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Abstract. Graph edit distance is a powerful error-tolerant similarity
measure for graphs. For pattern recognition problems involving large
graphs, however, the high computational complexity makes it sometimes
impossible to apply edit distance algorithms. In the present paper we
propose an efficient algorithm for edit distance computation of planar
graphs. Given graphs embedded in the plane, we iteratively match small
subgraphs by locally optimizing structural correspondences. Eventually
we obtain a valid edit path and hence an upper bound of the edit distance.
To demonstrate the efficiency of our approach, we apply the proposed
algorithm to the problem of fingerprint classification.

1 Introduction

In recent years graphs have been recognized as a powerful concept to represent
structural patterns. Similarity measures for graphs that are based on an exact
structural correspondence such as graph isomorphism and maximum common
subgraph are often elegant and quite efficient [1–3]. For real applications, how-
ever, it is often difficult to find a graph representation that deals sufficiently well
with structural variations between graphs from the same class. Graph matching
procedures that allow for such structural variations, so-called error-tolerant al-
gorithms, have been introduced with the development of the graph edit distance
[4, 5]. The edit distance of graphs is computed by determining the least costly
way to edit one graph into another, given an underlying set of edit operations on
graphs and their costs. Due to the enormous computational complexity of the
matching problem for general graphs, a number of authors have studied special
classes of graphs, such as trees, bounded-valence graphs, and graphs with unique
node labels [6–8].

In the present paper we focus on the problem of efficiently matching large
attributed planar graphs in the context of the edit distance framework. Planar
graphs are interesting in many applications involving images, because common
graph representations extracted from an image are planar. A well-known example
is region adjacency graphs [9].

In Section 2 of this paper the graph edit distance terminology is introduced
and in Section 3 the proposed approximate distance algorithm for planar graphs
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is described. Next, in Section 4, we demonstrate how planar graph matching can
be applied to the fingerprint classification problem and present experimental
results. Finally, conclusions are provided in Section 5.

2 Graph Edit Distance

Graph edit distance is an error-tolerant similarity measure for graphs [4, 5].
Structural variations between graphs are modeled with a set of edit operations
such as node insertion, node deletion, node substitution, edge insertion, edge
deletion, and edge substitution. The key concept is to describe structural differ-
ences with the sequence of edit operations that best explain the variations. For
this purpose it is common to assign costs to edit operations such that they reflect
the strength of the corresponding distortion. The edit distance d(G, G′) of two
graphs G and G′ is then defined as the cost of the least expensive edit path that
transforms G into G′. Theoretically, every node of G could be matched to every
node of G′, as edit operations are defined such that they are able to correct any
structural error, and a straight-forward pruning criterion (such as the one for
graph isomorphism) does not exist. Hence, it is easy to observe that the com-
putational complexity of the graph edit distance algorithm is exponential in the
number of nodes involved. Nonetheless, for small graphs it has proven a powerful
graph similarity measure [9, 10]. But for large graphs it becomes computationally
infeasible due to its high running time and memory complexity.

3 Approximate Planar Graph Edit Distance

In order to overcome the difficulties arising from the high computational com-
plexity, we propose an approximate, but efficient algorithm for the computation
of the edit distance for attributed planar graphs. In the following we assume that
our data graphs are provided with a planar embedding, that is, a drawing of the
graph in the plane such that none of its edges intersect. An example is shown
in Fig. 1. In contrast to exact graph edit distance computation, which defines
the distance in terms of the least expensive of all edit paths, we restrict the
number of possible edit operations and determine the least expensive member of
a smaller set of candidate edit paths. This set of candidate paths is obtained in
the course of a process that embeds the graphs under consideration in the plane.
If the candidate generation process produces an edit path that is close the the
optimal path, the planar edit distance will approximate the graph edit distance
well.

For the description of the generation process of the candidate paths we need
the following definition. The neighborhood of a node u in a graph is defined as the
subgraph consisting of node u, all nodes connected to u, and all edges between
these nodes. More formally, if we denote a graph by G = (V, E, α, β), where V
is the set of nodes, E the set of directed edges, α : V → LV the node labeling
function, and β : E → LE the edge labeling function, the neighborhood N(u) of
u in G is defined as the induced subgraph N(u) = (Vu, Eu, αu, βu) of G, where
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a) b)

Fig. 1. Illustration of a) a planar graph and b) the same graph embedded in the plane

Vu = {u} ∪ {v ∈ V |(v, u) ∈ E or (u, v) ∈ E}
Eu = E ∩ (Vu × Vu)
αu = α|VU

βu = β|EU .

An illustration of a neighborhood is shown in Fig. 2. Note that the embedding
of the planar graph is preserved in the neighborhood, that is, there is an order
defined on the nodes connected to u.

u u

a) b)

Fig. 2. a) Planar graph and b) graph with marked neighborhood of u

In order to initialize the generation of a candidate path in the process of
matching graphs G and G′, a seed substitution u → u′ has to be chosen, where u
is a node from G and u′ a node from G′. Next an optimal matching from subgraph
N(u) to subgraph N ′(u′) (where symbol N refers to graph G and symbol N ′ to
graph G′) based on the underlying set of edit operations is to be determined. All
new substitutions that occur in this matching are marked for further processing.
In consecutive steps the neighborhoods belonging to unprocessed substitutions
are processed in the same manner, where substitutions that were previously
obtained are preserved in subsequent neighborhood matchings. The matching
begins with the seed neighborhood and is iteratively expanded across the two
graphs. The result of this procedure is a valid edit path from the first to the
second graph. The algorithm is outlined in Table 1.
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Table 1. Planar edit distance algorithm

Input: Two planar graphs G = (V, E, α, β) and G′ = (V ′, E′, α′, β′) to be matched.
Output: A matching between G and G′ and the corresponding edit distance, d(G, G′)

0. Determine seed substitution u0 → u′
0

1. Add seed substitution u0 → u′
0 to the FIFO queue Q

2. Fetch next substitution u → u′ from Q
3. Match neighborhood N(u) to neighborhood N ′(u′)
4. Add new substitutions occurring in step 3 to Q
5. If Q is not empty, go to step 2
6. Delete all unprocessed nodes and edges in both G and G′

Let us consider step 3 of the algorithm, the neighborhood matching, more
closely. A neighborhood consists of a center node, a set of adjacent nodes, and
edges between these nodes. The set of adjacent nodes can be considered an or-
dered sequence of nodes due to the planar embedding of the neighborhood. In
order to obtain such a node sequence, we randomly start at an adjacent node and
traverse all nodes in a clockwise manner. Instead of regarding a neighborhood
as a graph to be matched, we can represent a neighborhood as an ordered node
sequence and match two neighborhoods simply by finding an optimal node align-
ment. With this restriction we assume that the optimal neighborhood matching
preserves the ordering of the nodes adjacent to the center node. The node align-
ment can be performed with a cyclic string matching algorithm [11–15], where
the sequence of nodes is regarded as a string and the string edit operation costs
are derived from the corresponding graph edit operation costs. If we consider
graphs with a bounded valence of v, this procedure takes O(v2). The algorithm
terminates after O(n) loops, where n denotes the number of nodes in the graphs.
The computational complexity of string matching can further be reduced by pre-
serving previously matched nodes. If we consider a string substitution u → u′,
we require that its operation costs amount to zero if u → u′ has occurred pre-
viously, to infinity if a substitution u → v′ or v → u′ with u �= v and u′ �= v′

has occurred previously, and to graph edit operation costs c(u → u′) otherwise.
This means that the present edit path must never be violated by newly added
edit operations.

The optimality of the neighborhood matching is determined with respect to
the original graph edit operations. New edit operations matching previously ob-
tained operations are added to the edit path in every neighborhood matching.
When the algorithm terminates, the generation process yields a valid edit path.
The approximate distance value is therefore an upper bound of the true graph
edit distance. Since the resulting edit path strongly depends on the seed sub-
stitution, we suggest to use several planar distance computations with different
seed substitutions and choose the one that returns the minimum matching costs.
Promising seed substitution candidates can for instance be found close to the
barycenter of the planar embedding in both graphs or may be determined with
a local graph matching. If knowledge of the underlying application is available,
it may also be utilized to find seed substitution candidates.
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4 Application to Fingerprint Classification

Fingerprint recognition tasks can coarsly be divided into verification (one-to-one
matching), identification (one-to-many matching), and classification. Fingerprint
classification refers to the process of assigning fingerprints to classes with similar
characteristics. A large number of fingerprint classification approaches have been
reported in the literature, including rule-based [16, 17], syntactic [18], statistical
[19], and neural-network-based [20] algorithms. Structural pattern recognition
seems to be particularly well suited to the classification problem, as fingerprint
analysis naturally involves the comparison of ridge and valley structures. For
instance, Maio and Maltoni [9] segment the orientation field of ridge lines into
homogeneous regions and convert these into a region adjacency graph. The clas-
sification is then performed with an edit distance algorithm. Due to the nature
of the segmentation process, the resulting graphs are guaranteed to contain at
most ten nodes. Marcialis et al. [21] describe how to improve classification results
by fusing this structural algorithm with a statistical classification algorithm. In
the present paper, we propose to use larger graphs for the description of the
orientation field. Instead of segmenting the orientation field, we combine orien-
tation vectors in a window of constant size and represent them as a single node.
In the following, the graph extraction and classification procedure is described
in detail. Experimental results are reported in Section 5.

In our fingerprint experiments we use a subset of 450 fingerprints from the
NIST-4 database [22]. This database consists of 2000 pairs of grayscale finger-
print images that are classified into one of the classes arch, tented arch, left loop,
right loop, and whorl. An example of a whorl image is depicted in Fig. 3a. The
image background is segmented from the foreground by computing the grayscale
variance in a window around each pixel. The pixels that exhibit a variance lower
than a threshold are considered background. For each pixel we then estimate
the discrete gradient of the grayscale surface by applying a Sobel operator in the
vertical and horizontal direction. After a smoothing process we obtain a ridge
orientation field as illustrated in Fig. 3b. Then we represent each pixel in a win-
dow as a graph node without attributes. From every node an edge is generated
in those two, out of eight, possible directions that best match the vector orthog-
onal to the average window gradient. A single discrete attribute γ ∈ {1, 2, . . . , 8}
is attached to every edge representing the orientation of the edge. The size of
the resulting graph depends on the size of the pixel window. In Fig. 3c such a
graph is illustrated. The 450 fingerprint graphs from the NIST-4 subset contain
an average of 174 nodes and 193 edges per graph at a resolution of 32×32 pixels
per window.

We use a simple edit cost function that assigns constant costs pn to node
insertions and deletions, and constant costs pe to edge insertions and deletions.
As nodes are unlabeled, there is no cost for node substitutions, and edge sub-
stitution costs are set proportional to the distance of the two involved angles,
d(γ, γ′) = min{(γ−γ′) mod 8, (γ′−γ) mod 8}, for γ, γ′ ∈ {1, 2, . . . , 8}. The ratio
of the edge insertion and deletion penalty pe and the edge substitution cost ps,
i.e. 2pe/ps, determines when an edge deletion followed by an edge insertion is
less expensive than an edge substitution.
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a) b) c)

Fig. 3. a) NIST-4 whorl image f0011, b) averaged ridge orientation field, and c) ori-
entation graph

Table 2. Running time of exact graph edit distance algorithm (GED, 1 run) and planar
edit distance approximation (PED, 50 runs) — empty entries indicate failure due to
lack of memory

Nodes GED PED

5 <1s <1s
7 <1s <1s
9 9s 1s

12 - 1s
20 - 1s
30 - 2s
42 - 5s

169 - 15s

The fingerprint classification is performed by evaluating distances of un-
known input graphs to labeled prototype graphs. We adopt a nearest-neighbor
paradigm and classify graphs according to a maximum similarity, or minimum
edit distance, criterion with respect to the prototype graphs. Note that, with
this classification procedure, we rather intend to demonstrate the applicability
of the approximate planar edit distance algorithm than provide a thoroughly
optimized fingerprint classification system.

5 Experimental Results

To evaluate the running time of the approximate algorithm for planar edit dis-
tance computation, we perform the standard graph edit distance computation
and the planar edit distance computation for the same pair of graphs. The stan-
dard graph edit distance is a deterministic algorithm that yields the exact dis-
tance value, whereas the planar edit distance approximation requires several
runs to be carried out. The results of several distance computations for pairs
of fingerprint graphs are shown in Table 2. For small graphs with less than 10
nodes and edges, the exact graph edit distance computation is computationally
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Fig. 4. Exact graph edit distance (lower curve) and approximated planar edit distance
(upper curve) for 10 graphs and subgraphs with 10 nodes

feasible. For larger graphs, however, the edit distance search tree exceeds the
memory capacity of our testing machine (1024MB). The planar edit distance,
on the other hand, provides a result for every tested graph pair, taking only a
few seconds for all 50 runs.

Due to memory contraints, the exact edit distance cannot be computed for
large graphs. It is therefore difficult to directly evaluate the accuracy of the
approximation algorithm. If we delete some nodes from a given graph, however,
we obtain a pair of graphs for which a minimum cost edit path is known, so that
we can easily compute the exact edit distance between these graphs. The planar
edit distance approximation for these graphs is computed in the usual manner
without utilizing any knowledge of the special form of the sample graphs. In our
first experiment, we delete all but the 10 nodes located closest to the barycenter
of the planar embedding from a fingerprint graph and match the resulting graph
with the original one. In the second experiment, we use the same procedure to
construct subgraphs with 100 nodes. The resulting (known) exact edit distance
and the (computed) approximate distance of the first 10 pairs of graphs from
NIST-4 are illustrated in Fig. 4. As expected the approximation yields an upper
bound of the exact distance. Interestingly enough, the approximation seems to
closely follow the exact distance up to an additive constant. If we compute
the empiric correlation coefficient of the approximated and the exact distance
of the first 100 graphs from NIST-4, we obtain a coefficient of r = 0.99 for
the subgraphs with 10 nodes and r = 0.85 for the subgraphs with 100 nodes.
This result indicates that the approximated and the exact distance are strongly
correlated in a linear way. In Fig. 5, the correlation can clearly be observed. A
regression analysis of the exact distance x and the approximation y according to
the linear model y = αx + β yields a slope of α = 0.99 and an offset of β = 93
for subgraphs with 10 nodes, and a slope of α = 1.10 and an offset of β = 803
for subgraphs with 100 nodes. A slope of approximately α = 1 is equivalent to
the reduced linear regression model y = x + β. We conclude that the difference
of the approximation and the exact distance (as illustrated in Fig. 4) is almost
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Fig. 5. Exact graph edit distance and approximated planar edit distance for subgraphs
with 10 nodes (left) and subgraphs with 100 nodes (right)

Table 3. Fingerprint classification recognition rates per class

Class Recognition rate

Arch 62.5%
Tented arch 72.5%
Left loop 77.5%
Right loop 85%
Whorl 90%

constant and that the approximation therefore reflects the structural similarity
of the underlying graphs well.

In our third experiment we test the applicability of the proposed planar edit
distance to the problem of fingerprint classification. The experiment proceeds as
follows. For each of the five classes arch, tented arch, left loop, right loop, and
whorl we randomly select 40 input graphs to be classified and another 50 graphs
representing the respective fingerprint category. This results in a test set of size
200 and a training, or prototype, set of size 250 graphs. By computing the ap-
proximate planar edit distance, we obtain a similarity value between each input
graph and each prototype and classify the input graph with a nearest-neighbor
classifier. The recognition rates we achieve with this procedure are shown in
Table 3. Evaluating some misclassified samples, we note that the recognition er-
rors mainly occur on pairs of fingerprints from different classes that have a high
subjective similarity.

6 Conclusions

In the present paper we propose an efficient approximate edit distance algorithm
for planar graphs. The graph matching is performed by iteratively extending
pairs of matching subgraphs of two given graphs. Our algorithm generates a
single edit path between two graphs by locally optimizing the structure cor-
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respondence. The optimization is accomplished with an efficient cyclic string
matching algorithm.

We evaluate the planar edit distance on fingerprint graphs extracted from
grayscale fingerprint images from the NIST-4 database. The edit distance ap-
proximation is very fast compared to a standard edit distance computation. The
approximated distance values seem to be sufficiently accurate for the measure-
ment of the structural similarity of graphs. Particularly for larger graphs with
more than 100 nodes and edges, the planar edit distance offers a good tradeoff
between running time and accuracy. In the future we intend to study the influ-
ence of the set of prototypical structures on the classification performance and
evaluate the fingerprint classification system on larger data sets.
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