
Parallel Software Interoperability
by Means of CORBA

in the ASSIST Programming Environment�

S. Magini, P. Pesciullesi, and C. Zoccolo

University of Pisa, Dip. di Informatica - Via Buonarroti 2, 56127 Pisa, Italy
zoccolo@di.unipi.it

Abstract. Parallel software reuse and easy integration between parallel
programs and other sequential/parallel applications and software layers
can be obtained exploiting the software component paradigm. In this pa-
per we describe the ASSIST approach to interoperability with CORBA
objects and components, presenting two different strategies to export a
parallel program in the CORBA world. We will discuss their implemen-
tations and provide some experimental results.

1 Introduction

The development of complex applications for the emerging high-performance
large-scale computing platforms (ranging from huge Clusters up to computa-
tional GRIDS) poses productivity problems. High-level parallel programming
tools give a partial solution, easing the development of complex parallel algo-
rithms, while the exploitation of the software component paradigm can improve
parallel software reuse and integration in larger applications.

ASSIST (A Software System based on Integrated Skeleton Technology) is
a general-purpose high-level parallel programming environment, based on the
skeleton and coordination language technology [1–3]. It combines the benefits of
software reuse and integration with those of high-level programming, providing
full interoperability with CORBA objects and components. It can easily import
(or use) other pieces of software encapsulated in external CORBA objects and
components, as in a traditional sequential language (i.e. C++); moreover, it can
export parallel algorithms and applications as well: an ASSIST program can be
encapsulated in a CORBA object and integrated into a larger application using
standard CORBA invocation mechanisms.

CORBA, a distributed object- and component- based middleware, is a well
established commercial standard, with thousands of users all over the world. It of-
fers interoperability with several sequential languages and is supported by several
� This work has been supported by: the Italian MIUR FIRB Grid.it project, No.

RBNE01KNFP, on High-performance Grid platforms and tools; the Italian MIUR
Strategic Project L. 449/97-2000, on High-performance distributed enabling plat-
forms; the Italian MIUR Strategic Project L. 449/97-1999 on Grid-computing for
e-science.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 679–688, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

680 S. Magini, P. Pesciullesi, and C. Zoccolo

big software companies. The interoperability with ASSIST provides the ability
to develop computation- or data-intensive components of complex applications
using an high-level parallel programming language, enabling the construction of
scalable applications.

Recent studies recognized that CORBA technology could be leveraged to
support the development of advanced Grid applications: the CORBA CoG kit
[4], for example, provides access to the Grid services provided by the Globus
Toolkit to CORBA applications. Several studies investigated how CORBA could
be adapted to enable the construction of high-performance applications, enabling
data-parallel programs to interact efficiently (see Sect. 5).

Our approach extends CORBA interoperability to stream-parallel programs,
so we will focus on an efficient implementation of stream communication using
standard CORBA mechanisms. This study is a preliminary step towards a com-
plete CCM (CORBA Component Model, introduced in the CORBA 3 standard)
integration and a possible generalization towards other component-based stan-
dards (e.g. Web/GRID services[5]). In previous works we showed that ASSIST
programs could invoke external CORBA objects [6] and claimed that ASSIST
programs could be automatically exported as CORBA objects [2]. In the follow-
ing sections, we describe two different strategies to export an ASSIST program in
the CORBA world (Sect. 2), we discuss their implementations (Sect. 3), provide
experimental results (Sect. 4) and we survey related work (Sect. 5).

2 Exporting an ASSIST Program in the CORBA World

2.1 Structure of an ASSIST Program

ASSIST applications are developed by means of a coordination language [1]
(ASSIST-CL), in which sequential as well as parallel computation units can be
expressed and coordinated. Sequential code units, that are the bricks to build
sequential and parallel modules, are described by a C-like procedure interface,
in which input and output parameters are identified and associated with their
type, and can be written in popular sequential languages (C, C++, Fortran 77),
allowing maximal sequential code reuse. Parallel activities, designed following
regular parallelism exploitation patterns, are marked, in the ASSIST-CL syn-
tax, by means of the parmod construct: it can be considered a sort of “generic”
skeleton, that can emulate the “classical” ones without performance degrada-
tion, but with more expressive power; for example, it allows both task and data
parallelism to be exploited inside the same parallel module, and can be used
to program lower (w.r.t. classical skeleton) level forms of parallelism. Parallel
activities are decomposed in sequential indivisible units, which are assigned to
abstract executors, called virtual processors. ASSIST allows them to communi-
cate by reading and modifying in a controlled, consistence preserving way the
shared computation state, which is partitioned among the virtual processors.

ASSIST modules interact by means of input and output interfaces. In module
interfaces, ASSIST recognizes the standard CORBA types, which are mapped to
native (C++) types following the standard C++ to CORBA type mapping[7].

Parallel Software Interoperability by Means of CORBA 681

The coordination model is based on the concept of stream. A stream is an
ordered sequence, possibly infinite, of typed values. Streams connect modules in
generic graphs, and drive the activation of their elaborations: either data-flow or
nondeterministic behaviour can be selected, and the activation can be controlled
by the internal module state. A composition of modules may be, in turn, reused
as a component of a more complex application, provided that the interfaces
match. The programming model includes also the concept of external objects,
as a mean of inter-component interaction, as well as interaction with external
world. Existing services (such as parallel file systems, databases, interactive user
interfaces,etc.) can be encapsulated in an object (e.g. CORBA) and invoked
inside an ASSIST application.

2.2 ASSIST Programs
as Components of Larger CORBA Applications

A computation intensive component of a CORBA application can be conve-
niently expressed in ASSIST to exploit parallelism and achieve good perfor-
mance, provided that it can interoperate with the application in a simple man-
ner. We devised two possible ways of interconnecting an ASSIST subprogram to
a distributed application, that address two different classes of problems:

RMI-like synchronous invocation of a subprogram (with arguments and re-
turn values), when the task to be computed in parallel is well defined and
insulated;

stream-like asynchronous data passing (realized using the standard CORBA
event channel mechanism), which is useful when the production of data to
be processed takes longer and can be overlapped with the elaboration, or
when the data structure to be processed is so big that it cannot be handled
as a whole by the application, or as well when we want to receive partial
results as soon as possible (for example when rendering images or videos).

An ASSIST subprogram, in order to be exported to the CORBA world, must
be a composition of ASSIST modules (at the extreme, it can be a single module)
in which one input stream and one output stream are left unconnected (i.e. no
module produces/consumes them) and are elected to be the input and output of
the entire exported component. In the RMI-like case, a further constraint to be
satisfied (that cannot be statically checked) is that for every datum the program
receives from the input source (by means of the input stream), it must produce
one and only one datum on the output stream.

3 Implementation

The process of exporting an ASSIST program in the CORBA world has been
automatized. We had two options: modify the original ASSIST compiler in or-
der to insert specialized support code for interoperation with CORBA in the
compiled modules or develop a separate transformation tool that produces an

682 S. Magini, P. Pesciullesi, and C. Zoccolo

interoperable ASSIST program that can be compiled with the standard ASSIST
compiler. The second options is more flexible: it allows experimenting with dif-
ferent solutions and different ORB implementations, and is easily extensible to
other distributed objects middleware (CCM, GridServices). It can be slightly
less efficient because the code interacting with CORBA runs as user code in the
ASSIST program, and this imposes some restrictions on its interaction with the
ASSIST runtime. We opted for the second solution: the ASSIST program un-
dergoes an initial analysis phase (detailed in 3.1); then, if the conditions stated
earlier are met, it is transformed, according to the option (RMI-synchronous vs.
stream-asynchronous interaction, detailed in 3.2 and 3.3 respectively) chosen by
the programmer, adding support code to interact with the CORBA runtime and
services. Appropriate CORBA IDL interfaces are automatically generated for
the transformed ASSIST program.

3.1 Analysis of the ASSIST Program

The analysis and transformation of the ASSIST program is carried out by a
separate tool (the integration within the ASSIST compiler is ongoing), designed
to parse and automatically manipulate an ASSIST program in source form.

The program is parsed and its representation is built as a set of C++ ob-
jects. Those objects provide methods to inspect and modify the structure of
the program, that can finally be rewritten in the ASSIST syntax and compiled
using the standard tools. The informations needed about the streams chosen to
interface the program to CORBA are extracted from the parsed program. If no
errors are encountered in this phase, the transformation proceeds according to
the selected interaction method.

3.2 Exporting as a Synchronous Object Method

In the case of synchronous interaction, an ASSIST program (for example, see
Fig. 1(a)) is exported as an object with a single execute method, with argument
and return types equal respectively to the types of the input and output stream
in the program interface. The transformation tool generates an IDL file (see
Fig. 1(b)) describing the object interface, including any type definition (trans-
lated to IDL syntax) or preprocessor directive specified in the source program.

The original ASSIST program is enriched with a module that acts as a bridge
towards CORBA (see Fig. 2). It instantiates an ORB in a separate execution
thread, creates an instance of the CORBA object representing the exported
algorithm and publishes it to a CORBA Naming Service, so that CORBA clients
can easily search for and connect to it; finally it enters the ORB main loop,
waiting for incoming requests.

Whenever a request is accepted by the ORB, the implementation of the exe-
cute method (running in the ORB thread) delivers the argument to the ASSIST
program and then stops waiting for a response. The effective message delivery
and reception is executed in the main thread of the server module, and con-
trolled by the ASSIST runtime support. When the response is received, the
execute method implementation returns it to its caller.

Parallel Software Interoperability by Means of CORBA 683

#define N 20

generic main() {
stream long[N][N] Aaa;
stream long[N][N] Bbb;

spt(input_stream Aaa output_stream Bbb);
}

parmod spt (input_stream long A[N][N]
output_stream long B[N][N])

{
// parallel code omitted
}

(a) ASSIST code.

// Autogenerated file - DO NOT EDIT
// CORBA interface for the spt ASSIST program

#define N 20

#define bool boolean

typedef long idl_ret_t[N][N];
typedef long idl_call_t[N][N];

interface spt {
idl_ret_t execute(in idl_call_t _var);

};

(b) Generated IDL interface.

Fig. 1. Synchronous interaction example.

CORBA

idl_ret_t

idl_call_t ASSIST
CORBA−ASSIST

BRIDGE

stream (ASSIST)

CORBA interaction

subprogram

Fig. 2. Deployed ASSIST program (synchronous invocation).

3.3 Exporting as a Component Interconnected
Through Event Channels

Using the former interaction method it is not possible to execute multiple re-
quests simultaneously, therefore it is not effective for stream-parallel programs,
like pipelines. To fully exploit stream parallelism, we developed a second mecha-
nism based on CORBA event channels to implement asynchronous communica-
tions. The transformation tool generates an IDL file containing the definitions of
event types for the input and output streams of the ASSIST subprogram, and a
special termination event used to stop gracefully a running ASSIST server (see
Fig. 3). In this case, no RMI interface is needed, because the ASSIST program
communicates with CORBA only by means of events.

CORBA events can have any type and event reception is governed by the
type, so we opted for the convention of encapsulating the datum in a named
structure with a single field, to ease the discrimination of ingoing and outgoing
messages.

The ASSIST program is transformed adding two modules (see Fig. 4), one
(S1) that intercepts ingoing events and sends them to the input stream of the
subprogram, and the other (S2) that receives message from the output stream
and forwards them as outgoing events.

Each module, at initialization, connects to the CORBA naming service and
obtains a reference to the COS Event Service, that is the CORBA service that
manages event publishing, subscription and notification. Then the first one sub-
scripts for the ingoing event and the special termination event and keeps for-
warding messages until it receives a termination notification. At the same time,

684 S. Magini, P. Pesciullesi, and C. Zoccolo

// Autogenerated file - DO NOT EDIT
// CORBA event definitions for
// the spt ASSIST program

#define N 20

#define bool boolean

typedef long idl_ret_t[N][N];
typedef long idl_call_t[N][N];

struct Termination {
bool stop;

};

struct source {
idl_call_t data;

};

struct sink {
idl_ret_t data;

};

Fig. 3. Generated IDL event definitions.

COS Event Service

CORBA

S1 S2idl_ret_tidl_call_t

Event in
type idl_call_t

Event out
type idl_ret_t

ASSIST

CORBA interaction

stream (ASSIST)

subprogram

Fig. 4. Deployed ASSIST program (asynchronous message passing).

the other publishes the outgoing event type and produces an event whenever
receives a datum from the ASSIST subprogram.

4 Performance Evaluation

The presented methodology is a viable solution to parallel software integration
into larger applications.

In order to demonstrate this, we present some experiments, targeted to mea-
sure the performance of invoking parallel algorithms from sequential code.

Environment. The following experiments were performed on a Blade cluster
consisting of 23 Intel Pentium III Mobile CPU 800MHz computing elements,
equipped with 1GB of RAM and interconnected by a switched Fast Ether-
net dedicated network. The CORBA implementation adopted is TAO, a free,
portable and efficient ORB written in C++, based on the ACE library [8, 9]. All
the programs were compiled with gcc/g++ v.3 with full optimizations.

Basic performance metrics for the mechanisms employed. The first set of exper-
iments are constructed to measure the maximum performance achievable by the
current implementation of the two interaction methods, independently from the
chosen algorithm. These performance metrics are compared with the ones ob-
tained on the same platform using plain MPI and ASSIST equivalent programs.
For the asynchronous interaction, we compared the bandwidth (varying the size
of the message, see Fig. 5) of a pipeline of two processes implemented in

Parallel Software Interoperability by Means of CORBA 685

 0

 2

 4

 6

 8

 10

 12

16 256 4096 65536 1M 16M

10
^6

 B
/s

Message size (ints)

Bandwidth of asynchronous communication

ASSIST
MPI
CORBA+ASSIST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

16 256 4096 65536 1M 16M

m
sg

/s

Message size (ints)

Bandwidth of asynchronous communication

ASSIST
MPI
CORBA+ASSIST

Fig. 5. Asynchronous communication bandwidth (left: 106B/s, right: messages/s).

– MPI (plain MPI Send/MPI Receive),
– ASSIST (plain stream),
– C++ and ASSIST (CORBA event channels).

The first process produces the stream as fast as possible, while the second
consumes it and computes the bandwidth. The communicating processes are
mapped on different machines, in order to measure the bandwidth of a remote
MPI/ASSIST/CORBA communication.

For the synchronous interaction, we measured the average round-trip time
(see Table 1) of a remote service request, in which the server simply echoes the
received message as a reply, varying the size of the request (and response). The
server and the client are mapped onto different machines. We simulated this
behaviour in MPI (by means of pairs of MPI Send/MPI Receives) and ASSIST
(using two streams to send the request and the response). We compared the re-
sults to a CORBA+ASSIST version, in which the server is an ASSIST sequential
module and the service, exported through RMI, is invoked by a C++ client.

Service time of an exported CORBA object. This experiment wants to show the
impact of the invocation overhead introduced by CORBA on the performance
of a data-parallel object. The service implements a synthetic data-parallel algo-
rithm, operating on large matrices (the argument and result are 700×700 floats)
and is written in ASSIST. The algorithm, given a matrix as input, transposes
it in parallel (all to all communication) and then for every pair of rows (ai, bj)
computes cij =

∑
k aik × bjk × sin(k).

The performance of the CORBA object is compared to an equivalent solution
expressed in the ASSIST-CL language. In this solution the sequential program

Table 1. Round trip times for MPI, ASSIST, and CORBA RMI encapsulating ASSIST.

Request/response size (ints) MPI (s) ASSIST (s) CORBA+ASSIST (s)
4096 0.00533 0.0045 0.0048

65536 0.053 0.0452 0.0587
1048576 0.762 0.7178 0.923

16777216 12.09 11.47 14.79

686 S. Magini, P. Pesciullesi, and C. Zoccolo

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Parallelism degree

Speedup for the data-parallel algorithm

ideal
ASSIST
ASSIST+CORBA

(a) Data-parallel benchmark.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Parallelism degree

Speedup for the stream-parallel algorithm

ideal
ASSIST - 800
ASSIST+CORBA - 800
ASSIST - 500
ASSIST+CORBA - 500

(b) Stream-parallel benchmark, varying
computational grain.

Fig. 6. Performance comparison: ASSIST vs. ASSIST+CORBA.

is encapsulated in an ASSIST sequential module and interacts with the parallel
module implementing the algorithm by means of ASSIST streams1.

The sequential version of the benchmark completes in 82.8s; a plain CORBA
version in which the server is sequential (C++) completes in 83.1s, with an over-
head of 0.3s. The overhead introduced by the program transformation is compa-
rable (see table 2) to the one in the sequential case, and is in line with the raw
overhead measured for the adopted mechanisms; this means that the implemen-
tation doesn’t introduce inefficiencies, and that parallelism exploitation doesn’t
interfere with the transformation. So, if the overhead is negligible compared to
the service time, as in this case, we obtain a good scalability, comparable with
the one obtained with a pure ASSIST implementation (see Fig. 6(a)).

Table 2. Parallel service times for the data-parallel algorithm.

Par. degree ASSIST-CL program ASSIST + CORBA overhead
2 42.2s 42.7s 0.5s (1.2%)
4 22.0s 22.6s 0.6s (2.7%)
8 12.8s 13.1s 0.3s (2.3%)

16 8.2s 8.7s 0.5s (5.7%)

Speedup of stream-parallel algorithms. The last experiment shows that stream-
parallel programs with sufficient computation to communication ratio can gain
high speedups. The stream-parallel algorithm chosen is the classical Mandelbrot
set computation, parallelized as a task farm, in which each task is a set of
contiguous points that must be evaluated; it produces a stream of computed
lines (arrays of 500-800 values), with a rate that varies during the execution.

1 This introduces overhead w.r.t. an ASSIST program in which the whole computation
is carried in a parallel module, in fact this implies that the argument is scattered or
gathered whenever a communication occurs between the sequential and the parallel
module, but makes the performance comparable with the CORBA based solution.

Parallel Software Interoperability by Means of CORBA 687

Even in this case, the overhead introduced by the CORBA interaction vs. a pure
ASSIST implementation is negligible (see Fig. 6(b)), allowing a good scalability
up to 16 processors (the maximal configuration we tested).

5 Related Work

Several studies investigated how CORBA could be adapted to enable the con-
struction of high-performance applications, focusing mainly on communication
optimization with/between data-parallel programs.

PARDIS [10] project extended an existing CORBA ORB implementation, to
allow both sequential and parallel clients to interact with sequential or parallel
servers, where the processes composing a parallel unit can communicate via MPI
message passing. They extended also the IDL language, in order to represent,
by means of the new distributed sequence type, the possible data distribution
policies often found in SPMD programs.

In PaCO [11] parallel (MPI) SPMD servers can be exported as a single par-
allel CORBA object and invoked by a sequential client; simple IDL extensions
are introduced to support the classical BLOCK/CYCLIC data distributions.

GridCCM [12] extends the PaCO approach to CORBA components: SPMD
MPI programs can be exported as CCM components, described by usual IDL3
interfaces and additional XML files describing the parallelism-oriented aspects.

Our approach can handle not only data-parallelism or SPMD programs, but
also task-parallelism (e.g. pipeline / task farm) and mixed task- and data- par-
allelism, exploiting standard CORBA mechanisms such as object method invo-
cation and event channels.

6 Conclusions

In this work we described the implementation of a compiling tool that automa-
tizes the exportation of an ASSIST subprogram as a CORBA object. The AS-
SIST programming language eases this task, because it is based on a modular
coordination model, that explicits all interactions between parallel components
by means of interfaces. The translation of those interfaces to CORBA IDL no-
tation and the construction of bridging ASSIST modules enables ASSIST sub-
programs to be integrated in larger applications using the CORBA standard as
an interoperability layer. This simplifies the use of parallel algorithms within a
sequential application and allows, as well, the composition of different parallel
algorithms inside the same parallel application, configured at load- or run- time.
The experiments showed that this is a viable solution to parallel software inte-
gration, in fact the two interaction methods allow the integration of low latency
(data-parallel) or high-throughput (stream-parallel) parallel components with
good performances, comparable to the ones that can be achieved in a parallel
application written entirely in a high-level parallel programming language like
ASSIST. These results makes ourselves confident that the integration between
object- or component-based frameworks and high-performance computing is fea-
sible, therefore we intend to extend the approach to generate bridges for CCM

688 S. Magini, P. Pesciullesi, and C. Zoccolo

components (introduced in the CORBA 3 standard), and to generalize it to
handle other component-based standards (e.g. Web/GRID services [5]) as well.

Acknowledgments

We wish to thank M. Vanneschi, M. Danelutto, M. Aldinucci, S. Campa, P.
Ciullo, M. Coppola, G. Giaccherini, A. Paternesi, A. Petrocelli, E. Pistoletti, L.
Potiti, R. Ravazzolo, M. Torquati, P. Vitale.

References

1. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28 (2002) 1709–1732

2. Aldinucci, M., Campa, S., Ciullo, P., Coppola, M., Magini, S., Pesciullesi, P., Potiti,
L., Ravazzolo, R., Torquati, M., Vanneschi, M., Zoccolo, C.: The Implementation
of ASSIST, an Environment for Parallel and Distributed Programming. In Kosch,
H., László Böszörményi, Hellwagner, H., eds.: Euro-Par 2003: Parallel Processing.
Number 2790 in LNCS (2003) 712–721

3. Aldinucci, M., Campa, S., Ciullo, P., Coppola, M., Danelutto, M., Pesciullesi, P.,
Ravazzolo, R., Torquati, M., Vanneschi, M., Zoccolo, C.: A Framework for Exper-
imenting with Structured Parallel Programming Environment Design. In: ParCo
2003 Conference Proceedings, to appear, Dresden, Germany (2003)

4. Parashar, M., Laszewski, G., Verma, S., Gawor, J., Keahey, K., Rehn, N.: A
CORBA Commodity Grid Kit. Concurrency Practice and Experience, special issue
on GRID Computing Environments 14 (2002) 1057–1074

5. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid services for distributed
system integration. Computer 35 (2002)

6. Aldinucci, M., Campa, S., Ciullo, P., Coppola, M., Danelutto, M., Pesciullesi, P.,
Ravazzolo, R., Torquati, M., Vanneschi, M., Zoccolo, C.: ASSIST demo: a High
Level, High Performance, Portable, Structured Parallel Programming Environment
at Work. In Kosch, H., László Böszörményi, Hellwagner, H., eds.: Euro-Par 2003:
Parallel Processing. Number 2790 in LNCS (2003) 1295–1300

7. Object Management Group: The Common Object Request Broker: Architecture
and Specification. (2000) Minor revision 2.4.1, http://www.omg.org

8. Schmidt, D.C., Harrison, T., Al-Shaer, E.: Object-oriented components for high-
speed network programming. In: Proceedings of the 1st Conference on Object-
Oriented Technologies and Systems (COOTS), Monterey, CA, USENIX (1995)

9. Schmidt, D.C., Levine, D.L., Mungee, S.: The design of the TAO real-time object
request broker. Computer Communications 21 (1998)

10. Keahey, K., Gannon, D.: PARDIS: A parallel approach to CORBA. In: Proceedings
of 6th High Performance Distributed Computing, IEEE (1997) 31–39

11. Pérez, C., Priol, T., Ribes, A.: PaCO++: A parallel object model for high per-
formance distributed systems. In: Distributed Object and Component-based Soft-
ware Systems Minitrack in the Software Technology Track of HICSS-37, Big Island,
Hawaii, USA, IEEE Computer Society Press (2004) To appear

12. Denis, A., Pérez, C., Priol, T., Ribes, A.: Bringing high performance to the CORBA
component model. In: SIAM Conference on Parallel Processing for Scientific Com-
puting. (2004) To appear

	1 Introduction
	2 Exporting an ASSIST Program in the CORBA World
	2.1 Structure of an ASSIST Program
	2.2 ASSIST Programs as Components of Larger CORBA Applications

	3 Implementation
	3.1 Analysis of the ASSIST Program
	3.2 Exporting as a Synchronous Object Method
	3.3 Exporting as a Component Interconnected Through Event Channels

	4 Performance Evaluation
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

