Evaluating OpenMP Performance Analysis Tools
with the APART Test Suite*

Michael Gerndt!, Bernd Mohr?, and Jesper Larsson Triff?

! Institut fiir Informatik, Technische Universitit Miinchen, Germany
gerndt@in.tum.de
2 Forschungszentrum Jiilich GmbH, ZAM, Jiilich, Germany
b.mohr@fz-juelich.de
3 C&C Research Labs, NEC Europe Ltd., St. Augustin, Germany
traff@ccrl-nece.de

Abstract. We outline the design of ATS, the APART Test Suite, for
evaluating (automatic) performance analysis tools with respect to their
correctness and effectiveness in detecting actual performance problems,
with focus on the ATS test programs related to OpenMP. We report on
results from applying two OpenMP performance analysis tools to the
test cases generated from ATS.

1 Introduction

Achieving high performance on parallel computers most often requires perfor-
mance tuning. The programmer identifies performance problems with the help
of manual or automatic performance analysis tools, and transforms the code to
improve its performance. The members of the European IST APART working
group are developing automatic performance analysis tools for parallel and grid
environments. The APART group defined the APART Specification Language
(ASL) for writing portable specifications of typical performance problems [2]. Re-
cently, an extensive set of performance properties for hybrid parallel programs
combining MPI and OpenMP has been collected [4].

Automatic performance analysis tools, such as those implemented by APART
members [1,5,7,8], must be tested with respect to correctness and effectiveness
in detection of actual performance problems. For an automatic performance
analysis tool (positive) correctness means that the tool is able to detect mani-
fested performance problems in a given application; negative correctness means
that the tool does not falsely report performance problems where none exist.
To aid the correctness testing and to provide a “standardized” testbed that can
be applied to different tools, we are developing the APART Test Suite (ATS)
framework which allows for easy construction of synthetic positive and negative

* Part of this work is funded by the European Commission via the working group on
Automatic Performance Analysis: Real Tools (APART),
http://www.fz-juelich.de/apart/

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 155-162, 2004.
© Springer-Verlag Berlin Heidelberg 2004



156 M. Gerndt, B. Mohr, and J. Larsson Traff

Table 1. OpenMP performance properties related to synchronization.

critical_section_locking: critical section overhead without competing threads
critical_section_contention: critical section overhead with competing threads
serialization_due_to_critical_section: all work in parallel loop in critical section
frequent_atomic: excessive time spent in simple atomic operation

setting_lock: overhead for setting a lock without competition

lock_testing: overhead for lock testing

lock_waiting: overhead for waiting for a lock

all_threads_lock_contention: locking overhead due to contention
pairwise_lock_contention: locking overhead by pairs of threads

test programs. The current version includes test cases for MPI and OpenMP
performance properties in C and Fortran [6].

This paper gives an overview of typical OpenMP performance properties
(Section 2), explains the basic structure of ATS (Section 3) and reports on first
findings of an evaluation study of two OpenMP performance tools (Section 4).

2 A Performance Property Hierarchy for OpenMP

To describe performance properties of parallel programs an object-oriented, func-
tional formalism called ASL (APART Specification Language) has been devel-
oped [2]. In ASL terminology a performance property characterizes a particular
performance-related behavior of a program based on available or required per-
formance data.

Performance data is primarily dynamic information collected during one or
more sample runs of the program, and can be either trace or summary infor-
mation. Performance data, however, also includes static information about the
program (block structure, program and data flow information, loop scheduling

Table 2. OpenMP load imbalance performance properties.

imbalance_in_parallel_region: different amount of work per thread
imbalance_at_barrier: different arrival time at explicit barrier
imbalance_in_parallel_loop: different amount of work in iterations
imbalance_in_parallel_loop_nowait: imbalanced parallel loop without implicit bar-
rier

imbalance_in_parallel_section: different amount of work in parallel sections
imbalance_due_to_uneven_section_distribution: more sections than threads, some
threads executed multiple sections

imbalance_due_to_not_enough sections: less sections than threads
unparallelized_in master_region: idle threads due to OpenMP master region
unparallelized_in_single_region: idle threads due to OpenMP single region
unparallelized_in_ordered_loop: thread serialization

imbalance_in_ordered_loop: different amounts of work in ordered region




Evaluating OpenMP Performance Analysis Tools 157

Table 3. OpenMP performance properties related to control of parallelism.

dynamic_scheduling overhead: scheduling overhead due to dynamic scheduling
scheduling_overhead_in_parallelized_inner_loop: inner loop with few iterations
was parallelized even though outer loop has much more iterations
insufficient_work_in parallel_loop: loop overhead dominates execution
firstprivate_initialization: overhead for initialization of firstprivate variables
lastprivate_overhead: initialization overhead of lastprivate variables
reduction_handling: overhead for reduction operation handling

Table 4. OpenMP performance properties related to inefficient serial execution.

false_sharing_in parallel_region: overhead for access to different array elements on
same cache line

information etc.) and the programming model/paradigm. Examples of perfor-
mance properties are load imbalance, abundant or mis-scheduled communica-
tion, and cache misses.

A performance property is described by a boolean condition, and has an
associated severity for expressing the relative importance of the property. A
performance property is a performance problem if it is present and its severity
exceeds a preset threshold. A performance bottleneck is a most severe perfor-
mance problem. In this framework performance engineering consists in locating
and eliminating performance bottlenecks.

Using the ASL formalism, the APART group has compiled hierarchically
structured specifications of typical performance properties for the programming
paradigms MPI, OpenMP, and HPF [2]. Specifications for OpenMP can be found
in [3], and considerably more detailed in [4]. We briefly summarize the proper-
ties recorded in [4], since these are the properties that are closely mirrored in
ATS. The specification is divided into four categories: (i) synchronization, (ii)
load imbalance, (iii) control of parallelism, and (iv) inefficient serial execution.
Concrete properties in the four categories are listed in Tables 1 to 4. For hybrid
OpenMP /MPI programming, additional categories contain properties related to
MPI communication and to parallel I/O.

3 APART Test Suite Design

We briefly describe the design of the APART Test Suite, especially as pertaining
to the OpenMP properties listed in the previous section. The first version of
ATS covers the “standard” parallel programming paradigms MPI and OpenMP,
but the modular structure of the design easily allows to add modules for other
programming paradigms like HPF, PVM, or POSIX threads.

The main idea of our design is a collection of functions with a standardized
interface, hierarchically organized into modules that can be easily combined to
produce a program exhibiting desired performance properties. Thus, functions



158 M. Gerndt, B. Mohr, and J. Larsson Traff

[ Oper#P PROPERTIES |
t t

MPI UTILS < OpenMP UTILS
par_do_mpi_work() »| par_do_omp_work()
alloc_mpi_buf() T
free_mpi_buf()
alloc_mpi_vbuf() DISTRIBUTION
free_mpi_vbuf() df_same()
mpi_commpattern_sendrecv() df_cyclic2()
mpi_commpattern_shift() df_block2()

T df_linear()
df_peak()
WORK df_cyclic3()
do_wor‘k() df_b|0ck3()

Fig. 1. Basic Structure of the ATS framework.

from the modules should have as little context as possible, and whatever context
is necessary is provided through standardized parameters. Furthermore, since
(automatic) performance analysis tools have different thresholds/sensitivities, it
is important that the test suite is parametrized so that the relative severity of
the properties can be controlled by the user.

Figure 1 shows the basic structure of the ATS framework for the MPI and
OpenMP programming paradigms. The boxes with shaded titles represent the
basic modules. Arrows indicate used-by relationships. For the lower levels, the
functions provided by those module are listed.

The lowest two modules, work and distribution, provide basic functionality
to specify the amount of generic work to be executed by the individual threads
or processes of a parallel program. The next level provides generic support for
the two main parallel programming paradigms MPI and OpenMP. The third
level implements property functions which when executed exhibit one specific
performance property. For OpenMP this means that we implemented one such
function for each property listed in Section 2. Finally, there are several ways of
calling the property functions so that different aspects of performance correctness
testing can be addressed. For a full description of the ATS framework, see [6].

4 Evaluation of OpenMP Performance Tools

We used the ATS to evaluate four OpenMP performance analysis tools, namely
the Hitachi Profiling Tool pmfunc specifically for Hitachi parallel supercomput-
ers, Intel’s performance tool Vtune, the platform-independent tools EXPERT and
Vampir. Vtune, Vampir and the Hitachi Profiling Tool are manual, while EX-
PERT is an automatic tool. Due to limited space, we only discuss pmfunc and
EXPERT below.



Evaluating OpenMP Performance Analysis Tools 159

4.1 Hitachi Profiling Tool

The Hitachi SR8000 supercomputer is a clustered SMP design. Each node con-
sists of eight processors that can be used by applications. Applications are de-
veloped in the hybrid programming model, MPI across nodes and OpenMP or
COMPASS, a Hitachi proprietary shared memory programming API, within
nodes.

The Fortran, C and C++ compilers on the Hitachi SR8000 can automatically
instrument program regions. A compiler switch pmfunc directs the compiler to
instrument user functions. The switch pmpar instruments all COMPAS parallel
regions, independent of whether they are generated by automatic parallelization
or by manual transformation. In OpenMP programs, the switch instruments
only OMP PARALLEL REGION, OMP PARALLEL DO, and OMP PARALLEL SECTION. It
does not instrument work-sharing constructs within parallel regions. The com-
piler switches not only insert calls to the monitoring routines, but also link a
performance monitoring library to the instrumented code. This library measures
for each instrumented region, that is, user function or parallel region, among
other values execution time, cache misses, load/store instructions, floating point
operations, and number of executions. See [9] for details.

For each node a separate information file is generated that can be inspected
with the pmpr command. This command displays the information contained in
the output files in a humanly readable form (Figure 2).

The information measured for a function or parallel region is presented sep-
arately for each thread. This makes it possible to investigate differences among

imbalance_due_to_uneven_section_distribution[2] (omp_pattern.c+560)

CPU time FLOP Inst LD/ST D-cache MFLOPS MIPS Times
IPO 4.492< 16> 76903k> 36190k> 2272k 0.000> 17.120> 4>
IP1 4.492 16> 76903k> 36190k> 2273k> 0.000 17.120 4>
IP2 4.493> 16> 76903k> 36190k> 2272k 0.000 17.116 4>
IP3 4.492 16> 76903k> 36190k> 2272k 0.000 17.119 4>
IP4 4.493 8< 38452k< 18095k< 1136k< 0.000< 8.559< 4>
IP5 4.492 8< 38452k< 18095k< 1137k 0.000 8.559 4>
IP6 4.493 8< 38452k< 18095k< 1137k 0.000 8.559 4>
IP7 4.493 8< 38452k< 18095k< 1137k 0.000 8.559 4>
TOTAL 35.940 96 461419k 217138k 13635k 0.000 102.693 32

Element parallelizing rate : (TOTAL)/(Max * IPs)
CPU time : 99.98[%] 35.940/(4.493168%8)
FLOP 1 75.00[%] = 96/(16%8)

Fig. 2. Example information file showing load imbalance due to uneven section dis-
tribution. The code had 12 sections, so the first four threads got two sections. The
evaluation program pmpr marks the largest and smallest values in each column with
‘<’ and >’ respectively.



160 M. Gerndt, B. Mohr, and J. Larsson Traff

the threads, for example, resulting from load imbalance. For parallel regions the
values can be compared directly. For functions, the data have to be interpreted
more carefully. If a function is started on the master processor but includes
parallel regions, the data of the other threads are accumulated in the master
processor. If, on the other hand, a function is called in a parallel region, the
execution information is reported for each thread individually.

Since execution time and instruction counts are given on a per thread basis
for parallel regions, load imbalance properties could be identified. The execution
time did show the imbalance only in imbalance_in_parallel_loop_nowait since
in all other cases the implicit barrier ensures equal execution times. In those
cases, the imbalance was detected from the differences in the instruction counts.

The difference between unparallelized ordered_loop and imbalance_in_-
ordered_loop was not shown since ordered loops are executed by the Hitachi
compilers as sequential loops.

The only test case based on cache misses, false_sharing in parallel_-
region, could be detected from a very high cache miss rate (about 75%). The
tool did not give any indication that the misses resulted from false sharing.

Properties related to synchronization bottlenecks could not be identified since
the tool gives no information about synchronization operations. The same is true
for properties checking parallelism overhead.

4.2 EXPERT

The EXPERT automatic event trace analyzer [8] is part of the KOJAK project
(Kit for Objective Judgment and Knowledge-based Detection of Performance
Bottlenecks), whose aim is a generic automatic performance analysis environ-
ment for parallel programs. Performance problems are specified in terms of exe-
cution patterns that represent situations of inefficient behavior. These are input
to an analysis process that recognizes and quantifies inefficient behavior in event
traces. The pattern specification in EXPERT is different from ASL, as it allows
to specify how performance metrics are calculated out of basic event attributes.

The KOJAK analysis process is composed of two parts: a semi-automatic
multi-level instrumentation of the user application followed by an automatic
analysis of the generated performance data. Running an instrumented executable
generates a trace file in the EPILOG format. After program termination, the trace
file is fed into the EXPERT (Extensible Performance Tool) analyzer. The analyzer
generates an analysis report, which serves as input for the EXPERT presenter. A
screen dump is shown in Figure 3. Using the color scale shown on the bottom,
the severity of performance problems found (left pane) and their distribution
over the program’s call tree (middle pane) and machine locations (right pane)
is displayed. By expanding or collapsing nodes in each of the three trees, the
analysis can be performed on different levels of granularity.

The experiments were performed on a 4 CPU Intel TA32 Linux system. As
can be seen in the left part of Figure 3, for OpenMP, EXPERT is currently able
to identify performance problems related to Flush, thread startup (Fork), bar-
rier and locking overhead. It also shows that EXPERT could detect all properties



Evaluating OpenMP Performance Analysis Tools 161

> - EXPERT: opat3.eap [=][o][x]
Hle \View Help
Ferformance Properies il Dynamic Call Tree T Locations
=0 00 Tota =0 00 man S0 0.0 Linus Cluster
91.1 Execution [ 0.0 omp_get_wtime B 00 zamooge!
0.0 MPI 1.0 imbalance _in_parallel_region B 0.0 Process 0
= 0.0 ompP 1.2 balahced _parallel_region 0.0 Thread O
0.0 Fush 0.0 imbalance_at_bartier 33.3 Thread 1
00 Fork 1.0 imbalance _in_parallel_loop 333 Thread 2
0.0 Synchronization 1.0 imbalance_in_parallel_loop_nowait 333 Thread 3
0.0 Barrier 1.0 imbalance_in_parallel_section
[ 0.0 Explicit [ 20.7 imbalance_due_to_uneven_section_distribution
0.0 imbalance_due_ta_nat_enaugh_section
0.0 Lock Competition = 00 gomp paralel

0.0 lfle Threarts O
0.0 Homp ibarrier

S0 175 unparalielized_in_master_region

+HIO- 17.5 unparallelized_in_single_regian

fH- 0.0 critical_section_lacking

7 0.0 eritical_section_contention

HIll- 2.1 serialization_due_to_critical_section

FH- 0.0 frecuent _stomic

5O 174 unparalielized_in_ordered_loop

+HIll- 0.9 imbalance_in_ordered_loop

THIl- 1.1 scheduling_overhead_in_paralizlized_inner_loop

t% 00 AP 0.0 Bomp sections
4.1 Critical O 0.0 i$omp section

0.0 insufficient_work_in_parallel_laap
0 firstprivate_initialization
0 lastprivate_overhead

£0-

s 0.

S0 0.

O 0.0 copyprivate_overhead
s 0.

-0 o

S0 o

0 reduction_handing
0 dynamic_scheduling_overhead
0 false_sharing_in_parallel_region

[[L]] ‘
10

QMP 4

50| IIIII!U’IIIIIIIgD’IIIIIIIgD’IIIIIIIII

20| 30| U‘ 50|

=

Fig. 3. Expert Presenter result display. Left pane shows performance problems, middle
pane their distribution, and right pane their machine location.

related to load imbalance, as indicated by darker boxes in the middle pane. The
numbers shown are the percentage of the total execution time lost because of
the identified performance property. The load imbalance problems are detected
due to high barrier overhead. Similar properties could be defined to distinguish
lock contention and frequent locking. By selecting specific call tree nodes the
distribution of the problem over the machine, processes, and threads can easily
be investigated in the right pane (shown for the property function imbalance_-
due_to_uneven_section distribution). EXPERT was also able to identify per-
formance problems related to locks and critical regions (not visible in Figure 3).

5 Conclusion and Future Work

We listed the current set of OpenMP performance property functions in the
APART Test Suite (ATS), a framework which can be used to generate test cases
for the evaluation of (automatic) performance analysis tools. We ran the full set
of OpenMP functions with a semi-automatic vendor performance analysis tool
and the automatic EXPERT tool.

The effectiveness of the tools depends highly on the information provided by
the runtime monitor. With the Hitachi tool no synchronization information is
available. Thus, even simple load imbalance problems cannot be easily detected.
The hardware counter information can be used instead to get hints to load



162 M. Gerndt, B. Mohr, and J. Larsson Traff

imbalances and have proved very useful to identify false sharing. The Hitachi
profiling tool provides only summary tables in ASCII form. The EXPERT tool
detects performance problems automatically, for example code regions with high
synchronization overhead, but more detailed properties explaining the reason for
load imbalance cannot be detected automatically.

The ATS enabled us to evaluate the four tools (results for Vtune and Vampir
are not discussed here due to limited space). Due to the well defined semantics
of the property functions, the strength and weaknesses of the different tools
can be easily identified. However, a formal comparison or ranking of the tools is
quite difficult since, except for EXPERT, the user has to interpret the information
provided by the tools and identify the performance properties manually.

We plan to extend ATS in the future with more performance properties and
to work on the automatic generation of test programs combining the individual
modules. ATS is freely available for the evaluation of other performance tools at
http://www.fz-juelich.de/apart/ats/.

References

1. A. Espinosa. Automatic Performance Analysis of Parallel Programs. PhD thesis,
Universitat Autonoma de Barcelona, 2000.

2. T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, and J. L. Traff. Knowledge
specification for automatic performance analysis. Technical Report FZJ-ZAM-1B-
2001-08, Forschungszentrum Jiilich, 2001.

3. T. Fahringer, M. Gerndt, G. Riley, and J. L. Traff. Formalizing OpenMP perfor-
mance properties with ASL. In Workshop on OpenMP: Experience and Implementa-
tions (WOMPEI), Intl. Symposium on High Performance Computing (ISHPC2K),
LNCS 1940, pp. 428-439, 2000.

4. M. Gerndt. Specification of Performance Properties of Hybrid Programs on Hitachi
SR8000. Peridot Technical Report, TU Miinchen, 2002

5. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvine,
K. L. Karavanic, K. Kunchithapadam, T. Newhall. The Paradyn Parallel Perfor-
mance Measurement Tool. IEEE Computer, 28(11):37-46, 1995.

6. B. Mohr and J. L. Traff. Initial Design of a Test Suite for (Automatic) Performance
Analysis Tools. In 8th Intl. Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS 2003), pp. 77-86, 2003.

7. H.-L. Truong, T. Fahringer. SCALEA: A Performance Analysis Tool for Distributed
and Parallel Programs. In Furo-Par 2002, LNCS 2400, pp. 75-85, 2002.

8. F. Wolf, B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Ap-
plications. Journal of Systems Architecture, 49(10-11):421-439, 2003. Special Issue
“Evolutions in parallel distributed and network-based processing”.

9. www.lrz-muenchen.de/services/compute/hlrb/manuals



	1 Introduction
	2 A Performance Property Hierarchy for OpenMP
	3 APART Test Suite Design
	4 Evaluation of OpenMP Performance Tools
	4.1 Hitachi Profiling Tool
	4.2 expert

	5 Conclusion and Future Work
	References



