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Abstract. We present a tutorial survey on some recent approaches to
unsupervised machine learning in the context of statistical pattern recog-
nition. In statistical PR, there are two classical categories for unsuper-
vised learning methods and models: first, variations of Principal Compo-
nent Analysis and Factor Analysis, and second, learning vector coding
or clustering methods. These are the starting-point in this article. The
more recent trend in unsupervised learning is to consider this problem in
the framework of probabilistic generative models. If it is possible to build
and estimate a model that explains the data in terms of some latent vari-
ables, key insights may be obtained into the true nature and structure
of the data. This approach is also reviewed, with examples such as linear
and nonlinear independent component analysis and topological maps.

1 Introduction: Supervised and Unsupervised Learning
from Data

In statistical pattern recognition, machine learning from a training set is an
essential technique. If the classes of the training vectors are known, supervised
methods are used to build the classifiers. If class information does not exist, one
has to resort to unsupervised methods. Also in the preliminary stage of feature
extraction unsupervised methods are mostly used [13, 30].

The optimality of supervised classifiers is given by the theoretical limit of the
Bayes decision rule. For unsupervised methods, no such clear optimality crite-
rion exists. Usually, the result of unsupervised learning is a new explanation or
representation of the observation data, which will then lead to improved future
decisions. In statistical pattern recognition, the representation may be a cluster-
ing of the data, a discrete map, or a continuous lower-dimensional manifold in
the vector space of observations, which explains their structure and may reveal
their underlying causes [13].

Unsupervised learning seems to be the basic mechanism for sensory adapta-
tion in the animal brain, e.g. in the visual pathway [4]. In pattern recognition,
it is a highly powerful and promising approach to some practical problems like
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data mining and knowledge discovery from very large databases, or new modes of
human-computer interactions in which the software adapts to the requirements
and habits of the human user by observing her behaviour. For an excellent col-
lection of recent articles on unsupervised learning, see [23].

The current trend in unsupervised learning is to consider this problem in
the framework of probabilistic generative models. The concept of a generative
model is very general and potentially powerful. In fact, as discussed by Roweis
and Ghahramani [48], a large number of central techniques like FA, PCA, mix-
tures of Gaussians, vector quantization, and also dynamical models like Kalman
filters or Hidden Markov Models, can be presented in a unified framework of
unsupervised learning under a single basic generative model. If it is possible to
build and estimate a model that explains the data in terms of some latent vari-
ables, key insights may be obtained into the true nature and structure of the
data. Operations like prediction and compression become easier and rigorously
justifiable. In this paper, we take a brief look at such models, which reveal the
structure of the data by projections on linear or nonlinear structures, spanned
by components or clusters hidden in the data.

The first class of unsupervised learning methods we consider in Section 2
is motivated by standard statistical methods like PCA or FA, which give a re-
duced subset of linear combinations of the original input variables. Also nonlin-
ear variants have been suggested, such as autoassociative neural networks, kernel
PCA, principal curves and surfaces, and mixtures of local PCA’s. A more recent
model in this category is that of independent components, which would maxi-
mally reduce the redundancy between the latent variables even in the case that
gaussianity does not hold. This leads to the techniques of Independent Com-
ponent Analysis (ICA) and Blind Source Separation (BSS) [27]. In the latter
technique, a set of parallel time signals such as speech waveforms, electromag-
netic measurements from the brain, or financial time series, are assumed to be
linear combinations of underlying independent latent variables. The variables,
called independent components, are found by efficient ICA learning rules. ICA
is a linear technique, but nonlinear variants have been proposed recently, and
some approaches along Nonlinear ICA or Nonlinear FA are also pointed out in
Section 2.

The second class of methods is close to clustering or visualization by project-
ing the data on a nonlinear low-dimensional grid. A typical application is data
mining or profiling from massive databases. It is of interest to find out what kind
of typical clusters there are among the data records, and what is the relation
between the clusters. A competitive learning algorithm gives an efficient solu-
tion to this problem. Section 3 briefly reviews a well-known competitive learning
system, the Self-Organizing Map (SOM) [36], and a related generative latent
variable model GTM [7].

2 Finding Independent Components

2.1 Principal Component Analysis
Principal component analysis (PCA) and the closely related Karhunen-Loève
Transform, or the Hotelling Transform, as well as Factor Analysis (FA), are clas-
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sical techniques in statistical data analysis, feature extraction, and data compres-
sion [14, 40, 61]. Given a set of multivariate measurement vectors x(1), . . .x(T ),
the purpose is to find a smaller set of variables with less redundancy, that would
give as good a representation as possible. The redundancy is measured through
second-order statistics only and is removed by decorrelation. This means rotat-
ing the data into a new coordinate system given by the eigenvectors of the data
covariance matrix.

It is not always feasible to solve the eigenvectors by standard numerical
methods. In an on-line data compression application like image or speech coding,
the data samples x(t) arrive at high speed, and it may not be possible to estimate
the covariance matrix and solve the eigenvector-eigenvalue problem once and for
all.

An alternative is to derive gradient ascent algorithms or other on-line meth-
ods for PCA. The algorithms will then converge to the solution of the problem,
that is, to the eigenvectors. The advantage of this approach is that such algo-
rithms work on-line, using each input vector x(t) once as it becomes available
and making an incremental change to the eigenvector estimates, without com-
puting the covariance matrix at all. This approach is the basis of the PCA neural
network learning rules introduced by the author [39, 42]. Other related on-line
algorithms have been introduced in [16, 49, 14, 60]. Some of them, like the APEX
algorithm by Diamantaras and Kung [14], are based on a feedback neural net-
work. Also minor components defined by the eigenvectors corresponding to the
smallest eigenvalues can be computed by similar algorithms [42].

Another possibility for PCA computation in neural networks is the Multi-
Layer Perceptron network, which learns using the back-propagation algorithm
(see [20]) in unsupervised autoassociative mode. In autoassociative mode, the
same vectors x are used both as inputs and as desired outputs in back-propaga-
tion learning. This network with nonlinear hidden layer was suggested for data
compression by [11], and it was shown to be closely connected to the theoretical
PCA by [8]. It is not equivalent to PCA, however, as shown by [31], unless the
hidden layer is linear. A much more powerful network is obtained if more hidden
layers are added. For instance, a 5 - layer autoassociative MLP is able to compute
in principle any smooth nonlinear mapping between the inputs and the central
hidden layer, and another mapping between the central hidden layer and the
outputs. This is due to the two extra nonlinear hidden layers; see e.g. [41]. This
network is one way to compute a nonlinear PCA expansion.

Other prominent approaches to extend PCA to nonlinearities are the ker-
nel PCA [52] and the method of Principal Curves [19]. PCA can be “kernel-
ized” because it is a second-order statistical technique. Yet another approach to
construct nonlinear PCA manifolds is to combine the two major unsupervised
learning paradigms - PCA and vector coding (VQ) - using mixtures of local
linear models, for example PCA’s, in which the data cloud is first clustered or
parcelled using VQ, and then a separate linear model is fitted to each of the clus-
ters around the code vector. This notion has been formalized by several authors
[22, 47, 48, 55, 62]. It is closely related to the conventional technique of semipara-
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metric density estimation, the Mixture of Gaussians (MoG) model widely used in
clustering and data modelling. However, instead of using full covariance matrices
for the component gaussians, the local linear models constrain the covariances
in a natural and easily adjustable way.

Another linear projection technique is Factor Analysis (FA) [18], in which a
generative latent variable model is assumed for x:

x = Ay + n. (1)

With certain assumptions on the additive noise, FA and PCA produce the same
solution. PCA, too, can be derived from a generative model in the technique
called Probabilistic PCA [55] or Principal Factor Analysis [18].

2.2 Independent Component Analysis

In Independent Component Analysis (ICA) [1, 5, 9, 10, 25, 27, 32, 34, 43] the same
model (1) is assumed, but now the assumption on yi is much stronger: we require
that they are statistically independent and nongaussian. Interestingly, then the
ambiguity in Factor Analysis disappears and the solution, if we can find one, is
(almost) unique.

In the simplest form of ICA, the additive noise n is not included and the
standard notation for the independent components or sources is si; thus the
ICA model for observation vectors x is

x = As. (2)

It is assumed that both x and s are zero mean. The observations xi are now linear
combinations or mixtures of the sources sj . The matrix A is called in ICA the
mixing matrix. The model looks deceptively simple but is not, because both A
and s are unknown and must be estimated from a sample of the observations x.

We may further assume that the dimensions of x and s are the same. If
originally dimx < dim s, or there are more sources than observed variables,
then the problem becomes quite difficult - see [27]. If, on the other hand, m =
dimx > dim s = n, then model (2) implies that there is redundancy in x which
is revealed and can be removed by performing PCA on x. This is done as follows.

We can write the m×m covariance matrix of x as

Cx = AE{ssT }AT = AAT . (3)

We have used the knowledge that matrix E{ssT} is diagonal, due to the fact
that the elements of s are zero mean and independent; if we further absorb their
variances to matrix A and assume that E{s2

i } = 1, then it holds E{ssT} = I.
Now, matrix A is an m × n matrix and so matrix Cx = AAT is an m × m
matrix with rank n. It will have only n nonzero eigenvalues. Let us denote the
diagonal n× n matrix of the nonzero eigenvalues of Cx by D, the orthonormal
eigenvectors of Cx by e1, ..., em, and the orthogonal matrix that has the n first
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Fig. 1. Mixed signals

ones as columns by E. Thus E is m× n. Make now a linear transformation for
the m - dimensional observation vectors x:

x′ = D−1/2ETx. (4)

For the covariance matrix of the transformed n - dimensional vector x′ it holds:

E{x′x′T } = D−1/2ETCxED−1/2 = D−1/2ETEDD−1/2 = I. (5)

This transformation is called whitening. Let us assume in the following that
whitening has always been performed in the model, and denote simply by x the
whitened observation vector whose dimension is the same as that of the source
vector s.

Whitening has another desirable side-effect, which can be seen by noting
from eq. (3) that now AAT = I. But this means that matrix A is an orthogonal
matrix, for which A−1 = AT . So, if we knew matrix A, we could directly solve
the unknown source vector s from the model by

s = AT x.

It is an interesting finding that very few assumptions suffice for solving the
mixing matrix and, hence, the sources. All we need is the assumption that the
sources si are statistically independent and nongaussian. Consider the following
simple example: we have two signals, shown in Fig. 1, that are linear combi-
nations or mixtures of two underlying independent nongaussian source signals.
This example is related to model (2) in such a way that the elements x1, x2 of
the random vector x in (2) are the amplitudes of the two signals in Fig. 1. The
signals provide a sample x(1), . . .x(T ) from this two-dimensional random vector.
The joint histogram of the sample vectors is plotted in Fig. 2; each point in the
scatter plot corresponds to one time point in Fig. 1. The vector x is now white
in the sense that x1 and x2 are zero mean, uncorrelated, and have unit variance.
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Fig. 2. Histogram of the two amplitudes of the mixed signals x1, x2

This may not be apparent from the histogram but can be verified by estimating
the covariance matrix of all the points.

The example suggests a method that in fact is highly useful and forms the
basis of some practical ICA algorithms. Consider a line passing through the
origin at the center of the data cloud in Fig. 2. Denote a unit vector defining
the direction of the line by w. Then the projection of a data point x on the
line is given by y = wT x. This can be considered as a random variable whose
density is approximated by the histogram of the projections of all the data
points in the cloud on this line. No matter what is the orientation of the line, it
always holds that y has zero mean and unit variance. The unit variance is due
to E{y2} = E{(wTx)2} = wT E{xxT }w = wT w = 1 where we have used the
facts that x is white and w has unit norm.

However, it is easy to see from Fig. 2 that the density of y will certainly
vary as the orientation of the line varies, meaning that all the moments of y
cannot stay constant. In fact, any other moment than the first and second ones
is not constant. What is most important is that any such moment, say, E{y3}
or E{y4} or in fact E{G(y)}, with G(y) a nonlinear and non-quadratic function,
will attain a number of maxima and minima when the orientation of the line
goes full circle, and some of these extrema coincide with orientations in which
the 2-dimensional density factorizes into the product of its marginal densities -
meaning independence.

In Fig. 3, the coordinate system has been rotated so that the fourth moment
E{y4} is maximal in the vertical direction and minimal in the horizontal direc-
tion. We have found two new variables y1 = wT

1 x and y2 = wT
2 x, with w1,w2

orthonormal, that satisfy

p(y1, y2) = p(y1)p(y2)

with p(.) the appropriate probability densities. The variables are thus indepen-
dent and it holds

y = Wx
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Fig. 3. Histogram of the two amplitudes of the separated signals y1, y2
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Fig. 4. Separated signals

where W = (w1w2)T . We have solved the inverse of the model (2) and obviously
found the mixing matrix: A = WT .

Fig. 4 shows y1, y2 again arranged in their correct time order. It is seen that
they form two signals, one a random nongaussian noise and the other one a
deterministic sinusoid. These were in fact the original signals that were used to
make the artificial mixtures in Fig. 1. In the context of separating time series or
signals, the ICA technique is an example of blind signal separation.

The above illustrative example can be formalized to an efficient mathematical
algorithm. What we need is a numerical method to maximize, say, the fourth
moment E{y4} in terms of a unit norm weight vector w. A possibility is gradient
ascent: the gradient of E{y4} with respect to w is 4E{y3x} = 4E{(wTx)3x}.
However, gradient methods are notoriously slow. A better idea is a fast algorithm
with higher-order convergence speed. Such a method is provided by the FAstICA
algorithm. For finding one independent component (one weight vector w), the
algorithm is as follows:
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1. Choose the initial value randomly for the weight vector w.
2. Repeat Steps 3,4 until the algorithm has converged:
3. Normalize w to unit norm.
4. Update w by

w← E{(wTx)3x} − 3w (6)

This algorithm was introduced in [25] and further extended and analyzed in
[26]; for a detailed review, see [27]. The FastICA algorithm is available in public-
domain software [15] from the author’s web pages. The algorithm can be run
either in a deflation mode, in which the orthogonal weight vectors (columns of
the mixing matrix A) can be found one at a time, or in a parallel mode, in
which all the independent components and the whole matrix A are solved in
one iteration.

An analysis of the local maxima and minima of a general cost function
E{G(y)} = E{G(wT x)} over the unit sphere ‖w‖ = 1 was made by the au-
thor in [45]. The result is

Theorem. Under the linear mixing model x = As, with whitened x (hence:
orthogonal A), the local maxima (resp. minima) of E{G(wT x)} under the con-
straint ‖w‖ = 1 include those columns ai of the mixing matrix A such that the
corresponding sources si satisfy

E{sig(si)− g′(si)} > 0 (resp. < 0) (7)

where g(.) is the derivative of G(.).

The Theorem essentially says that all the columns of the mixing matrix
will be among the local minima or maxima of E{G(wT x)}, but there may be
also other extrema. The condition (7) states that some columns (and the corre-
sponding sources) are found by minimizing, others by maximizing. For the case
G(y) = y4, (7) becomes

E{s4
i − 3} > 0

(note that the sources have unit variances). The term on the left hand side is the
kurtosis of si. Thus, the positively kurtotic sources are found at the local maxima
of E{(wTx)4} and vice versa. For other cost functions G(y), the condition (7)
always splits the sources in two groups, too.

In [27], the above method of fourth order moment maximization is shown
to be an example of a powerful criterion of finding maximally nongaussian or-
thogonal directions through the multidimensional density p(x). Cost functions
like maximum likelihood or minimal mutual information are shown to be inti-
mately related to this basic criterion. Other algorithms to solving the basic linear
ICA model have been reported e.g. by [1, 5, 9, 10, 32], as reviewed in [27]. Espe-
cially, if the sources are actually signals with time structure, not just samples of
random variables, then blind separation can be achieved using either temporal
correlations [6] or nonstationarity [46].
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2.3 Nonlinear Factor and Independent Component Analysis

The model (2) is extremely simple and can be extended in several directions.
If the additive noise cannot be assumed to be zero, we have the noisy ICA
model, also termed independent factor analysis [2]. This is due to the fact that
it is otherwise similar to the factor analysis model (1), with the difference that
the factors yi are not uncorrelated (thus independent) gaussians, but rather
independent nongaussians. Some solution methods are reviewed in [27].

Another extension is nonlinear ICA and FA. Instead of the linear models
(2),(1), consider

x = f(y,M) + n (8)

with f a nonlinearity parameterized by an array of parameters M. Vector y
gives a number of latent variables and n is again gaussian noise. If we assume
that the prior p(y) for y is gaussian with unit (or diagonal) covariance, making
the elements yi independent, the model (14) may be called nonlinear factor
analysis. A further extension would be p(y) that is nongaussian but factorizable
so that the yi are independent; then the model becomes nonlinear independent
component analysis.

Several authors have attacked this problem. The baseline is that the problem
is ill-defined. Under very general assumptions, a random vector can be trans-
formed nonlinearly into another random vector that has independent elements
[28], but there is no guarantee that the independent elements are the original
sources. Therefore, the solution can only be sought with restrictions that some-
how regularize the problem. Typical such restrictions are post-nonlinear mixtures
and some special cases that can be reduced to linear mixtures with simple map-
pings. For general nonlinearities, there are a variety of methods, some of them
rather ad hoc; for a review, see [33].

Recently, Valpola [56] used an approximation for the nonlinear function
f(y,M) in the model, that was based on a Multilayer Perceptron (MLP) network
with one hidden layer. It is well-known [24, 17] that this function can approx-
imate uniformly any continuous functions on compact input domains and it is
therefore suitable for this task. Then the model becomes

x = Bφ(Ay + a) + b + n (9)

where A,a are the weight matrix and offset vector of the hidden layer, φ is
the sigmoidal nonlinearity, typically a tanh or sinh−1 function, and B,b are
the weight matrix and offset vector of the linear output layer. It is understood
that φ is applied to its argument vector element by element. In practice, there
is a training sample x(1), ...,x(T ), and we wish to solve from the model the
corresponding source or factor vectors y(1), ...,y(T ).

The problem now is that, contrary to the usual supervised learning situa-
tions, the inputs to the MLP are not known and therefore back-propagation
type of learning rules cannot be used for finding the unknown parameters. The
idea in [56] is to use a purely Bayesian approach called ensemble learning. The
cost function is the Kullback - Leibler divergence between the true posterior
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probability for the parameters, given the observations, and an approximation of
that density. Denote the set of all the unknown parameters by Θ = {Y,M}.
There the vector Y contains all the unknown source vectors y(1), ...,y(T ), while
M contains the weights of the MLP network that define the unknown nonlinear
function f , and also the parameters of the gaussian noise n. In addition, because
this is a Bayesian model, it includes hyperparameters defining the distributions
of the weights. Denote the sample of observations by X = x(1), ...,x(T ).

We can write for the posterior density of the parameters

p(Θ|X) = p(Y,M|X) =
p(X|Y,M)p(Y|M)p(M)

p(X)
. (10)

The first term p(X|Y,M) is obtained from the data model (9); it is simply a
product of gaussians with means Bφ(Ay(t)+a)+b. Likewise, the terms p(Y|M)
and p(M) are obtained as products of gaussians, when we assume mutually
independent gaussian priors for all the parameters. The term p(X) does not
contain any unknown parameters and can be omitted.

This density is now approximated by another density q(Θ) - the ensemble -
that has a simple form [56]: it is a gaussian with diagonal covariance. Then the
KL divergence

CKL =
∫

dΘq(Θ) log
q(Θ)

p(Θ|X)
(11)

also obtains a relatively simple form, splitting into the expectations of many
simple terms. It can be minimized by a suitable numerical method.

In [56], several applications with real data are shown. The model is also
extended to a dynamical model, similar to an extended Kalman filter but with
unknown parameters, and very promising results are obtained in case studies
[57, 29].

3 The Self-organizing Map

3.1 The Basic SOM

One of the best-known learning systemss in the unsupervised category is the
Self-Organizing Map (SOM) introduced by Kohonen [36]. It belongs to the class
of vector coding algorithms. In vector coding, the problem is to place a fixed
number of vectors, called codewords, into the input space which is usually a
high-dimensional vector space. The dimension of the data vectors is determined
by the problem and can be very large. In the WEBSOM system [37] for organiz-
ing collections of text documents, the dimensionality of the data in the largest
applications is about n = 50, 000 and the size of the training sample is about
T = 7, 000, 000.

A well-known method for vector coding is the Linde-Buzo-Gray (LBG) algo-
rithm, which is very similar to the k - means clustering algorithm [13]. Assume
a set of nodes which are numbered by index i = 1, . . . , k, and assume that each
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node i has a weight vector wi that has the same dimension as the input vec-
tors x that we wish to cluster. In k - means clustering, the goal is to place the
weight vectors (codewords) into the input space in such a way that the average
squared distance from each x to its closest codeword is minimized. In the Self -
Organizing Map (SOM), there is an extra feature compared to mere clustering:
nodes are spatially arranged to a 1-, 2- or multidimensional lattice, such that
each node has a set of neighbors. The goal of SOM learning is not only to find
the most representative code vectors for the input training set in the sense of
minimum distance, but at the same time to form a topological mapping from the
input space to the grid of nodes. This idea originally stems from the modelling
of the topographic maps on the sensory cortical areas of the brain. A related
early work in neural modelling is [38].

For any data point x in the input space, one or several of the codewords are
closest to it. Assume that wi is the closest among all codewords:

‖x−wi‖ = min‖x−wj‖, j = 1, ..., k (12)

The unit i having the weight vector wi is then called the best-matching unit
(BMU) for vector x. The well-known Kohonen algorithm for self-organization of
the code vectors is as follows [36]:

1. Choose initial values for the weight vectors wi.
2. Repeat Steps 3,4 until the algorithm has converged:
3. Draw a sample vector x from the training set and find the best matching

unit i = i(x) according to Eq. (12).
4. Adjust the weight vectors of all units by

wj ← wj + γ ∗ hr ∗ (x−wj) (13)

where γ is a gain factor and hr is a function of the distance r = ‖i− j‖ of
units i and j measured along the lattice.

There are several choices for the initial values and for the neighborhood function
hr; these, as well as the convergence and the mathematical properties of this
algorithm have been considered by several authors, e.g. [36, 47, 44, 58]. For SOM
learning, topology preservation, and its relation to a cost function, see [59, 12,
21]. A more efficient learning rule for the SOM is the batch algorithm, covered
e.g. in [36]. The 2-dimensional map is also a powerful tool for data visualization:
e.g., a color code can be used in which each unit has its own characteristic color.
For a public domain software implementation of the SOM, with various graphical
tools for map presentations as well as with preprocessing methods, see [54]. A
database of well over four thousand applications of SOM is given by [53].

3.2 The Generative Topographic Map

There is a probabilistic generative model that is close to the SOM, the Generative
Topographic Map (GTM) [7], in which the vectors x are expressed in terms of
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a number of latent variables, which are defined on a similar lattice or grid as
the nodes in the SOM. Assume a grid with dimension l (usually, this would be
equal to 2, at most 3), and assume there are k nodes yi, i = 1, . . . , k on the
grid. Assume a random latent variable y, whose values are concentrated at these
nodes. Let us make a nonlinear mapping from the l-dimensional random variable
y to the original n -dimensional vectors x:

x = f(y,M) + n (14)

where M is an array of parameters of the nonlinear function f , and n is additive
noise. The form of the function f is assumed to be determined except for the
unknown parameters. The model (14) is the generative latent variable model
of the GTM method. It means that the data x are basically concentrated on
an l-dimensional nonlinear manifold in the data space, except for the additive
noise. The k vectors wi = f(yi,M) that are the images of the node points yi

are analogous to the weight vectors or codewords of the SOM. If f is smooth,
a topographic ordering for the codewords is automatically guaranteed, because
such an ordering is valid for the points yi. The GTM also has the advantage
that it postulates a smooth manifold that naturally interpolates between the
code vectors wi.

If we assume that the noise has a radially symmetrical gaussian density, then
the density of x, given y, becomes a mixture of gaussians, having a separate
gaussian density around each of the code vectors wi = f(yi,M). From this,
the likelihood function for the parameters M, β follows immediately. The EM
algorithm can now be used to numerically solve the parameters by maximum
likelihood, due to the mixture of gaussians form of the density - for details, see
[7]. The reference also discusses the similarities and differences between GTM
and SOM.

4 Conclusions

The two main paradigms of unsupervised machine learning in statistical pat-
tern recognition have been reviewed: the extensions to the Principal Component
Analysis technique, and the clustering, vector coding, and topological mapping
technique. The first class of methods form a continuous linear or nonlinear trans-
formation of the original input vectors to feature vectors of lower dimensionality,
and are especially useful in feature extraction. The reduced representation given
by the feature vectors would typically be input to a classifier.

The second class of methods are able to map highly nonlinear input data man-
ifolds onto low dimensional lattices, preserving optimally the mutual topological
relations of input vectors. Thus these methods, notably the Self-Organizing Map
(SOM), are suitable for data clustering and visualization. The applications range
from industrial quality control to financial data mining. Also generative latent
variable versions for these basic models and their combinations were reviewed.

This paper was a review of the essential principles and theory underlying
unsupervised learning, with some central references cited. It is not possible here
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to give even a rudimentary list of applications of these techniques. There are
available good text-books that cover some of the major approaches [23, 36, 14,
27].
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