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Abstract. We focus on characterizing spatial region data when distinct classes 
of structural patterns are present. We propose a novel statistical approach based 
on a supervised framework for reducing the dimensionality of the initial feature 
space, selecting the most discriminative features. The method employs the sta-
tistical techniques of Bootstrapping simulation, Bayesian Inference and Markov 
Chain Monte Carlo (MCMC), to indicate the most informative features, accord-
ing to their discriminative power across the distinct classes of data. The tech-
nique assigns to each feature a weight proportional to its significance. We 
evaluate the proposed technique with classification experiments, using both 
synthetic and real datasets of 2D and 3D spatial ROIs and established classifiers 
(Neural Networks). Finally, we compare our method with other dimensionality 
reduction techniques. 

1   Introduction 

Feature selection is a very important process for analyzing patterns in spatial data. In 
certain application domains, such as in geography, meteorology or medicine, we seek 
to focus on specific Regions of Interest (ROIs) that occupy a small portion of the data 
and extract informative features [1]. Examples of such ROIs are areas with high levels 
of precipitation in meteorological maps and brain regions of high activity in fMRI1 
(see Figure 1). A well-known characterization technique is to map data using the 
extracted features into points in a K-dimensional (K-d) space [2].   
When dealing with spatial patterns, shape is one of the main characteristics that needs 
to be represented. Several approaches have been used for this purpose [3]. To obtain 
the initial characterization vectors here, we use an approach initially presented in [4] 
that considers properties of internal value of ROIs in addition to their shape. This 
method works particularly well for non-homogeneous as well as for homogeneous 
ROIs. It efficiently forms a K-d feature vector using concentric spheres in 3D (or 
circles in 2D) radiating out of the ROI’s center of mass and  extracting quantitative 
information regarding both its structure and content. In several cases though, the 
number of features extracted is too large to support efficient pattern analysis and 
classification.  

                                                           
1  Functional-Magnetic Resonance Imaging: shows physiological activity in brain. 
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Fig. 1. Examples of geographical / meteorological and medical 2D and 3D spatial ROIs. 

Several techniques have been proposed for reducing the dimensionality of data [5]. 
These approaches can be separated into two categories: (i) those having the property 
of transforming the initial features introducing a completely new subspace and, (ii) 
those that attempt to find an optimal subset of the initial features that are considered 
to be more significant.  

Principal Component Analysis (PCA), also known as Singular Value Decomposi-
tion (SVD), is the most widely used technique from the first category due to its con-
ceptual simplicity and efficient computation. It has been extensively used in many 
applications, such as medical image pattern analysis [6]. Multidimensional Scaling 
(MDS) is another dimensionality reduction technique with wide applicability [7]. The 
Discrete Fourier Transform (DFT) [8] and Wavelet Transform [9] have also been 
applied.   Algorithms in the second class search for an optimal subset of the initial 
vector attributes, rather than a transformation. A well-known technique is forward 
feature selection that seeks to find an optimal subset of features [10]. Other ap-
proaches [11] combine the process of attribute selection with the induction algorithm 
used for classification. Statistical pattern recognition techniques have also been pro-
posed [12]. Although proven effective, the first class of techniques fails to preserve 
the initial attribute values; the new feature vectors do not correspond to real data 
measurements. This introduces greater difficulty in interpreting the conceptual repre-
sentation of the new feature space.  

Our approach shares mostly characteristics of the second class of feature selection 
techniques and is based on a statistical framework that employs Bootstrapping, Bayes-
ian inference and the Markov Chain Monte Carlo (MCMC) techniques. Our method 
applies to cases where distinct classes of data are present and a training set of labeled 
instances is available. In the particular case examined here, the level of the discrimi-
natory significance of features varies across the classes of the observed data. These 
statistical techniques are used to select the most significant features, according to their 
discriminative power across the distinct classes of data, giving rise to a significant 
reduction in dimensionality.  

2   Methodology 

The general idea of the proposed feature selection technique is based on the assump-
tion that the classes are generated by distinct structural pattern distributions reflected 
by the characterization vectors for each class.  After learning a model/distribution for 
each    class (in fact, a posterior over the models)   using probabilistic modeling, boot- 
strapping and Bayesian inference, we find the features that are generated significantly 
differently under each model/class. We observe a training set T consisting of a num-
ber nj of objects (ROIs) Oi,j, i={1,…, nj}  of class j, j={1,…,M}. Each object is                    

characterized by a feature vector of size K. That is, Oi,j=(fi,j[1],…,fi,j [K]).  We would 
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like to use these features to determine appropriate ways to distinguish between differ-
ent classes. In the presentation of the proposed feature selection technique we assume 
that these features are given by the characterization procedure [4] described briefly in 
Section 1, although with appropriate preprocessing any other characterization proce-
dure can be used instead. In this case, feature fi,j[k] corresponds to the fraction of the 

object Oi,j  occupied by a sphere of radius rk (the fraction of the sphere occupied by 

the object  Oi,j  can be used as well). Let us consider consecutive features fi,j[k],          

fi,j[k-1] corresponding to radii rk, rk-1 respectively. The difference between such fea-
tures, calculated as a proportion of the total feature difference, is      

])1[][(])1[][(][ ,,,,, jijijijiji fKfkfkfkf −−−=∆ , where k=2,...,K. Note that after this 
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components of  ∆fi,j can be treated as probabilities. Let ∆fi,j = (∆fi,j[2],…,∆fi,j[K]) be 

the observed probability vector attached to object i of class j  (i=1,…,nj;  j=1,…,M). 
We will consider these vectors to be the vectors representing (characterizing) the 

initial ROIs. We employ also the notation ∑ ∆=∆
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observed probability vector for objects of class j. 
We assume that the observed probability vectors ∆fj  arising from class j are gener-

ated by a (parametric) probability vector:  pj=( pj[2],…, pj[K]),  j=1,…,M. These are 

the “true” apriori values for the observed probabilities atattached to objects of class j, 
capturing the spatial pattern of the corresponding class. The procedure for selecting 
the most discriminative features is as follows:       

 

1. Bootstrapping is done by ‘sampling’ a large number, B, of instances from each ob-
served probability vector ∆fi,j of class j. Each sample consists of different features, 
selected according to their component probabilities, which are actually equal to the 

Table 1. Symbol Table. 
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feature values after the normalization step. Under the assumptions that (i) the fea-
ture vectors for different objects are mutually independent, and (ii) the observed 
probability vectors ∆fi,j arising from each class are well characterized by parame-
ters, the count vectors obtained from this sampling are easily combined to form an 
approximate probability distribution for each class. We use the notation numj[k] to 

denote the number of times feature fk, k=1,…,K is chosen by the sample for class j,  

j=1,…,M. 
2. We also employ the notation Nj; j=1,…,M  for the total bootstrap sample size used 

for sampling from class j;  j=1,…,M.  

3. 
We assume that the components of the observed probability vectors ∆fi,j (i=1,…,nj; 

j=1,…,M) are mutually independent, conditional on the true probability vectors 
pj=(pj[2],…, pj[K]), j=1,…,M  i.e.,  
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We note that, although it is tempting to assume that the observed probability vec-
tors have a multinomial (or multinomial-type) distribution in the parameters pj[k]; 

k=2,...,K ,  j=1,…,M, this is not possible in view of the fact that the components of the 
observed probability vectors are not integers. An alternative approach, which we 
propose here, involves constructing an approximate multinomial likelihood for the 
observed probability vectors using the bootstrap counts, numj[k] (k=1,..,p;  j=1,…,M) 
and basing inference on this likelihood.  We make the assumption that the likelihood 
of the observed probability vectors takes this form. This assumption is tantamount to 
assuming that the bootstrap sample sizes Nj (j=1,..,M) are ‘large enough’ to have the 

property that the vector, Nj * j, has components all of which are positive integers. 
The multinomial probability density function (see Equation 2.1) in the bootstrap count 
takes the form: 
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3. We postulate a parameter j with (apriori) mean value 1/Nj  having the following 

property: the observed probability vectors  jnj j
ff ,,1 ,.., ∆∆  are mutually independ-

ent with a likelihood similar to that of j*numj  (j=1,…,M).  This is easily done by 

assuming an exponential prior with density j*exp{- j*Nj}. After inserting this pa-
rameter, the multinomial likelihood is transformed into: 
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where j=1,..,M.  We assume therefore that : 
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The posterior distribution of the parametric probability vectors p1,..,pM and scaling pa- 

rameters, 1,.., M  (calculated using the approximate likelihood (2.2)) is complicated 
in this case.  We have evaluated it using Markov Chain Monte Carlo (MCMC).  We 
note that the variability in estimates of the true probability values arises in Equation 
(2.4) from the variability in the (normalized) bootstrap counts. This variability de-
creases as the bootstrap sample sizes increase (by the law of large numbers).  Equa-
tion (2.4) is used in MCMC simulations to update the p’s.  We also note that as the 
bootstrap sample size increases, the distribution of the (scaled) combined count statis-
tics approach that of the mean observed probability attribute vectors, making our 
model asymptotically correct. 
 

4. We distinguish the best features (corresponding to radii) by evaluating a measure 
of variation Var[k] for the p’s at each radius k;  
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We distinguish the best one over each posterior simulation by choosing that feature fk’ 

corresponding to radius rk’ having the property that: 

},..,1];[max{]’[ KkkVarkVar ==  .                                                                (2.6) 
The feature having the maximum variation over the greatest number of posterior 
simulations (calculated using MCMC) is deemed the best.  This is justified by the fact 
that a high degree of variance for a specific attribute across the distinct labeled classes 
(inter-class variance) indicates a high degree of dissimilarity in the spatial pattern at 
the specific radius increment. Hence, the attribute can be considered to be highly 
informative with respect to class membership.  Also, employing a large number of 
bootstrap samples B reduces high variance that might exist due to noise.  

3   Experimental Results 

All the experiments were implemented in Matlab using the Statistics v.3 toolbox of 
Mathworks. For classifiers we used Neural Networks implemented by the PRTools 
v.3.1 toolbox for Matlab [13].  

3.1   Artificial Data 

We used artificial data sets that were generated using a parametric growth model for 
spatial ROIs introduced in [4]. The main idea is that the growth process begins with 
one initial voxel (or cell) at time t=0 and progresses using an “infection” procedure 
(see Figure 3), where each infected cell may infect its non-diagonal neighbors with 
some probability. The datasets are the following: (i) 2DHom: 100 2D Homogeneous 
ROIs, 50 spherical and 50 elongated  to  two  opposite  directions (north-south),   with 
14- feature characterization vectors (see Figure 2(b)-(c)), (ii) 2DNonHom: 100 2D 
Non-Homogeneous ROIs, 50 elongated to the one direction (north) and 50 elongated 
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to two opposite directions (north-south), with 14 - feature characterization vectors 
(see Figure  2(d)-(e)), (iii) 3DHom: 100 3D Homogeneous ROIs, 50 spherical and 50 
elongated to two opposite directions (north-south) , with 7 - feature characterization 
vectors and (iv)  3DNonHom: 100 3D Non-Homogeneous ROIs, 50 spherical and 50 
elongated to two opposite directions (north-south), with 14 - feature characterization 
vectors. Each dataset consists of two distinct labeled classes of spatial pattern. 
 

 
 

(a)                  (b)                (c)                   (d)              (e) 

Fig. 2. (a) a sample of the growth process, 2D samples of (b),(c) Homogeneous, and (d),(e) 
Non-Homogeneous ROIs used in our experiments. 

Using these artificial datasets we run a set of basic experiments. We tested 4 dif-
ferent combinations of bootstrapping sample size B and number of MCMC posterior 
simulations.  For  each  of  the  combinations,  we  discovered the most discriminative 
attributes for the ROIs of each set and assigned a weight to them in the range [0...1] 
that indicates their discriminative power. Figure 3 (a)-(d) illustrates these results. A 
basic observation from this first set of experiments is that, by increasing the number 
of bootstrap sample B the method discovers less attributes each with a more signifi-
cant weight. On the other hand, reducing the number of bootstrap sample B and in-
creasing the number of MCMC simulations tends to spread the weights to more at-
tributes, with a less significant weight factor to each individual attribute. 

  

(a)   (b)  

(c)  (d)   

Fig. 3. Discriminative power of attributes discovered by the proposed method for (a) 2DHom, 
(b) 2DNonHom, (c) 3DHom and (d) 3DNonHom datasets and for different combinations of 
Bootstrap sample size B and number of MCMC simulations. 

We continue with classification experiments using these selected discriminative 
features. The neural network consisted of one hidden layer with 5 neurons, number of 
inputs equal to the number  of attributes used in each case,  and one output indicating  
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the class. The training was performed using the Levenberg-Marquardt optimization 
and the training set size ranged from 5 to 45 samples from each class (two classes of 
50 ROIs each in every set). We report the curves of mean classification error after 40 
repetitions for all different sizes of the training data set. We also include the compara-
tive classification performance using (i) all the attributes of the ∆fi,j characterization 
vectors and (ii) the first 5 (2D data) and 3 (3D data) most significant components of 
the SVD transformation applied on the ∆fi,j characterization vectors. Figure 4 (a)-(c) 
shows the classification performance for the various cases. A first observation is that 
in any case the classification error is very small. The classification performance when 
using only the discriminative features selected by the proposed approach is, in almost 
all cases, comparable to (or better than) that of using all the features of the characteri-
zation vectors or those features obtained by SVD. 

3.2   Real Data 

We experimented using ROIs extracted from 3D fMRI brain activation contrast maps. 
The fMRI scans were obtained from a study designed to explore neuroanatomical 
correlates of semantic processing in Alzheimer’s disease [14]. For the experiments 
pre sented here, we focused only on a specific region of the brain that has been shown 
to be highly associated with the development of Alzheimer’s disease [15]. The dataset 
consisted of 9 control and 9 patient 3D ROIs and the characterization vectors were 
constructed using 40 features.  Figure 5 shows this ROI in consecutive 2D slices of 
the 3D volume. 

We applied the proposed feature selection technique for sample size B = 400 and 
number of MCMC posterior simulations = 1000. We perform classification experi-
ments, using the discriminative features selected. To avoid overfitting due to a small 
training dataset (9 controls vs. 9 patient samples) we applied one-layer perceptron 
networks trained by the Pocket algorithm and leave-one-out cross validation. We 

 
                     (a)                            (b)     (c)   
 

 

All features of the characterization vector. 
Selected features only, for B = 200, MCMC simulations = 1000. 
Selected features only, for B = 2000, MCMC simulations = 1000. 
Selected features only, for B = 200, MCMC simulations = 10000. 
Selected features only, for B = 20, MCMC simulations = 10000. 
SVD features 

Fig. 4. Neural network classification performance (mean error) when using all features, features 
obtained by SVD and features obtained by the proposed method for (a) 2DHom, (b) 
2DNonHom and (c) 3DNonHom datasets. 
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repeated the process of training and testing for 10 times and report the average accu-
racy.  The first row of  Table 2 includes   the classification  results when  using all the  
discriminative features  selected, as well as  subsets of them based on the significance 
 

 

Fig. 5. The ROI used for applying the proposed feature selection technique. It is shown in 
consecutive 2D slices after being overlaid on a canonical brain atlas. 

Table 2. Classification performances for the fMRI ROIs. 

 
The best  

features (13) 
(wk > 0) 

The best 
7 features 

(wk > 0.005) 

The best 
5 features 

(wk > 0.02) 

The best 
2 features 
(wk > 0.2) 

INITIAL 
All 40 

 features 

MCMC  85.56 % 84.44 % 87.22 % 82.78 % 
FFS 86.67 % 84.44 % 82.22 % 81.11 % 

82.22 % 

weights, wk, obtained by the proposed approach. The second row of Table 2 shows the 
comparative results when using the forward feature selection (FFS) approach. In all 
the experiments we used the initial characterization attribute values. The accuracy 
obtained when using all the initial 40 features is also reported.  It is interesting to 
observe that the proposed MCMC approach behaves better than the forward feature 
selection technique (greedy approach), especially when using only the highly dis-
criminative features (wk > 0.02); it is comparable to the greedy approach in all other 
cases. 

4   Conclusions 

We presented a novel dimensionality reduction technique which employs the statisti-
cal framework of Bootstrapping simulation, Bayesian inference and Markov Chain 
Monte Carlo (MCMC). The method applies when labeled distinct classes of spatial 
ROIs are available, aiming to select the most informative features with respect to 
class membership. The proposed approach assigns a weight to each selected feature 
revealing its discriminative power. We experimented both with synthetic and real data 
performing classification experiments using both all the initial characterization attrib-
utes and only the selected ones by the proposed method). We compared the proposed 
approach with SVD and forward feature selection. We concluded, on the data we 
experimented with, that the proposed approach always outperforms SVD. Also, it is 
better than forward feature selection as the number of selected features is reduced, 
making it a better alternative over the greedy approach. Finally, the proposed tech-
nique was shown to be effective when applied on real data. In this case the proposed 
technique performed better than the forward feature selection approach, especially 
when using highly discriminative attributes, while being comparable in other cases. 
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