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Abstract. We use a parallel direct solver based on the Schur comple-
ment method for solving large sparse linear systems arising from the finite
element method. A domain decomposition of a problem is performed us-
ing a graph partitioning. It results in sparse submatrices with balanced
sizes. An envelope method is used to factorize these submatrices. How-
ever, the memory requirements to store them and the computational cost
to factorize them depends heavily on their structure. We propose a tech-
nique that modifies the multilevel graph partitioning schema to balance
real computational load or memory requirements of the solver.

1 Introduction

Many engineering and scientific problems are solved using the finite element
method (FEM). We consider a mesh of finite elements. One element consists
of several nodes. Each node has its degrees of freedom (DOFs). In other words,
the nodes contain variables. Globally, these variables form a system of equations
Ax = b, where A is an n × n sparse matrix of coefficients. A mesh is usually
represented by a dual graph GD and a nodal graph GN. The vertices in the dual
graph represent the finite elements and 2 vertices are adjacent if and only if
the corresponding elements share a common surface in 3D or a common edge in
2D. The vertices in the nodal graph represent the mesh nodes. All vertices that
represent mesh nodes belonging to one element form a clique. An example of a
FE mesh and its dual and nodal graph is on Fig. 1.

We use solver SIFEL, developed at the Czech Technical University, for solving
problems by the FEM. Among others, it can solve problems in parallel by the
popular method of the Schur complements, which are computed by an envelope
method [1]. A solution of a problem consists of 6 following phases:

1. Domain decomposition.
2. Ordering of nodes.
3. Assembling of submatrices.
4. Factorization of submatrices (computation of the Schur complements).
5. Solution of the reduced problem.
6. Back substitution on subdomains.
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Fig. 1. A quadrilateral mesh (a) with 9 elements a – i and 16 nodes 1 – 16. The dual
(b) and the nodal (c) graph derived from the mesh.

The domain decomposition, and optionally ordering of nodes, are done as prepro-
cessing steps. The solver does the rest. Phase 3 is the most memory consuming
and Phase 4 is the most computationally intensive part of the whole solution.

Multilevel tools are widely used to solve the problem of domain decompo-
sition. The dual graph is partitioned into k parts, inducing subdomains and
corresponding submatrices, so that the sizes of submatrices are roughly equal.

Definition 1. Consider a graph G = (V, E) and an integer k >= 2. An edge
cut (node cut) is a set of edges (vertices, respectively) whose removal divides
the graph into at least k partitions. The k-way graph partitioning problem is to
partition V into k pairwise disjoint subsets V1, V2, . . . , Vk such that |Vi| .= |V |/k
and the size of the edge cut is minimized. A partitioning of a graph by a node
cut is similar.

Even though the sizes of submatrices are roughly equal, their memory re-
quirements or their factorization time in Phase 4 are not equal. To define this
formally, we use the term quality to denote the memory or computational com-
plexity.

Definition 2. Given an unbalancing threshold δ >= 1, we say that a partitioning
V1, V2, . . . , Vk with a set of qualities {q1, q2, . . . , qk} is balanced if

δ >= (
k

max
i=1

qi)k/
k∑

i=1

qi . (1)

A partition Vi is overbalanced if δ < qik/
∑

i qi. The partitioning is disbalanced
if at least one partition is overbalanced.

In general, the qualities of submatrices are influenced by the ordering of
variables, as was already mentioned in [2, 3].

In this paper, we describe a novel approach to the domain decomposition
that results into partitioning with balanced memory requirements or balanced
factorization time estimations. This in fact leads to shorter execution time of the
parallel solver. The idea is to integrate an ordering algorithm into a multilevel
graph partitioning schema.
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Section 2 describes the previous work. In Section 3, the new refinement heuris-
tics that allows to balance better memory or computing complexity is explained.
In Section 4, the results of experiments are presented and Section 5 concludes
the paper.

2 Previous Work

2.1 Domain Decomposition (Phase 1)

Common methods for domain decomposition are based on graph partitioning,
typically of dual graphs. A subdomain is made of elements from the same parti-
tion. The nodes belonging to more than one subdomain are called boundary and
the remaining nodes are internal. Variables of the internal (boundary) nodes are
called correspondingly. An example on Fig. 2 (a) shows a 2-way partitioning of
GD of the quadrilateral mesh from Fig. 1. The corresponding domain decompo-
sition is shown on Fig. 2 (b). The boundary nodes are 3, 7, 10, 11, and 14. Note
that this way of domain decomposition produces partitioning of the nodal graph
GN by a node cut, as shown on Fig. 2 (c).
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Fig. 2. Partitioning of the mesh from Fig. 1 using its dual graph (a) into 2 partitions
(b) and corresponding partitioning of the nodal graph (c). The edge cut (a) is indicated
by a dashed line and nodes in the node cut (c) as filled squares.

Multilevel Graph Partitioning. Popular multilevel graph partitioning soft-
ware is METIS [4, 5], CHACO [6], JOSTLE [7], and SCOTCH [8]. Our work is
based on the multilevel k-way graph partitioning implemented in METIS [5].
This schema consists of the following 3 phases, shown on Fig. 3.

Coarsening. A sequence of smaller graphs Gl = (Vl, El) is constructed from
the original graph G = G0 = (V0, E0) so that |Vl| > |Vl+1|. The sequence of
coarser graphs creates levels. A matching is often used to collapse 2 vertices
into a multivertex. The SHEM heuristics for matching, introduced in [5],
works well.

Initial partitioning. When the coarsest graph is sufficiently small, it can be
partitioned by any graph partitioning technique.
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Fig. 3. The schema of multilevel k-way partitioning.

Uncoarsening. A coarser graph Gl is uncoarsed to Gl−1 and the partitioning
of Gl is projected to Gl−1 and then refined. The Fiduccia-Mattheyses (FM)
heuristics is a simple, fast, and sufficiently good option for the refinement.
It searches candidate vertices in the set of boundary vertices, i.e., vertices
adjacent to a vertex in another partition. Then it tries to move a selected
vertex into other partitions. The move is accepted if one of the following
conditions is fulfilled:
1. The size of the edge cut is decreased and the partitioning remains bal-

anced.
2. The size of the edge cut is not increased, but the balancing is improved.

To improve the balancing of a strongly disbalanced partitioning, a balancing
step may by added. It works like the FM heuristics, but the conditions for
accepting a move are different:
1. The balancing is improved.
2. The size of the edge cut is decreased, but the balancing is not worsened.

2.2 Reordering and Assembling of Submatrices (Phases 2 + 3)

After the domain decomposition, the internal nodes in all partitions are reordered
to minimize the size of the envelope.

Definition 3. In the i-th step of the factorization of a symmetric matrix A, the
wavefront is set of pairs

wi(A) = {{r, i} : ∃ars �= 0, r >= i, s <= i} . (2)

The envelope of A is then (symbol \ is the set difference)

Env(A) =
n⋃

i=1

wi(A) \ {i, i} . (3)
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The envelope method stores the parts of A inside envelopes, which represents
the main portion of the memory consumption of the solver. The SIFEL solver
uses the Sloan reordering algorithm [9], but other algorithms (RCM, hybrid
algorithm) can be used as well.

Every node i generates di equations, where di is the number of DOFs. Let
ni and nb denote the number of internal and boundary, respectively, variables.
Clearly, ni + nb = n. The SIFEL solver reads the subdomains and assembles
submatrices with nodes in a given order. The boundary nodes come last. We es-
timate memory requirements W (A) of the envelope solver and its computational
complexity OP (A) by

W (A) =
n∑

i=1

|wi(A)| = |Env(A)| + n (4)

OP (A) =
ni∑

i=1

|wi(A)|2 . (5)

3 The New Refinement Heuristics with Quality Balancing

In this section, we explain the main ideas of load and memory balancing for the
parallel envelope method. At the beginning, it must be decided which quality
will be balanced: the computational load or the memory complexity. Then the
partitioning is started. To estimate the quality, the partitioner must have the
information about the structure of the matrix A. Since the dual graph GD does
not suffice, the partitioner must have at disposal also the weighted nodal graph
GN, in which each vertex is labelled with the number of DOFs of the node. We
partition GD and project the partitioning of GD to GN to estimate the quality.
So, the partitioner needs also the information about the relation between GD

and GN.
We use a multilevel k-way graph partitioning as described in Sect. 2.1. The

first two phases are performed unchanged as in METIS. The SHEM heuristics
is used for the coarsening and the multilevel graph bisection is used for the
initial partitioning. We have modified the conditions of move acceptance of the
refinement heuristics in the uncoarsening phase and extended it with a quality
estimation process. This new heuristics is called QB. Assume that the current
level is l. Similar to FM, QB chooses a vertex as a candidate for moving from a
source partition GD

l,s to a target partition GD
l,t. To decide whether the move will

be accepted, QB starts for both partitions GD
l,s and GD

l,t the estimation process,
sketched on Fig. 4, to obtain information about balancing of the qualities.

First, partition GD
l,p, p ∈ {s, t}, is projected to GD

0,p, the original partition.
(This is skipped in the final level, where l = 0). After that, all nodes belonging
to elements from GD

0,p correspond to a partition GN
p of GN. Then the internal

vertices of GN
p are reordered by the Sloan algorithm. Finally, the quality of GN

p

is estimated and returned to the refinement heuristics.
In the current implementation of the QB heuristics, nodes have either con-

stant number of DOFs d > 0 or are constrained, i.e., the number of DOFs is 0.
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Fig. 4. Data flow of the QB heuristics.

All constrained nodes are omitted in the step of projection of GD
0,p to GN

p , i.e.,
the reordering is performed only with nodes with the number of DOFs d > 0.
After that, node i generates equations numbered di, di + 1, . . . di + d − 1 and
wavefronts wdi(A), wdi+1(A), . . . , wdi+d−1(A).

The original FM heuristics computes sums of weights of vertices in the source
and target partitions for every candidate move. In fact, the weight of the can-
didate vertex is subtracted from the weight of the source partition and added
to the weight of the target partition. However, in the QB heuristics, this would
imply the reordering and estimation computing for every candidate move and
this would extremely slow down the refinement. Thus, we had to modify the
conditions of move acceptance as follows:

1. The size of the edge cut is decreased and the target partition is not overbal-
anced.

2. The quality qs of the source partition is greater than the quality qt of the
target partition, but the size of the edge cut is not increased.

The conditions of move acceptance of the balancing step are also modified:

1. qs > qt.
2. The size of the edge cut is decreased and qs

>= qt.

Only if a move is accepted, the qualities qs and qt are recomputed. Note that
the new conditions may lead to overbalancing of the target, or even the source,
partitions. Therefore, if the new value qs is greater than its previous value, the
vertex move is nullified.

4 Experimental Results

The SIFEL solver was modified to perform just the assembling and factorization
of submatrices (Phases 3 and 4 in Sect. 1). All experiments were performed on
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Table 1. Description of test problems. # stands for number of problem.

# problem name |V (GD)| |V (GN)| # problem name |V (GD)| |V (GN)|
1 floor 49245 25065 4 jete 84123 22860
2 sieger 41012 21140 5 wheel 157529 34369
3 block 89196 16789

a PC with Intel Pentium III, 1GHz, under GNU/Linux 2.4. The benchmarks
are models of real problems of structural mechanics: “floor” and “sieger” are
2D problems discretized by triangles and “block”, “jete”, and “wheel” are 3D
problems discretized by tetrahedrons. Their description is in Table 1.

Table 2 shows the results. # denotes the problem number as is quoted in
Table 1. All problems were partitioned to k = 4, 8, 16, 32 partitions by METIS,
called with its default parameters, and by the QB heuristics called with unbal-
ancing threshold δ = 1.1. First, QB was used to balance memory requirements
of the solver and second, to balance computational complexity of the factoriza-
tion phase. The size of the edge cut of GD is denoted by |Ec|. Let A1, . . . , Ak

be the corresponding submatrices of A. Then Wmax = maxk
i=1 W (Ai), W =

1
k

∑k
i=1 W (Ai), and ∆W = Wmax/W . Similarly, let ti be the factorization time

of submatrix Ai. Then tmax = maxk
i=1 ti, t = 1

k

∑k
i=1 ti, and ∆t = tmax/t. The

time for the domain decomposition of the QB heuristics is denoted by tp. The
values of tmax and tp in Table 2 are given in seconds.

Table 2. Comparison of the FM and QB heuristics.

METIS Memory Balancing Load Balancing
# k |Ec| Wmax ∆W tmax ∆t |Ec| Wmax ∆W tmax ∆t tp |Ec| tmax ∆t tp

1 4 317 9751224 1.34 52.3 1.68 343 7312581 1.09 31.0 1.27 49 358 30.3 1.03 34
8 524 3889227 1.35 15.5 1.72 547 2798742 1.04 10.2 1.33 38 629 8.9 1.09 66

16 894 1634397 1.40 5.6 1.99 944 1175811 1.07 3.2 1.33 49 1011 2.9 1.18 69
32 1405 623400 1.36 1.5 1.79 1424 456873 1.08 0.9 1.36 75 1447 0.8 1.11 125

2 4 160 3540777 1.08 7.4 1.14 159 3294747 1.03 6.5 1.06 8 157 6.5 1.10 10
8 298 2094126 1.30 5.3 1.72 288 1523460 1.06 3.2 1.33 16 301 2.7 1.11 34

16 533 971229 1.35 2.3 1.91 576 700158 1.08 1.3 1.35 23 663 1.6 1.61 102
32 1048 428196 1.40 0.8 1.75 1072 308319 1.09 0.5 1.35 46 1068 0.4 1.21 53

3 4 2561 18490254 1.05 236.4 1.07 2753 17972640 1.03 233.7 1.07 219 2741 218.3 1.01 257
8 4255 7336176 1.12 65.1 1.20 4231 7005948 1.10 55.8 1.09 198 4303 51.9 1.03 222

16 5896 3388941 1.34 25.3 1.72 6045 2747472 1.22 15.3 1.39 282 6026 12.5 1.08 244
32 8744 1288023 1.33 5.1 1.51 8749 1008285 1.14 3.7 1.38 287 8986 3.0 1.12 350

4 4 915 17489307 1.24 167.9 1.39 922 14000742 1.08 113.4 1.14 64 930 97.6 1.03 76
8 1560 6281361 1.18 40.7 1.26 1628 5662314 1.09 34.2 1.13 59 1674 34.4 1.08 85

16 2398 2987406 1.48 14.6 1.67 2537 2148342 1.09 10.1 1.23 76 2460 9.0 1.13 92
32 3591 1224027 1.65 4.7 2.16 3471 749844 1.09 2.2 1.21 104 3583 2.0 1.09 134

5 4 914 21716046 1.15 196.2 1.27 999 20269455 1.07 178.0 1.17 117 993 172.6 1.09 146
8 1747 11810322 1.31 106.1 1.58 1823 9354273 1.08 77.9 1.26 120 1802 67.9 1.08 156

16 3253 4625520 1.24 31.8 1.42 3173 3557904 1.06 21.3 1.15 157 3438 21.3 1.08 298
32 5917 1838763 1.29 10.0 1.70 5826 1550547 1.18 6.4 1.32 504 6420 6.5 1.33 577
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5 Evaluations of Results and Conclusions

The results demonstrate that the QB heuristics always produces partitionings
with better ∆W and ∆t than the FM heuristics. Also ∆W ≤ δ in nearly all cases
of memory balancing, whereas ∆t > δ in about 30% of cases of load balancing,
for the sake of minimizing the edge cut size |Ec|. The balancing of the memory
requirements always improves ∆t as a side effect. On the other hand, the QB
heuristics sometimes produces partitionings with slightly greater |Ec|.

The memory balancing is beneficial for the distributed systems with limited
amount of main memory per processor. The balancing of the computational
load leads to the shorter time of the Phase 4 of the solver. Of course, the QB
heuristics slows down the domain decomposition phase. Whereas the standard
METIS takes times of order of seconds, the time tp of the QB heuristics is of
order of tens or hundreds of seconds. Therefore, it should be used if the same
decomposition can be reused several times, e.g., in nonlinear systems or when
the same problem is solved with different materials, etc.
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