ourselves to black-box zero knowledge, since in this setting simulta-
neously achieving resettable soundness and zero knowledge has been shown to
be possible only for languages in BPP by [7]. Our construction employs the tech-
nique of complexity leveraging used in the previous results [3,7,10] in order to
prove the soundness of their protocols and is based on the existence of a verifiably
binding cryptosystem semantically secure against subexponential adversaries.
The existence of cryptographic primitives secure against subexponential adver-
saries is used also in [3,7,10] and the existence of a constant-round black-box
rZK argument system in the BPK model assuming only cryptographic primitives
secure against polynomial-time adversaries is an interesting open question.

Finally, we describe a simple 3-round sequentially sound and sequential zero-
knowledge argument system in the BPK model for all N'P.

2 Definitions

The BPK model. The Bare Public-Key (BPK, in short) model assumes that:

1. there exists a public file F' that is a collection of records, each containing a
public key;

2. an (honest) prover is an interactive deterministic polynomial-time algorithm
that takes as input a security parameter 1", F', an n-bit string x, such that
x € L and L is an NP-language, an auxiliary input y, a reference to an entry
of F and a random tape;

3. an (honest) verifier V' is an interactive deterministic polynomial-time algo-
rithm that works in the following two stages: 1) in a first stage on input a
security parameter 1" and a random tape, V generates a key pair (pk, sk)
and stores pk in one entry of the file F'; 2) in the second stage, V takes as
input sk, a statement € L and a random string, V' performs an interactive
protocol with a prover, and outputs “accept” or “reject”;

4. the first interaction of each prover starts after that all verifiers have com-
pleted their first stage.
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Definition 1. Given an NP-language L and its corresponding relation Ry, we
say that a pair (P,V') is complete for L, if for all n-bit strings x € L and any
witness y such that (x,y) € Ry, the probability that V interacting with P on
mput y, outputs “reject”is negligible in n.

Malicious provers in the BPK model. Let s be a positive polynomial and P* be
a probabilistic polynomial-time algorithm that takes as first input 1.

P* is an s-sequential malicious prover if it runs in at most s(n) stages in the
following way: in stage 1, P* receives a public key pk and outputs an n-bit string
x1. In every even stage, P* starts from the final configuration of the previous
stage, sends and receives messages of a single interactive protocol on input pk
and can decide to abort the stage in any moment and to start the next one.
In every odd stage ¢ > 1, P* starts from the final configuration of the previous
stage and outputs an n-bit string x;.

P* is an s-concurrent malicious prover if on input a public key pk of V,
can perform the following s(n) interactive protocols with V: 1) if P* is already
running 4 protocols 0 < 4 < s(n) he can start a new protocol with V' choosing
the new statement to be proved; 2) he can output a message for any running
protocol, receive immediately the response from V' and continue.

Attacks in the BPK model. In [7] the following attacks have been defined.

Given an s-sequential malicious prover P* and an honest verifier V, a se-
quential attack is performed in the following way: 1) the first stage of V' is run
on input 1" and a random string so that a pair (pk, sk) is obtained; 2) the first
stage of P* is run on input 1™ and pk and x; is obtained; 3) for 1 <14 < s(n)/2
the 2i-th stage of P* is run letting it interact with V' that receives as input sk, x;
and a random string r;, while the (2¢ 4+ 1)-th stage of P* is run to obtain x;.

Given an s-concurrent malicious prover P* and an honest verifier V', a con-
current attack is performed in the following way: 1) the first stage of V' is run on
input 1™ and a random string so that a pair (pk, sk) is obtained; 2) P* is run on
input 1™ and pk; 3) whenever P* starts a new protocol choosing a statement, V'
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair (P,V) for an NP-language L in the BPK
model, then (P,V') is a concurrently (resp. sequentially) sound interactive ar-
gument system for L if for all positive polynomial s, for all s-concurrent (resp
s-sequential) malicious prover P*, for any false statement “x € L” the proba-
bility that in an execution of a concurrent (resp. sequential) attack V oulputs
“accept” for such a statement is negligible in n.

The strongest notion of zero knowledge, referred to as resettable zero knowledge,
gives to a verifier the ability to rewind the prover to a previous state. This is
significantly different from a scenario of multiple interactions between prover
and verifier since after a rewinding the prover uses the same random bits.

We now give the formal definition of a black-box resettable zero-knowledge
argument system for NP in the bare public-key model.
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Definition 3. An interactive argument system (P,V) in the BPK model is
black-boz resettable zero-knowledge if there exists a probabilistic polynomial-time
algorithm S such that for any probabilistic polynomial time V*, for any polyno-
mials s,t, for any x; € L, |z;| =n, i =1,...,8(n), V* runs in at most t steps
and the following two distributions are indistinguishable:

1. the output of V* that generates F with s(n) entries and interacts (even
concurrently) a polynomial number of times with each P(x;, y;, j, ri, F') where
yi s a witness for x; € L, |x;| =n and ry is a random tape for 1 < i, j k <
s(n);

2. the output of S interacting with V* on input x1,...,Tspn)-

Moreover we define such an adversarial verifier V* as an (s,t)-resetting mali-
cious verifier.

An important tool used this paper is that of a non-interactive zero-knowledge
argument system.

Definition 4. A pair of probabilistic polynomial-time algorithms (NIPK,NIVK)
is a non-interactive zero-knowledge argument system for an NP language L if
there exists a polynomial k(-),

1. (Completeness) for all x € L, with |x| = n and NP-witness y for x € L,

Pric £ {0,1}*™); IT — N1PK(2,y,0) : NIVK(z, IT,0) = 1] = 1.

2. (Soundness) for all x ¢ L
Prioc £ {0,1}¥™), 31T : N1Vk(z, IT,0) = 1]

18 negligible.
3. (Simulatability) there exists a probabilistic polynomial-time algorithm S such
that the family of distributions

{(o, 1) & S(z) : (0,11)},., and {o & {0,1}*™); 1 & NiPK(2,y,0) : (0, 1)}

€L

are computationally indistinguishable.

We assume, without loss of generality, that a random reference string of length
n is sufficient for proving theorems of length n (that is, we assume k(n) = n).

3 Concurrently Sound rZK Argument System for NP
in the BPK Model

In this section we present a constant-round concurrently sound resettable zero-
knowledge argument in the BPK model for all NP languages.

In our construction we assume the existence of an encryption scheme that is
secure with respect to sub-exponential adversaries and that is verifiably binding.
We next review the notion of semantic security adapted for sub-exponential
adversaries and present the notion of a verifiably binding cryptosystem.
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An encryption scheme is a triple of efficient algorithms PK = (G, E, D). The key
generator algorithm G on input a random k-bit string r (the security parameter)
outputs a pair (pk, sk) of public and private key. The public key pk is used to
encrypt a string m by computing E(pk, m; r) where r is a random string of length
|m.

Semantic security [14] is defined by considering the following experiment for
encryption scheme PK = (G,E,D) involving a two-part adversary A = (Ag, A1).
The key generator G is run on a random k-bit string and keys (pk, sk) are given
in output. Two POLY(k)-bit strings wy and w; are returned by Ay on input pk.
Then b is taken at random from {0, 1} and an encryption £ of wj, is computed. We
say that adversary A is successful for PK if the probability that A; outputs b on
input pk, wp, w1 and £ is non-negligibly (in k) greater than 1/2. We say that PX is
n-secure if no adversary running in time 0(2’“") is successful. The classical notion
of semantic security is instead obtained by requiring that no polynomial-time
adversary is successful.

Roughly speaking, a verifiably binding cryptosystem PX is a cryptosystem for
which 1) given a string pk and an integer k, it is easy to verify that pk is a legal
public key with security parameter k and 2) to each ciphertext corresponds at
most one plaintext.

More formally,

Definition 5. An n-secure encryption scheme PK = (G,E,D) s verifiably bind-
ing ff:
1. (binding): for any probabilistic polynomial-time algorithm A it holds that

Prl(pk, mg, m1,7r0,71) < A(lk) : E(pk, mo; o) = E(pk, m1;71)]

1s negligible in k;

2. (verifiability): there exists a probabilistic polynomial-time algorithm VER
such that if pk belongs to the output space of G on input a k-bit string then
VER(pk, 1¥) = 1; VER(pk, 1¥) = 0 otherwise.

Assumptions. To prove the properties of our protocol we make the following
complexity theoretic assumptions:

1. The existence of an n-secure verifiably binding encryption scheme PK =
(G,E,D) for some 7 > 0.

We briefly note that the El Gamal encryption scheme [15] is verifiably bind-
ing since an exponentiation in Z; is one to one and it can be easily verified
that a positive integer ¢ is a prime.

2. The existence of a one-to-one length-preserving one-way function f : {0,1}*—
{0,1}* which, in turn, implies the existence of a pseudo-random family of
functions R = {Rs}.

3. The existence of a non-interactive zero-knowledge proof system (NIZK, in
short) (NIPM, N1V M) for an N'P-complete language.
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4. The existence of a 3-round witness indistinguishable argument of knowledge
WI = (WI;,WI2,WI3) for a specific polynomial-time relation that we define
in the following way. Let f be a one-to-one length-preserving one-way func-
tion and let PK be an n-secure verifiably binding encryption scheme. Then
define the polynomial-time relation C = C(PK, f) as consisting of all pairs
((pk,v), (wit)), where pk is a public key of the output space of G and v is a
string and either wit = sk and (pk, sk) is in the output space of G or wit = u
and f(u) =wv.

Before describing our protocol formally, let us try to convey the main idea
behind it. Fix an NP language L and let o be the input statement. The prover
generates a puzzle (in our construction, the puzzle consists of a string v and
solving the puzzle consists in finding the inverse f~!(v) of the one-to-one length-
preserving one-way function f) and sends it to the verifier. The verifier uses WI
to prove knowledge of the private key sk; associated to her public key pk; or
knowledge of the solution of the puzzle given to her by the prover. Moreover,
the prover and the verifier play a coin tossing protocol, based on the encryption
scheme PK to generate a reference string for the NIZK proof that € L.

In our implementation of the FLS-paradigm [16], in the interaction between
the prover and the verifier, the verifier will use his knowledge of the private key
to run WI. In order to prove concurrent soundness, we show an algorithm A that
interacts with a (possibly) cheating prover P* and breaks an 7-secure encryption
scheme in time 0(2’“"). The puzzle helps algorithm A in simulating the verifier
with respect to a challenge public key pk for which it does not have access to the
private key. Indeed, A instead of proving knowledge of the private key associated
to pk proves knowledge of the solution of the puzzle by performing exhaustive
search. By carefully picking the size of the puzzle (and thus the time required
to solve it) we can make sure A runs in time o(2*").

Note that when A inverts the one-to-one length-preserving one-way function
and computes the witness-indistinguishable argument of knowledge, it runs in
subexponential time in order to simulate the verifier without performing rewinds.
Straight-line quasi-polynomial time simulatable argument systems were studied
in detail in [17], where this relaxed simulation notion is used to decrease the
round complexity of argument systems. We use a similar technique but for sub-
exponential time simulation of arguments of knowledge.

If the steps described above were executed sequentially, we would have an
8-round protocol (one round for the prover to send the puzzle, three rounds
for the coin tossing, three rounds for the witness-indistinguishable argument of
knowledge, and one round for the NIZK). However, observe that the coin-tossing
protocol and the 3-round witness-indistinguishable argument of knowledge can
be performed in parallel thus reducing the the round complexity to 5 rounds.
Moreover, we can save one more round, by letting the prover send the puzzle
in parallel with the second round of the witness indistinguishable argument of
knowledge. To do so, we need a special implementation of this primitive since,
when the protocol starts, only the size of the statement is known and the state-
ment itself is part of the second round. Let us now give the details of our con-
struction.
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The public file. The public file F' contains entries consisting in public keys with
security parameter k for the public-key cryptosystem PK.

Private inputs. The private input of the prover consists of a witness y for = € L.
The private input of the verifier consists of the secret key sk; corresponding to
the public key pk;,.

The protocol. Suppose that the prover wants to prove that x € L and denote
by n = PoLY(k) the length of z. We denote by i the index of the verifier in the
public file so that the verifier knows the private key sk; associated with the i-th
public key pk,; of the public file F.

In the first round V randomly picks an n-bit string o, that will be used as
V’s contribution to the reference string for the non-interactive zero-knowledge
protocol. V' compute the encryption £ of o, using an n-bit string r, as random-
ness and by using public key pk,. Moreover, V' runs WI; in order to compute the
first message a; of the witness-indistinguishable argument of knowledge. Then
V sends (£, a1) to P. In the second round P verifies that pk; is a legal public key
for PK with k as security parameter and then computes its contribution to the
random string to be used for the non-interactive argument by picking a random
seed s and computing (u,0,) = Rs(zxoyoFo&oayoi) (“o” denotes concate-
nation) where {R,} is a family of pseudorandom functions. The string u has
length k" < k (to be determined later) whereas o, has length n and is P’s con-
tribution for the reference string. P runs WIs to compute the second message ao
of the witness-indistinguishable argument of knowledge. Moreover P computes
v = f(u) where f is a one-to-one length-preserving one-way function and sends
(0p, az,v) to the verifier. In the third round of the protocol V' uses his knowledge
of the private key to run WI3 obtaining as, so that she proves that she knows ei-
ther the private key associated with pk; or f~1(v). V then sends a3, o, and r,, to
P. In the last round of the protocol P verifies that the witness-indistinguishable
argument of knowledge is correct and that £ is an encryption of ¢,,. Then P runs
algorithm NIPM on input = and using o = 0, @ 0, as reference string obtaining
a proof I, that is sent to V. A more formal description of the protocols is found
in Figure 1.

Theorem 1. If there exists an n-secure verifiably binding encryption scheme,
a one-to-one length-preserving one-way function then there exists a constant-
round concurrently sound resettable zero-knowledge argument for all languages
in N'P in the BPK model.

Proof. Consider the protocol found in Figure 1.

Completeness. If x € L then P can always compute the proof IT and V' accepts
it.

Concurrent soundness. Assume by contradiction that the protocol is not con-
currently sound. Thus there exists an s-concurrent malicious prover P* that by,
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Common input: the public file | n-bit string € L and index i that
specifies the i-th entry of I'. Public key pk, has security parameter k.
P’s private input: a witness y for z € L.

V’s private input: private key sk;.

V-round-1:

1. randomly pick o, «— {0,1}" and 7, — {0,1}";

2. compute § = E(pk;,04;7) and a1 = WIl(lk);

3. send (&, a1) to P;

P-round-2:

1. verify that pk; is a public key with security parameter k for PK;

2. randomly pick s < {0,1}" and compute R = Rs(zoyoF ofoa;oi);
let u be the string consisting of the first k&’ bits of R and o, the
string consisting of the next n bits of R;

3. compute a2 = WIz(a1);

4. compute v = f(u) where f is a one-to-one length preserving one-
way function;

5. send (o0p,az2,v) to V;

V-round-3:

1. verify that v is a k’-bit string;

2. set 0 =0p B oy

3. run algorithm WIs on input instance (pk,,v), messages a1, az using
sk; as a witness and obtaining as;

4. send (0v,as,ry) to P;

P-round-4:

1. verify that £ = E(pk;, 0v; Tv);

2. set 0 =0p B o

3. verify that (a1, az,as) is the correct transcript of the 3-round wit-
ness indistinguishable argument on input instance (pk;, v);

4. run N1PM on input instance x, y as a witness and o as reference
string obtaining proof I7;

5. send I to V;

V-decision: verify that I7 is a proof by running algorithm NIVM on
input x, I and o.

Fig. 1. The 4-round concurrently sound rZK argument system for NP in the BPK
model. The values k and k' are determined as functions of n in the proof of concurrent
soundness.

concurrently interacting with V', has non-negligible probability p(n) of making
the verifier accept some x ¢ L of length n. We assume we know the index of
the session j* in which the prover will succeed in cheating (this assumption will
be later removed) and exhibit an algorithm A that has black-box access to P*
(i.e., A simulates the work of a verifier V') and breaks the encryption scheme PK
in 0(2*") steps, thus reaching a contradiction.

We now describe algorithm A. A runs in two stages. First, on input the
challenge public key pk, A randomly picks two strings wop and w; of the same
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length as the length of the reference string used by (N1PM,N1VM) for inputs of
length n. Then A receives as a challenge an encryption §~ of wp computed using
public key pk and b € {0,1}. A’s task is to guess b € {0, 1} with a non-negligible
advantage over 1/2 (we assume that b is randomly chosen).

For all the sessions, A interacts with the an s-concurrent prover P* mounting
a concurrent attack, and simulates the verifier by computing the two messages
as explained below. When A reaches session j*, A outputs her guess for bit b.

1. Session j # j*.
At V-round-1, A sends an encryption ¢ of a randomly chosen string o,
computed with r, as randomness and sends the first round of the witness-
indistinguishable argument of knowledge a;. Upon receiving message (op,
az,v) from P*, A inverts the one-to-one length-preserving one-way function
f on v obtaining u = f~*(v) by performing exhaustive search in {0,1}*". A
then computes ag by running WIs on input instance (pk;,v) and witness u
and sends to P* the triple (o, as, ).
Note that A plays round V-round-1 identically to the honest verifier while
A plays round V-round-3 by using a different witness w.r.t. V for the non-
interactive zero-knowledge argument of knowledge that however is concur-
rent witness indistinguishable.

2. Session j*.
At V-round-1, A computes the first message of the witness-indistinguishable
argument of knowledge a; and sets £ equal to the challenge encryption §~ .
Then A sends (§,a1) to V.
At V-round-3, A cannot continue with this session since she does not know
the decryption of ¢ (remember that & = £) and thus can not play the third
round. However, by assumption P* can produce with non-negligible prob-
ability a string IT* that is accepted by NIVM on input = and reference
string p; = wy @ op. Let 7 be an upper bound on the length of such a
non-interactive zero-knowledge argument. A checks, by exhaustive search, if
there exists Iy € {0,1}7, such that NTVM accepts 1y on input = and pfj as
reference string. Then A searches for a string IT; € {0,1}” by considering
pi as reference string. If a proof II is found and no proof II; is found then
A outputs 0; in the opposite case A outputs 1; otherwise (that is, if both or
neither proof exists) A randomly guesses the bit b.
We note that the distribution of the first message of session j* is still identical
to the distribution of the honest verifier’'s message.

Let us now show that the probability that A correctly guesses b is non-
negligibly larger that 1/2. We have that

Pr[A outputs b = PrAIToA AIT,_y] + % (Pr[3My A 3IT_y] + Pr[AIToA BITs))

N = N =

+ % (PTEH[,/\ /Hﬂl,b] — PT‘[/HHb A E|H1,b})

=+ % (PTBHb/\ /Hﬂlfb ANx ¢ L] — PT[,BH]] NI _y Nz ¢ LD .
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The last equality follows from the observation that, by the completeness of the
NIZK, the events AIl,_p and All, can happen only if x ¢ L. Now, we have

1 1
Pr[A outputs b] = 3 + §(Pr[3]]b ANz & L) — Pr[3I, N3y Nz & L] —

P?“[/Hﬂb NI _y Nz & L])
1 N p(n)  PrEli_, ANz ¢ L]

2 2 2

Now, since the string w;_; is picked at random and P* has no information
about it, the string p;_, is random and thus, by the soundness of (NIPM,NIVM),
Pr[3II,_y A x ¢ L] is negligible. Therefore, the probability that A correctly
guesses b is non-negligibly larger than 1/2.

We note that algorithm A takes time POLY (n)- (2742 ). Writing 7 as 7 = n?,
for some constant v, we pick k and &’ so that n? < k72 and k' < k"/2. We thus
have that A breaks an n-secure verifiably binding cryptosystem in time bounded
by POLY (k7/2)(2K"" 4+ 2K"%) = o(2K").

Therefore the existence of A contradicts the n-security of the cryptosystem.

In our proof we assumed that A knows the value j. If this is not the case that
A can simply guess the values and the same analysis applies and the probability
that A correctly guesses b decreases by a polynomial factor.

Resettable Zero Knowledge. Let V* be an (s, t)-resetting verifier. We now present
a probabilistic polynomial-time algorithm S = SV~ that has black-box access to
V* and whose output is computationally indistinguishable from the view of the
interactions between P and V*.

We start with an informal discussion. The construction of S is very similar
to the construction of the simulator for the constant-round (sequentially sound)
resettable zero-knowledge argument for any NP language and in the BPK model,
given in [3] (protocol 6.2). In particular, note that both the protocol of Figure 1
and protocol 6.2 in [3] can be abstractly described as follows. The prover and
the verifier run a 3-round argument of knowledge, where the verifier, acting as
a prover, proves knowledge to the prover, acting as verifier, of some trapdoor
information. Knowledge of the trapdoor information allows for efficient simula-
tion of the interaction between the prover and the verifier. In [3], the trapdoor
information is the private key associated with the verifier’s public key. In our
protocol, the trapdoor information is either the private key associated with the
verifier’s public key (for the real verifier) or the inverse of an output of a one-to-
one length-preserving one-way function sent from the prover to the verifier. Note
that just to obtain round optimality we use a special witness-indistinguishable
argument of knowledge where the statement is known only after that the second
round is played while its size is known from the beginning. Due to this difference,
our simulator only differs from the one of [3] in the fact that we need to prove
that when the simulator runs the extractor of the argument of knowledge, with
high probability it extracts the verifier’s private key (rather than f~1(v)). The
rest of the construction of our simulator is conceptually identical to that of [3],
but we still review a more precise description here for completeness.
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First of all, without loss of generality, we make the following two simplifying
assumptions. Recall that, since our protocol is a resettable zero-knowledge ar-
gument system, V* is allowed to reset the prover. However, in [3] Canetti et al.
proved that in such a setting a verifier that concurrently interacts with many in-
carnations of the prover does not get any advantage with respect to a sequential
(resetting) verifier (that is, a verifier that runs a new session only after having
terminated the previous one). Thus in this proof we will consider V* as a se-
quential (resetting) verifier. A second assumption is that we can define S for a
modification of our protocol in which the prover uses a truly random function
rather than a pseudo-random one to compute her random bits. Proving that the
two views are computationally indistinguishable is rather standard.

S runs the first stage of V* so that the public file composed by s(n) entries
is obtained. In the second stage, the aim of the simulator is to obtain the private
keys corresponding to the public keys of the public file. Let V*(F') be the state
of V* at the end of the first stage.

In the following, we say that a session is solved by S if S has the private key
corresponding to the public key used by V* in this session. The work of S in the
second stage of the simulation is composed by at most s(n)+ 1 sequential phases.
In each phase, either S has a chance of terminating the simulation or S learns
one more private key. At the end of each phase S rewinds V* to state V*(F).
The simulation ends as soon as S manages to solve all sessions of a phase.

We describe now the work of S during a phase. Once a session is started,
S receives the first message from V*. Then there are two cases. If the session
is solved by S then S can simulate the prover; otherwise, S tries to obtain the
private key used in this session so that all future sessions involving this verifier
will be solved by S.

Specifically, first consider the simpler case of a solved session. We distinguish
two sub-cases. First, we consider the sub-case where the first message in the
session (&, a1) has not appeared before for the same incarnation of the prover,
i.e., (§,a1) has not appeared before for the same prover oracle accessed by V*
with the same random tape, same witness and same theorem. Then S runs the
simulator for (NIPM,NITVM) on input x and obtains a pair (¢*, IT*) and then
forces o equal to o* in the following way. Since S knows the verifier’s secret-key
(we are assuming in this sub-case that the session is solved), S can decrypt &
and thus obtain the string o, computed by the verifier at the first round. Thus
S sets o, = 0, ® o*. Consequently, in round P-round-4, S will send “proof”
IT* (that is computationally indistinguishable from the proof computed by the
real prover). We use here the binding property of the encryption scheme since
S must decrypt ¢ obtaining the same value o, that will be sent by V* in round
V-round-3.

Now we consider the sub-case where the first message in the session (£, a)
has already appeared in such a phase for the same incarnation of the prover. Here
S sends the same strings oy, az and the same k’-bit string v that was sent in the
previous session containing (£, a1) as first message for the same incarnation of
the prover. Even for the case of the third message of a session that has already
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appeared for the same incarnation of the prover, S replies with the same round
P-round-4 played before.

We now consider the harder case of a session which is not solved by S. In this
case S uses the argument of knowledge of V* to obtain the private key used in
this session. Specifically, in any unsolved session, the simulator uses the extractor
E associated with the witness-indistinguishable argument of knowledge used by
the verifier.

Recall that we denote by (£, a1) the first message sent by the verifier in the
current session, by pk, the verifier’s public key and by v = f(u) the puzzle sent
by the simulator when simulating the prover’s first message. We now distinguish
three possible cases.

Case 1: The message (£,a1) has not yet appeared in a previous session for
the same incarnation of the prover and the extractor E obtains sk; as witness.
Note that S obtains the verifier’s private key by running E. This is the most
benign of the three cases since the session is now solved.

Case 2: The message (£, a1) has not yet appeared in a previous session for the
same incarnation of the prover and the extractor E obtains f~!(v) as witness.
Note however that the value v has been chosen by §' itself. If this case happens
with non-negligible probability then we can use V* to invert the one-way function
f. We stress that this case is the only conceptual difference between our proof
and the proof of rZK of protocol 6.2 in [3].

Case 3: The message (£, a1) has already appeared in a previous session for the
same incarnation of the prover. Note that since we are assuming that the current
session is not solved by S, this means that in at least one previous session, V*
sent (&1, a1) but then did not continue with such a session. This prevents S from
simulating as in case 2 since the simulation would not be correct. (Specifically, as
discussed in [3], in a real execution of the argument, the pseudo-random string
used as random string for the prover’s first message is determined by the previous
uncompleted session (the input of Ry is the same in both cases and the seed s
is taken from the same random string) and therefore cannot be reset by S to
simulate this case by running an independent execution of E.) This problem is
bypassed precisely as in [3]. That is, S tries to continue the simulation from the
maximal sequence of executions which does not contain (£, a1) as a first step of
the verifier for such an incarnation of the prover, using a new random function.

The same analysis in [3] shows that this simulation strategy ends in expected
polynomial time and returns a distribution indistinguishable from a real execu-
tion of the argument. [J

3-Round WI Argument of Knowledge. As already pointed out above, we can save
one round (and thus obtain a 4-round argument system instead of 5-round one)
by having the prover send the puzzle after the verifier has started the witness-
indistinguishable argument of knowledge. In this argument of knowledge, the
verifier acts as a prover and shows knowledge of either the secret key associated
with his private key or of a solution of the puzzle. Consequently, the input
statement of such an argument of knowledge is not known from the start and
actually, when the first message is produced, only its length is known.
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Next we briefly describe such an argument of knowledge by adapting to our
needs the technique used by [16] to obtain a non-interactive zero-knowledge proof
system for Hamiltonicity.

1. The prover commits to n randomly generated Hamiltonian cycles (each edge

is hidden in a committed adjacency matrix of degree n);

2. the graph G is presented to the prover and the verifier and verifier sends an
n-bit random challenge;

3. if the i-th bit of the challenge is 0 then the prover opens the i-th Hamiltonian
cycle;

4. if the i-th bit of the challenge is 1 then the prover sends a permutation m;
and shows that each edge that is missing in the graph m;(G) corresponds to

a commitment of 0 in the i-th committed Hamiltonian cycle.
Completeness, soundness and witness indistinguishability can be easily verified.
The protocol is an argument of knowledge since an extractor that rewinds the
prover and changes the challenge obtains a Hamiltonian cycle of G.

4 Sequentially Sound Sequential Zero Knowledge for NP
in the BPK Model

In this section we give a 3-round sequentially sound sequential zero-knowledge
argument in the BPK model for any language in N'P.

Assumptions. We start by listing the tools and the complexity-theoretic assump-
tions we need for the construction of this section.

1. We assume the existence of an n-secure signature scheme SS = (SigG, Sig,
Ver). Here SigG denotes the key generator algorithm that receives the secu-
rity parameter k (in unary) and returns a pair (pk, sk) of public keys; Sig
is the signature algorithm that takes as input a message m and a private
key sk and returns a signature s of m; and Ver is the signature verification
algorithm that takes a message m, a signature s and a public key pk and
verifies that s is a valid signature.

The scheme SS is 7-secure in the sense that no algorithm running in time
0(2’“") that has access to a signature oracle but not to the private key can
forge the signature of a message m for which it has not queried the oracle.
It is well known that if sub-exponentially strong one-way functions exist then
it is possible to construct secure signature schemes [18].

We assume that signatures of k-bit messages produced by using keys with
security parameter k£ have length k. This is not generally true as for each
signature scheme we have a constant a such that signatures of k-bit messages
have length k£ but this has the advantage of not overburdening the notation.
It is understood that all our proofs continue to hold if this assumption is
removed.
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2. We assume the existence of a one-round perfectly binding computationally
hiding y-extractable commitment scheme. The scheme is y-extractable in the
sense that there exists an extractor algorithm FE that on input a commitment,
computes in time O(2*") the committed value.

Such a commitment schemes are known to exist under the assumption of the
existence of sub-exponentially strong one-to-one length-preserving one-way
functions.

3. We also assume the existence of ZAPs for all NP (see [19]).

In sums, our construction is based on the existence of subexponentially strong
one-to-one length preserving one-way functions and one-way trapdoor permuta-
tions.

We start by briefly describing the main idea of our protocol. The prover
and the verifier play the following game: the prover picks a random message
my, computes a commitment m; of m; and asks the verifier to sign m;; the
verifier signs the commitment and sends back to the prover such a signature
and a message meo. Finally the prover, constructs an extractable commitment
com of a random message and proves to the verifier using a ZAP that either
x € L or com is the extractable commitment of a signature of a commitment
of mso. Let us now informally argue about sequential soundness and sequential
zero-knowledge of the argument system described. For the sequential soundness,
we observe that, since my is chosen at random by the verifier for each sequential
execution of the protocol, it is unlikely that the prover knows the signature of
a commitment of msy. For the zero-knowledge property instead, the simulator,
once ms is received, rewinds V* and opens a new session with the verifier in
which he sets m; = mo, computes a commitment of m; = msy and sends it to
the verifier that thus produces a signature of a commitment of my. Going back
to the original session, the simulator has a witness for the ZAP and can thus
complete the simulation.

Theorem 2. If there exist subexponentially strong one-to-one length-preserving
one-way functions and trapdoor permutations then there exists a 3-round sequen-
tially sound sequential zero-knowledge argument for N'P in the BPK model.

Proof. Completeness and Sequential soundness can be easily proved. For the
Sequential Zero Knowledge, we now describe a simulator S. We consider a ma-
licious verifier V* that in the first stage outputs the public file F' and in the
second stage interacts with P by considering s(n) possible theorems and s(n)
possible entries of F. However V* is now a sequential verifier and thus he cannot
run twice the same incarnation of P, neither he can run two concurrent sessions
with P. Thus the simulation proceeds session by session and we can focus only
in the simulation of a generic session.

Let V{* be the state of V* at the beginning of a given session. The simulator
sends in the first round a message that is distributed identically w.r.t. the one
of the prover. Then V* replies by sending a message ma, let V5" the state of V*
in such a step. The simulator rewinds V* to state V|* and plays again the first
round but this time he sets m; = msy. The simulator repeats this first round
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with a different randomness as long as the verifier sends a valid second message
that therefore contains a signature of a commitment of msy. The simulator can
use the signature of a commitment of ms as witness for the third round of the
original proof, that can be given by rewinding V* to state V5. More precisely,
S rewinds V* to state V5 and computes @ as a commitment of a commitment
of my and b as a commitment of the previously received signature. Then S has
a witness for playing the ZAP.

The previously described rewind strategy allows the simulator to complete
the simulation in expected polynomial-time and, moreover, the indistinguisha-
bility of the ZAP and the hiding of the commitment scheme guarantee that the
distribution of the output is computationally indistinguishable from an interac-
tion between a real prover and V™.

We remark that it is possible to base our construction on primitives secure
against polynomial-time adversaries by employing a 3-round witness indistin-
guishable argument where the statement is chosen by the prover before produc-
ing the third message.

5 Conclusions

In an asynchronous environment like the Internet resettable zero-knowledge pro-
tocols that are not concurrently sound in the BPK model cannot be considered
secure and previous concurrently sound protocols required stronger assumptions
than the BPK model.

In this work we have positively closed one of the main open problems regard-
ing zero knowledge in the BPK model. We have shown that a constant-round con-
currently sound resettable zero-knowledge argument system in the BPK model
exists. In particular, we have shown a 4-round protocol which is optimal for the
black-box model.
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