
A Data Structure Oriented Monitoring
Environment for Fortran OpenMP Programs�

Edmond Kereku, Tianchao Li, Michael Gerndt, and Josef Weidendorfer

Institut für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748 Garching bei Mun̈chen, Germany

{kereku,lit,gerndt,weidendo}@in.tum.de

Abstract. This paper describes a monitoring environment that enables
the analysis of memory access behavior of applications in a selective
way with a potentially very high degree of detail. It is based on a novel
hardware monitor design that employs an associative counter array to
measure data structure related information at runtime. A simulator for
this hardware monitor is implemented, providing the capability of on-the-
fly simulation targeting shared memory systems. Layers of software are
constructed to operate and utilize the underlying hardware monitor, thus
forming a complete monitoring environment. This environment is useful
to help users to reason about optimizations based on data reorganization
as well as on standard loop transformations.

1 Introduction

This paper describes a novel approach for analyzing the memory access behavior
of OpenMP applications developed in the German project EP-Cache. It is based
on a hardware monitor designed to be integrated into cache controllers which
provides counters that can be configured to measure events for certain address
ranges.

This hardware monitor enables nonintrusive analysis of access overhead to
data structures in the program. While state of the art hardware counters in
modern CPUs can only be used to measure access behavior for program regions
or program lines, this hardware monitor is capable to give, for example, infor-
mation about the number of cache misses for a specific array in a loop of the
program.

This information can then be used in the identification of transformations
for optimizing the cache behavior of applications. Especially for data structure
transformations, such as padding, it will be very useful.

To exploit the abilities of the new hardware monitor, a software infrastructure
is required to collect and map the measured information back to the symbols in
the program. This paper describes this software infrastructure as well as a sim-
ulator for the hardware monitor which enables us to investigate the advantages
� The work presented in this paper is mainly performed in the context of the EP-

Cache Project, funded by the German Federal Ministry of Education and Research
(BMBF).

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 133–140, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

134 E. Kereku et al.

obtained from having this data structure-related information in the optimization
process.

Section 2 gives an overview of the monitoring infrastructure. Section 3 de-
scribes the individual components of the infrastructure. Section 4 presents a
monitoring scenario and Section 5 the analysis and optimization of Gauss Elim-
ination.

2 An Overview of the Monitoring Infrastructure

Monitoring data structures in a selective way is a demanding task. It requires
knowledge about the involved data structures, the state of application execution,
as well as the state of different memory levels present in the system - all of these
have to be taken in account in a coordinated way. We designed our monitor-
ing system to meet those requirements in the first place, but taken others into
consideration as well, such as portability and extendibility. The primary goal
is to give more detailed information about memory access behavior in Fortran
OpenMP programs targeting specific data structures. Programs written in other
programming languages as well as MPI programs can also be analyzed with
our environment provided that the language-specific instrumenters for program
regions and data structures are available.

(a)

A
pp

lic
at

io
n

Hardware Monitor

M
on

ito
rin

g
Li

br
ar

y
In

te
rfa

ce

ePAPI Interface

Monitor Control
Component

MRI

Performance
Analysis Tools

ADAPTOR
Runtime
System

Mapping
Data Structures to
Virtual Addresses

(b)

MRI

F90 OpenMP
Program

Code Regions
Instrumenter

Compiled and
Linked with:

Monitoring Library
DS Mapping Library

Simulator Library
Monitoring Library

Data Structures
Instrumenter

Instrumented
F90 OpenMP

Program
Executable

Execution
includes

Monitor and
Cache

Simulator

Performance
Analysis Tools

Fig. 1. (a) The central component is the Monitoring Control Component(MCC), which
controls the application’s execution, and manages different hardware and software mon-
itoring resources. (b) An application must go through several preprocessing procedures
before it can be monitored.

Figure 1 depicts the building blocks of our monitoring system, focusing on the
Monitor Control Component (MCC). The MCC provides two APIs: Monitoring
Request Interface (MRI)[4] and the monitoring library interface.

Via MRI, performance analysis tools1 can specify monitoring requests and
retrieve runtime data. The MCC converts MRI requests into many low level
1 In the rest of the paper we interchangeably use the terms “Tool” and “Performance

Tool” always refereeing to a Performance Analysis Tool.

A Data Structure Oriented Monitoring Environment 135

requests which are addressed to different sensors2. Those sensors can be hard-
ware counters, e.g. counting cache misses, or software sensors, e.g. information
about the current state of program execution. The information provided by the
sensors is subsequently processed by the MCC - for example, the information is
aggregated through region instances or threads upon request from the tools, pro-
ducing in this way the required profile or trace data. The monitored application
calls the monitoring library at instrumented regions. This library implements
parts of the MCC.

Some preprocessing procedures are necessary before we can start monitor-
ing an application (Figure 1). First, a Code Region Instrumenter (see Section
3.3) inserts calls to the monitoring library(Section 3.5) at the entry and exit
of regions in a selective way. A second instrumentation is done by the Data
Structure Instrumenter based on ADAPTOR [7] to generate information about
the application’s data structures, such as their virtual address range. In the
next step, the application is compiled and linked with libraries, including the
monitoring library, the simulator libraries and the ADAPTOR runtime system
library, producing an executable. Finally the program is executed which includes
a simulation of the cache hierarchy and the new hardware monitor. During the
execution, performance tools request and access performance data via the MRI.

The whole process can be automated. We provide a simple script which takes
source files of the application as input and generates the executable.

3 Resources for Data Structure Monitoring

3.1 The Hardware Monitor

The proposed hardware monitor [6] enables non-intrusive performance monitor-
ing of access overhead for specific data structures. It can be configured into two
working modes. The static mode allows to count predefined events or accesses
to specific memory regions of interest. This can be used to monitor given data
structures or parts of arrays, in order to get such information as L1 cache misses
for array A, L2 caches hits for array B etc. The dynamic mode enables a fine-
grained monitoring of memory accesses to selected address ranges. It provides
a histogram, e.g., for the cache misses of array A. The histogram’s granularity
can be configured as multiples of cache lines.

3.2 Hardware Monitor Simulator

While the hardware monitor is still only a concept, currently, a simulation of the
monitor is used instead. Though this environment can only catch memory ac-
cesses happening in user space of target processes, this enables the development
of performance tools and optimization techniques.

2 Our Hardware Monitor plays in the Figure 1 the role of sensor. MCC accesses it
through ePAPI, a PAPI [10] alike interface with the extension of histogram support.

136 E. Kereku et al.

The simulation and monitoring environment is capable of providing detailed
information about the runtime cache access behavior, and is composed of the
following modules: a runtime instrumentation module which instruments the pro-
gram’s load/store operations while the program is executing, a cache simulation
module which simulates a hierarchy of caches on processors with shard memory,
and a monitor simulation module which simulates the hardware monitor exactly
as it was described in the last section.

The runtime instrumentation module provides the capability of on-the-fly
cache simulation for OpenMP programs, which is enabled by the Valgrind [9]
runtime instrumentation framework. This allows catching all memory references
of an IA-32 binary, including SIMD instructions introduced in modern Intel
processors (MMX/SSE/SSE2). While the instrumentation is done inside of the
Valgrind CPU emulation layer, the cache simulator and monitor simulator are
linked to the target binary, and are notified via a callback mechanism each time
there is a memory access.

3.3 Code Region Instrumenter

To be able to measure performance data for regions in the program code, the
application has to be instrumented. We developed a Fortran 95 instrumenter
based on the NAG compiler frontend. It instruments sequential regions, taking
into account multiple exits from regions, as well as OpenMP regions [5]. For
OpenMP we follow the work of Bernd Mohr et. al. in Opari [3] and POMP [1].

The programmer can select which regions are instrumented by using appro-
priate command line switches. This is especially important when instrumenting
sequential loops. Sometimes it might be beneficial to instrument nested loops,
although the measurement overhead can be quite high.

The instrumenter generates information about the instrumented region in
an XML-Format that was designed in the APART working group. It is called
the Standard Intermediate Program Representation (SIR). Besides the file and
the lines covered by a region and the region type, we also collect information
on the data structures accessed in the region. For arrays, the generated XML-
representation specifies the data type as well as the array size if it is statically
known. This information can be used to help the user and automatic tools to
select appropriate data structures for measurements.

3.4 Data Structure Instrumenter

To be able to measure, for example, the L1 cache misses of a data structure
with the hardware monitor, we need to know the virtual address range of the
data structure at runtime. Our current implementation uses some components of
the ADAPTOR compilation system. ADAPTOR inserts for all arrays code which
handles array descriptors at runtime. These store, besides other information, the
address range to which the array is mapped. For scalar variables this information
can easily be obtained without special support. The ADAPTOR runtime system

A Data Structure Oriented Monitoring Environment 137

also provides an interface through which our monitor can retrieve the current
virtual address range for a specific data structure.

This kind of implementation restricts our monitoring to data structures in
code regions that are already allocated when the region is entered.

3.5 Lightweight Monitoring Library

The monitoring library implements the function calls that are inserted into the
application by the Program Region Instrumenter. Although the instrumentation
is done only for selected regions, most of the instrumented regions will actually
not be measured. The tools can and should request only information required
for the analysis via the MRI.

Thus, most of the calls will actually be empty calls and should have as little
overhead as possible. Due to the numbering scheme of code regions, which is
based on a file number and the regions first line number, we had to implement
the Configuration Table for storing MRI requests as a hash table (see Figure 2).
Each table entry represents an instrumented region. It has a flag that is only set
if there is an MRI request appended to the region. This way, the minimal weight
of a library call is basically reduced to the access time for the hash table.

3.6 Monitor Control Component

MCC (ref. Figure 2) is the central component that glues all the resources de-
scribed in the previous sections together and communicates with the performance
analysis tool. It is responsible for the initialization and configuration of resources,
for handling MRI requests, and for postprocessing and delivery of the runtime
information. For handling MRI requests for specific data structures, the MCC
translates the variables names into virtual addresses and vice versa.

 1 12 27 39 1 8 31 38 7 14

 42 42 42 42 46 46 46 46 47 47

 X X X X X X X

File ID

Configuration Table

Line
Number

Application Monitoring Control
Component

Region_Enter()
Region_Exit()

Add MRI Request

Next

Configure

 Get Results

Configure

Current Region
Information

Shared Memory Space

Monitoring
Resources

Configurator
Simulator

LOAD
STORE

Aggregator

MRI Request

Results

Performance
Analysis

Tool
Runtme

Information
Producer

Monitoring
Library

Put ResultsGet
Results

Fig. 2. A more detailed view of our system revealing some internal functionality and
implementation details.

138 E. Kereku et al.

4 Monitoring Scenario

Our monitoring system is structured into two processes, the application pro-
cess and the tool process. These processes communicate via a System V shared
memory segment. Accordingly, the system is implemented as two libraries. The
first library, linked to the application, contains the monitoring library, the MCC
functionality and the simulator. The other library, linked to the analysis tool,
implements the Runtime Information Producer (RIP) responsible for MRI pro-
cessing at the client side (Figure 2).

At runtime, the first statement executed by the application is the initial-
ization of the MCC. The application is blocked during initialization until the
analysis tool specified MRI requests and released the application. The MCC ini-
tializes all monitoring sensors, retrieves the region structure of the application
from SIR, and builds up a configuration table in the shared segment. The con-
figuration table is implemented as a hash table, where the couple of file ID and
region first line number serves as the key.

When the tool is started, it will first initialize the RIP and wait for a READY
signal of the MCC. It will then specify MRI requests which are validated and
attached to the appropriate region entries in the configuration table by the RIP.
The requests specify the requested runtime information (e.g. the number of L1
cache hits), information about the target code region and eventual data struc-
tures, and any desired aggregation. The data structure provides also space for
the measurement results.

Once the tool finished its initial requests3, it specifies where the program
should stop (usually the end of a region) and the MCC is notified to start the
application’s execution.

At the enter and exit point of each instrumented region, the region instru-
menter inserted a call to the monitoring library. When the control flow enters
the library, MCC looks up the configuration table for an MRI request that is
appended to the current region. If such a request exists, symbolic data struc-
ture information will be translated into virtual addresses if necessary and the
monitor will be configured accordingly. After that, the control is returned to the
application.

At the end of the monitored region, MCC stops the monitor, retrieves the
results, aggregates the results if required, and transfers the results to the space
reserved by the MRI request. When the end of a region corresponds with the
specified halting point, the tool is notified and the application, together with
MCC, is blocked again.
3 We say initial because the tool can make other requests at any time. The synchro-

nization between MCC and RIP allows interruption of the program for getting partial
results or for making new requests. This is particulary useful if the Tool can make
new decisions (followed by new requests) starting from the data gathered until the
present state of application’s execution.

A Data Structure Oriented Monitoring Environment 139

5 Analysis and Optimization of Gauss Elimination

In order to illustrate the usefulness of the monitoring system, we use a Fortran 90
program for solving linear equations, Ax = b, using Gauss elimination without
pivoting. Variable A, a two dimensional real array (100x100), is chosen as the
target data structure of monitoring.

Figure 3 presents two access histograms for L1 cache, including events of
read hits, read misses, write hits and write misses. The x-axis shows the relative
position of the access, with the whole memory range for A evenly divided into 25
portions. The y-axis represents the number of events. Both measurements target
code regions that constitute the numerical kernel, excluding the initializations
etc.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

LC1_WRITE_MISS
LC1_WRITE_HIT
LC1_READ_MISS
LC1_READ_HIT

0

10000

20000

30000

40000

50000

60000

70000

80000

counts Original

LC1_WRITE_MISS

LC1_WRITE_HIT

LC1_READ_MISS

LC1_READ_HIT

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

LC1_WRITE_MISS
LC1_WRITE_HIT
LC1_READ_MISS
LC1_READ_HIT

0

10000

20000

30000

40000

50000

60000

70000

80000

counts Optimized

LC1_WRITE_MISS

LC1_WRITE_HIT

LC1_READ_MISS

LC1_READ_HIT

Fig. 3. Cache access histograms for the original and optimized Gauss program.

The left part of Figure 3 illustrates the access histogram of the original
Gauss elimination program. The most significant feature of this histogram is the
high value of read misses and very low level of read hits. This encouraged us
to optimize the original program with different optimization techniques, such
as loop unrolling etc, and we finally derived an optimized version of the Gauss
program with better utilization of the hardware. The right part of Figure 3
presents the access histogram of the optimized program. It can be clearly seen
from this diagram, that the read misses are significantly reduced.

6 Future Work

This paper presents the current status of the development of a monitoring system
for measuring the memory access behavior for specific data structures. It is based
on a novel hardware monitor design.

140 E. Kereku et al.

In the near future we plan to enhance the automation scripts driving the
preprocessing and to make a full implementation of the monitor available. We
will develop a version of the monitor that works with the PAPI interface and will
thus be able to access the current hardware counters of modern microprocessors.
Another effort will be made to port our ePAPI interface to Itanium architectures
taking advantage from this processor’s support on monitoring predefined data
address spaces. We are also working on mapping variables to virtual address
based on debug information.

Within the EP-Cache project we will also develop an automated performance
analysis tool that does an incremental online analysis as described in the moni-
toring scenario on top of our monitor. The tool will be based on a formalization
of performance property with the APART Specification Language (ASL).

References

1. B. Mohr, A. Malony, S. Shende, F. Wolf: Design and Prototype of a Performance
Tool Interface for OpenMP, Journal of Supercomputing, Vol. 23, pp. 105 - 128, 2002

2. A. Malony, B. Mohr, S. Shende, F. Wolf: Towards a Performance Tool Interface for
OpenMP: An Approach Based on Directive Rewriting, EWOMP 01, Third European
Workshop on OpenMP, 2001

3. OpenMP Pragma and Region Instrumentor, www.fz-juelich.de/zam/kojak/opari
4. M. Gerndt, E. Kereku: Monitoring Request Interface Version 1.0,

http://wwwbode.in.tum.de/∼kereku/epcache/pub/MRI.pdf
5. M. Gerndt, E. Kereku: Selective Instrumentation and Monitoring, to be published:

11th Workshop on Compilers for Parallel Computers (CPC 04), Kloster Seeon, 2004
6. M. Schulz, J. Tao, J. Jeitner, W. Karl: A Proposal for a New Hardware Cache

Monitoring Architecture, Proceedings of SIGPLAN Workshop on Memory System
Performance (MSP 2002), Berlin, Germany. June 2002

7. ADAPTOR (Automatic DAta Parallelism TranslaTOR)
http://www.scai.fraunhofer.de/291.0.html

8. A-T. Nguyen, M. Michael, A. Sharma, J. Torrellas: The Augmint Multiprocessor
Simulation Toolkit for Intel x86 Architectures, Proceedings of 1996 International
Conference on Computer Design. October 1996

9. N. Nethercote and J. Seward: Valgrind: A Program Supervision Framework, Pro-
ceedings of the Third Workshop on Runtime Verification (RV’03), Boulder, Col-
orado, USA. July 2003

10. S. Browne, J. Dongarra, N. Garner, G. Ho, P. Mucci: A Portable Programming In-
terface for Performance Evaluation on Modern Processors, The International Jour-
nal of High Performance Computing Applications, 14(3), Fall 2000. Pp. 189–204.

	1 Introduction
	2 An Overview of the Monitoring Infrastructure
	3 Resources for Data Structure Monitoring
	3.1 The Hardware Monitor
	3.2 Hardware Monitor Simulator
	3.3 Code Region Instrumenter
	3.4 Data Structure Instrumenter
	3.5 Lightweight Monitoring Library
	3.6 Monitor Control Component

	4 Monitoring Scenario
	5 Analysis and Optimization of Gauss Elimination
	6 Future Work
	References

