
Computing the Cyclic Edit Distance for Pattern
Classification by Ranking Edit Paths�
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Abstract. The cyclic edit distance between two strings A and B of
lengths m and n is the minimum edit distance between A and every cyclic
shift of B. This can be applied, for instance, in classification tasks where
strings represent the contour of objects. Bunke and Bühler proposed an
algorithm that approximates the cyclic edit distance in time O(mn). In
this paper we show how to apply a technique for ranking the K shortest
paths to an edit graph underlying the Bunke and Bühler algorithm to
obtain the exact solution. This technique, combined with pruning rules,
leads to an efficient and exact procedure for nearest-neighbour classifica-
tion based on cyclic edit distances. Experimental results show that the
proposed method can be used to classify handwritten digits using the
exact cyclic edit distance with only a small increase in computing time
with respect to the original Bunke and Bühler algorithm.

Keywords: Cyclic strings, cyclic edit distance, string matching, Bunke
and Bühler algorithm, handwritten text recognition, OCR, K shortest
paths.

1 Introduction

Measuring dissimilarities between strings is a fundamental problem in pattern
recognition [1]. The most widely used measure of dissimilarity between two
strings is the edit distance (ED), also known as the weighted Levensthein distance,
which is defined as the weight of the best sequence of edit operations (insertions,
substitutions and deletions of symbols) needed to transform one string into the
other [2].

There are many applications where the objects are better modelled by cyclic
strings, which are strings whose last symbol is considered to be followed by the
first symbol. For instance, contours of objects can be appropriately represented
by cyclic chain-codes [3, 4] (see Fig. 1). The dissimilarity between cyclic strings
can be measured by means of the cyclic edit distance (CED), which is defined
as the weight of the best sequence of edit operations needed to transform any
cyclic shift of one string into any cyclic shift of the other. A trivial way to obtain
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Symbols

a

cd

e

hf

b

g

A = aaaahggeffhaheeeeedbbbabceeefecb

Fig. 1. Example digits from the NIST Special Database 19 and a string representing
the contour of a digit with an 8-directional chain-code.

the cyclic edit distance in O(mn2) time consists in computing the edit distance
between one string and all the possible cyclic shifts of the other. Maes [5] pro-
posed a divide and conquer algorithm that reduces the time cost to O(mn log n).
Marzal, Barrachina, and Peris [6, 7] reformulated this method as a branch and
bound algorithm and proposed bounding functions that produce a significant
speeding up of Maes’ algorithm while maintaining its worst-case complexity.

In applications where the running-time of the algorithm is a major concern
(for instance, in classification systems in which the CED between every string
to be classified and a large number of labelled samples is computed), alternative
approximate methods that run faster than the exact methods can be used. A
well-known approximate method to compute the CED is the Bunke and Bühler
algorithm (BBA), which runs in O(mn) time [3]. Mollineda, Vidal, and Casacu-
berta have proposed other approximate solutions based on the BBA that require
a training stage [8, 9].

In this paper, we present a new exact method to compute the CED. Our
proposal is based on the BBA, combined with an efficient technique for find-
ing the K shortest paths in graphs [10], which is adapted to this problem. In
classification tasks, this method can be combined with pruning rules to abort
the computation of distances with values above the best distance found so far.
In this way, according to experimental results reported in this paper, the value
of K needed to find the exact solution is quite low in practice and the total
running time is only slightly greater than the time needed by the BBA to find
an approximate solution.

2 Notation and Problem Formulation

Let Σ be a set of symbols and let Σ� be the set of all finite strings over Σ. Let
a, b denote symbols in Σ and let λ denote the empty string. Throughout this
paper, we consider that A = a1a2 . . . am and B = b1b2 . . . bn are strings in Σ� of
length m and n, respectively.

Edit Distance. An edit sequence is a sequence E = e1e2 . . . ep in which ei, for
1 ≤ i ≤ p, is one of four possible edit operations: (i) deletion of a symbol a,
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denoted a → λ; (ii) insertion of a symbol b, denoted λ→ b; (iii) substitution of
a symbol a by a symbol b, denoted a → b; and (iv) matching (substitution of
a symbol a by itself), denoted a → a. Let γ(E) =

∑p
i=1 γ(ei) be the weight of

the edit sequence E, with γ(ei) being the weight of the edit operation ei. The
edit distance ED(A, B) is defined as the minimum value of γ(E) for any edit
sequence E that transforms A into B.

Cyclic Edit Distance. Let σ(A) = a2a3 . . . ama1 denote a cyclic shift of A, and
let σj(A) = aj+1aj+2 . . . ama1 . . . aj denote the composition of j cyclic shifts. In
many applications (for instance, in classification tasks where strings represent
contours of objects) it makes sense to consider that the strings A and σj(A),
for any j ∈ IN, are equivalent. The equivalence class [A] = {σj(A) : j ∈ IN}
is called a cyclic string. The cyclic edit distance CED([A], [B]) is a measure
of dissimilarity between the classes that the strings A and B represent, and is
defined as CED([A], [B]) = mini,j∈IN ED(σi(A), σj(B)), which is the same as
CED([A], [B]) = min1≤j≤n ED(A, σj(B)) [5].

In this paper, we are interested in computing CED([A], [B]) for any given pair
of strings A and B. In the next section we review how a refinement of the Bunke
and Bühler algorithm, which approximates the value of CED([A], [B]) in time
O(mn), can be seen as an algorithm for finding a shortest s-t path in a graph.
Then in Sect. 4 we will see how an algorithm for finding the K shortest s-t paths
can be adapted to compute the exact value of CED([A], [B]).

3 Approximating the Cyclic Edit Distance
with the Bunke and Bühler Algorithm

The computation of the edit distance ED(A, B) using the Wagner and Fischer
algorithm [2] can be formulated in terms of finding the shortest path between
a pair of nodes in a graph GB

A (the so-called edit graph). The nodes of GB
A are

all the pairs (i, j) for 0 ≤ i ≤ m and 0 ≤ j ≤ n. There are (at most) three
incoming edges for each node (i, j) (see Fig. 2a): (i) coming from (i − 1, j), if
i > 0, with weight γ(ai → λ); (ii) from (i, j−1), if j > 0, with weight γ(λ→ bj);
and (iii) from (i− 1, j − 1), if i > 0 and j > 0, with weight γ(ai → bj). The edit
distance ED(A, B) is the weight of the shortest path between nodes s = (0, 0)
and t = (m, n). The edit graph is acyclic and has O(mn) edges; therefore, the
shortest s-t path can be found in O(mn) time by following any topological order
of nodes [11].

In order to compute the cyclic edit distance CED([A], [B]), we can consider
the edit graph GBB

A associated to ED(A, BB), the edit distance between A
and B concatenated with itself. In this graph, the shortest path from the node
s = (0, j) to the node t = (m, n + j), for every j = 1, 2, . . . , n, represents the
best edit sequence that transforms A into σj(B), whose weight is ED(A, σj(B)).
The minimum of these n weights is CED([A], [B]). This value can be computed
in time O(mn2) by just running a shortest s-t path algorithm for each of these
n s-t pairs.
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An approximate value (a lower bound) of CED([A], [B]) can be found more
efficiently, in time O(mn), by finding, in the edit graph GBB

A , the shortest path
starting at any node in S = {(0, j) : 1 ≤ j ≤ n} and finishing at any node in
T = {(m, n+j) : 1 ≤ j ≤ n}. This is equivalent to finding the shortest path from
s to t in the graph obtained from GBB

A by removing the nodes {(i, 0) : 0 ≤ i ≤ m}
and the edges departing from them, and adding edges of weight 0 from an extra
node s to every node in S and from every node in T to an extra node t. Let
ḠBB

A denote the resulting graph (see Fig. 2b). Again, this is a shortest s-t path
problem in an acyclic graph with O(mn) edges and can be solved in O(mn) time.
More precisely, it takes twice the time required to compute ED(A, B). We call
this method the Bunke and Bühler Algorithm (BBA) since a similar proposal
to estimate a lower bound of CED([A], [B]) was originally made by Bunke and
Bühler in [3]. The suboptimality of this method is due to the fact that the
optimal path that it finds could start going from s to (0, j) and finish going from
(m, j′) to t, with j′ �= n + j, while the path corresponding to CED([A], [B])
should verify j′ = n + j. In the next section, we will see how an algorithm to
enumerate the K shortest s-t paths in a weighted graph, the so-called Recursive
Enumeration Algorithm (REA) [10], can be adapted to find the path with the
minimum weight verifying j′ = n + j. The weight of such a path is the exact
value of CED([A], [B]).

4 Computing the Cyclic Edit Distance by Ranking Paths
in the Bunke and Bühler Edit Graph

Let V be the set of nodes and let E be the set of edges in ḠBB
A . Given a path

π and a node v, let π · v denote the path formed by π followed by v. For any
path π in ḠBB

A that starts going from s to (0, j) and ends at (i, j′), as well as
for any path π in ḠBB

A that starts going from s to (0, j) and ends by going from
(m, j′) to t, let us define L(π) = j′ − j (see Fig. 2b). In order to compute the
exact value of CED([A], [B]), we are interested in finding the path π from s to
t with the minimum weight among those verifying L(π) = n. This can be done
by enumerating, by ascending weight value, the paths from s to t until the first
path verifying L(π) = n is found, as follows [10]:

A.1 Compute π1(v), the shortest path from s to v, for all v ∈ V and set k← 1.
A.2 While L(πk(t)) �= n do:

A.2.1 Set k ← k + 1 and compute πk(t) by calling NextPath(t, k).

For k > 1, and once π1(v), π2(v),. . . , πk−1(v) are available, NextPath(v, k)
computes πk(v) as follows:

B.1 If k = 2, then initialise a set of candidates to the next shortest path from s
to v, C[v]← {π1(u) · v : (u, v) ∈ E and π1(v) �= π1(u) · v}.
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B.2 If v = s, then πk(v) does not exist; else
B.2.a Let u and k′ be the node and index such that πk−1(v) = πk′

(u) · v. If
πk′+1(u) has not already been computed, then compute it by calling
NextPath(u, k′ + 1).

B.2.b If πk′+1(u) exists, then insert πk′+1(u) · v in C[v].
B.2.c If C[v] = ∅, then πk(v) does not exist.
B.2.d If C[v] �= ∅, then extract the path π with minimum weight from C[v]

and let πk(v)← π.

Proof of correctness of this method to compute the K shortest s-t paths in
a weighted graph can be found in [10]. In this particular application to compute
the CED, the algorithm runs in O(mn+K(m+n)) time: each of the K shortest
paths is computed by recursively visiting, at most, the nodes of the previous
shortest s-t path [10], and each s-t path in ḠBB

A has O(m + n) nodes.
The algorithm can be speeded up in this application by taking into account

that we are not interested in the K shortest paths, but only in the first s-t path
π that satisfies the restriction L(π) = n. Therefore, the partial paths that do not
lead to a new s-t path with a different value of L can be discarded. This can be
done by simply replacing Step B.2.d by:

B.2.d If C[v] �= ∅, then extract the path π with minimum weight from C[v]. If
L(π) �= L(πj(v)), for all j = 1, 2, . . . , k − 1, then let πk(v)← π; else
B.2.d.1 Let u and k′ be the node and index such that π = πk′

(u) · v.
If πk′+1(u) has not already been computed, then compute it by
calling NextPath(u, k′ + 1).

B.2.d.2 Goto B.2.b

With this modification, πk(v) is the path from s to v with minimum weight
such that L(πk(v)) is different from L(πj(v)) for all j ∈ {1, 2, . . . , k − 1}.

5 Pruning the Search Space in Classification Tasks

The method described in Sect. 4 can be further speeded up in nearest-neighbour
classification, where we have N labelled samples, B1, B2, . . . , BN , and we
want to compute min1≤i≤N CED([A], [Bi]) in order to classify A. Let us as-
sume that we have already computed dj−1 = min1≤i<j CED([A], [Bi]) and that
we are going to compute dj = min{dj−1,CED([A], [Bj ])}. The computation of
CED([A], [Bj ]) can be aborted as soon as we know that its value cannot be lower
than dj−1, according to these rules:

1. The computation can be avoided if m > n and (m−n)min
a∈Σ

γ(a→ λ) ≥ dj−1,

or n > m and (n −m)min
b∈Σ

γ(λ → b) ≥ dj−1. This rule is based on the fact

that at least |m− n| insertions or deletions must be performed to transform
one string into the other.

2. Taking into account that the edit weights are non-negative, the execution of
Step A.1 can be aborted, for any i ∈ {1, 2, . . . , m}, if the weight of π1((i, j))
is greater than or equal to dj−1 for all j ∈ {1, 2, . . . , 2n}.
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Fig. 3. (a) Percentage of cases for which K shortest s-t paths with different value of L
have to be computed, for K > 1. (b) Total CPU time invested in those cases.

3. The ranking of s-t paths by Step A.2 can be stopped as soon as we reach a
value of k such that the weight of πk(t) is greater than or equal to dj−1.

None of these rules modify the worst-case computational complexity of the algo-
rithm and, in practice, they entail a significant reduction in running time. They
can also be extended to deal with the N nearest-neighbours classification rule.

6 Experimental Results

In order to assess the behaviour of the algorithm in practice, we performed
experiments on a handwritten digits recognition task. A test set containing 500
digit images (5 instances of each digit by 10 writers) randomly selected from
the hsf 4 set in the NIST Special Database 19 [12], was used (see Fig. 1). Each
test digit was compared to 5 000 labelled instances from the sets hsf {0,1,2,3} (5
instances of each digit by 25 writers from each set) in order to perform a nearest-
neighbour classification. All the images were clipped, scaled into a 32×32 pixels
matrix and binarised, and their outer contours were represented by 4-directional
chain-codes. The average length of the resulting cyclic strings is 125. The edit
distances were then computed assuming unit weight for insertions, deletions and
substitutions of symbols, and zero weight for matchings.

The classification error rate is 8.6% using the (non-cyclic) edit distance, 3.8%
using the approximate cyclic edit distance obtained with the BBA, and 3.2%
using the exact cyclic edit distance. This confirms previous results showing that
the classification using the exact cyclic edit distance performs better than the
approximate method [9].

In principle, 2 500 000 cyclic edit distances had to be computed in order to
classify the 500 test digits. The method proposed in this paper only required the
computation of the K shortest s-t paths with different value of L, for K greater
than 1, in 0.15% of the cases. Figure 3a shows a histogram with the percentage
of cases for each value of K. It can be seen that computing the exact CED never
required the computation of more than 60 shortest paths (the average value of
K, when K > 1 shortest paths had to be computed, was 6.53).
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Fig. 4. Edit graph ḠBB
A , colouring the region where the REA searches for alternative

paths, for 3 cases in which the shortest path is not the exact solution. A darker colour
represents a higher number of computed paths.

The total time required to classify the 500 test digits was 763.89 seconds on
a 2.4GHz Pentium 4 running under Linux 2.4 (the algorithms were implemented
in C). The execution of the BBA accounts for 754.09 seconds. Only 9.80 seconds
(1.28% of the total running time) were devoted to computing alternative paths
with the REA. Figure 3b shows, for the cases in which K > 1 shortest s-t paths
have been computed, the total running time and the running time of the BBA. It
can be observed that, for the largest values of K, the execution time of the REA
is significantly greater than the time due to the BBA but, thanks to the pruning
rules given in Sect. 5, such values are required in a very small percentage of cases,
and they hardly affect the total running time of the classification procedure.

In practice, the efficiency of the REA not only depends on the number of
computed paths, but also on the number of internal nodes in which alternative
paths must be computed. Figure 4 shows these nodes for three different cases
and illustrates that only a small region of the graph needs to be visited when
looking for alternative paths.

7 Conclusions

The algorithm proposed by Bunke and Bühler [3] computes very efficiently an
approximate value of the cyclic edit distance between two cyclic strings. In this
paper, we have shown how a K shortest paths algorithm [10] can be adapted
to this problem and applied to an edit graph underlying the Bunke and Bühler
algorithm in order to find the first shortest path satisfying a particular restric-
tion. The weight of this path is the exact cyclic edit distance. In classification
tasks, this method can be combined with pruning rules to abort the computa-
tion of distances with values above the best distance found so far. Experimental
results with a handwritten digit classification system show that the proposed
method can serve to reduce the error rate and only entails a very small increase
in computing time with respect to the approximate method.
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