An Agent-Based Approach to
Web Site Maintenance*

Wamberto W. Vasconcelos! and Jodo Cavalcanti?

! Department of Computing Science, University of Aberdeen
AB24 3UE Aberdeen, United Kingdom
wvasconcelos@acm.org
2 Department of Computer Science, University of Amazonas
69077-000 Manaus, AM, Brazil
john@dcc.fua.br

Abstract. Web sites are public representations of corporations, busi-
nesses and governmental bodies. As such they require proper mainte-
nance to ensure that accurate and updated information is presented ad-
equately. Dynamically created Web sites sometimes are not an option:
they add a computational overhead on the server and make the auto-
matic indexing of pages difficult. Static Web sites may grow to an extent
that manually performing maintenance operations becomes unfeasible:
automatic or semi-automatic means ought to be put in place. In this
paper we explain one such approach, using software agents to look af-
ter large data-intensive Web sites. Our maintenance operations are per-
formed by a team of autonomous agents that communicate with each
other as well as with Web masters or other human agents. Our approach
can be naturally incorporated into existing Web sites and its use can be
gradually extended to encompass larger portions of the site. Because our
agents are independent, their individual malfunctioning should not stop
the maintenance effort as a whole.

1 Introduction

Web sites provide to the public at large representations of corporations, busi-
nesses and governmental bodies. Increasingly Web sites provide the first (and
sometimes only) form of contact between the general public and the actual or-
ganisation. It is imperative that proper care and attention be placed into the
design of the Web site: the look-and-feel of pages, the provision of maps for the
site, the amount and positioning of information, and so on [I]. However, an in-
dependent and equally important (or even more important) issue concerns the
actual contents of the Web site: how accurate and updated the information pre-
sented is and what mechanisms are in place to support their maintenance. This
is a particularly sensitive issue in data-intensive Web sites, where data suffers
constant or frequent updates and there may be many sources of data involved.

* Partially supported by the Brazilian Research Council (CNPq) grant no. 55.2197/02-
5 (Project SiteFix — Adapting Web Sites to Perform Information Retrieval Tasks).

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 271 2004.
© Springer-Verlag Berlin Heidelberg 2004

272 W.W. Vasconcelos and J. Cavalcanti

We propose an automatic approach to Web site management via a team
of software agents: a collection of independent and communicating pieces of
software will share the responsibility and computational effort of looking after
a large data-intensive Web site, managing static Web pages. We introduce an
abstract and generic architecture and describe how it can be implemented using
existing technologies and standards.

Dynamic-page techniques [2]3] have been used to tackle the contents maite-
nance problem. However, static pages still have an important place as they are
simpler to manage, require less computational power and are visible to search en-
gines. It should be clear that we do not propose a replacement for dynamic pages:
information which usually resides in a database or that needs some computation
before presentation are clearly better addressed via dynamic generation. Our ap-
proach targets pieces of information which do not require complex computations,
changing only their values and, in many cases, not being stored in databases.
Both approaches should co-exist and be used in a single Web site application.

This paper is organised as follows. In the next section we address some of
the issues related with using agents to carry out Web site maintenance. In Sec-
tion Blwe explain our proposed architecture and its components. In Section [we
present an example to illustrate our approach. Section [Al contrasts our approach
with existing work and in Section Bl we draw conclusions and discuss the work
presented.

2 Web Site Maintenance with Agents

The idea to employ autonomous agents to perform Web site maintenance comes
from the fact that maintenance tasks are usually small, well defined and recur-
rent. To our knowledge, no-one has attempted this before: simple and robust
software agents can be designed to carry out stereotypical tasks and be reused
and customised to suit particular needs.

Typical maintenance tasks our agents can handle are those involving updat-
ing a piece of information and publishing it on a Web page. In order to specify
this sort of task, it is only necessary to specify the information item, its data
source, the frequency of update and the page where it is published. As a re-
sult, the amount of knowledge agents need is relatively small. Agents can be
implemented as simple lightweight programs, using only the necessary system
resources. The main advantages of using agents are [4J5]:

— proactiveness — agents are proactive, i.e., they take action when necessary.

— autonomy — each agent is autonomous, being able to perform its task on its
own with little or no human intervention.

— soctal ability — agents can send and receive messages to the Webmaster,
making it easier to follow maintenance activities.

It is important to note that the proposed approach is not a replacement for
dynamic pages techniques, such as ASP [3] and JSP [2]. Dynamic pages comprises
a widely adopted solution for maintaining the information updated. Although

An Agent-Based Approach to Web Site Maintenance 273

any piece of information that changes over time can be regarded as dynamic, we
can make a distinction between two types of dynamic information: (1) pieces of
information which result from a computation, often requiring parameters given
by users or coming from other source. (2) pieces of information that only have
their values changed periodically. Once instantiated, this sort of information can
be presented in static Web pages, which are simpler to be served to users and
easier to be found by search engines.

Our approach can co-exist with dynamic pages in a Web site, since the main-
tenance agents are designed only to maintain static Web pages. It is an alterna-
tive for maintaining static pages which contains dynamic pieces of information
of type (2) as explained earlier. Note that we have not yet addressed other dy-
namic aspects that can appear in the navigation structure and presentation of a
Web site application. Another important feature of our approach is the ability
to update content and visualisation separately. That allows, for instance, chang-
ing completely the look-and-feel of a Web page without affecting the content
specification or its data source. As benefits, our approach keeps Web pages au-
tomatically up-to-date, speeding up the maintenance process. Since it requires
fewer technical personnel (Webmaster), it also helps to reduce the overall costs
of maintaining a Web site.

3 An Agent-Based Architecture for Web Site
Maintenance

In this section we describe the components of our architecture, their details,
how they relate to each other and how we implemented them. It is worth point-
ing out that the architecture herewith described could have been implemented
rather differently, using distinct communication infrastructures, different pro-
gramming languages and even different notations to specify our agents with.
In Fig. [l we show a diagrammatic ac-
count of our architecture. The Web
Master is shown on the right-hand side
interacting with the Web pages (white Scanner Agent @
arrow): he/she annotates the HTML W pace, DD D<t'
files with specifications of agents to
be started up by the Scanner Agent, Fig. 1. Agent-Based Architecture
shown as a grey circle. The Scanner

Agent is responsible for going through a given directory where the HTML files
are stored and scans these for the annotations specifying agents. For each anno-
tation found in the HTML file, a corresponding agent (black circles) is started
up — the complete set of agents obtained at the end of the scanning process is
called the Team of Agents looking after the Web site, updating the same Web
pages that gave rise to them (vertical arrows in the diagram). The Web Master
and the Team of Agents communicate via message-passing (black two-way arrow
in the diagram). We explain below each component of the architecture.

...
0%,

Team of Agents Web Master

274 W.W. Vasconcelos and J. Cavalcanti

3.1 Annotated Web Pages

The Webmaster adds annotations to individual Web pages, that is, to particular
HTML [6] files. Since these annotations become part of an HTML file which
Web browsers need to display, they must be innocuous, that is, they should not
alter the rendering of the HT'ML by any browser. We achieve this by employing
the HTML comment tag “<!-- ... -=->” to wrap our annotations.

The actual annotations that go within the HTML comment tags are a special-
purpose XML [7] construct of the form

<agent info="InfoId" type="AgType" param="AgParams"></agent>
where InfoId is a label to uniquely identify the piece of information within the
Web site, AgType is the type of agent to be started and AgParams is an optional
attribute with any parameters which ought to be passed on to the agent being
started up.

The information identification InfoId allows content agents (explained be-
low) to refer to the particular portion of the page they should look after. A
single agent, the publisher agent explained below, is responsible for updating
the annotations of a Web page. The scanner agent assigns to each page with
at least one annotation a publisher agent; the annotations themselves cause a
number of content agents to be started up — these should look after particular
pieces of information on the page. Whenever there are changes to be carried
out on the HTML file, they are done via the publisher agent. This arrangement
solves any issues arising from concurrent updates of a file and preserves the
separation of contents and presentation matters. We exploit a fully distributed
coordination mechanism, explained below, by means of which content agents
independently offer their updates which are published by the publisher agent.
The information identifica-

. . <html><head><title>Weath F t...</title></head>
tion InfoId labels a piece odyy nead>eritleriieather Forecas /title></hea
of information within a Web Gurrent Temperature
site allowing us to take ad- <!-- <agent info="temp" type="weatherAg"

) , param="[every,15,min] "> -->
vantage of one agent’s effort 30 <!-= </agent> --> °C
</body></html>

for more than one page. As
an agent is started up for
an annotation to look after
a piece of information, we might need the same information elsewhere within
the Web site. If the same information appears elsewhere in the site then the
Webmaster should annotate it with the same label — the agent looking after
the information will interact with the publisher agent of the pages where the
information appears and that have been annotated. If, however, the Webmaster
accidentally uses a new label for a piece of information already associated with
an agent, a new agent will be started up and will look after the information.
This will not affect the Web site as the agents will independently look after the
same information, but there will duplication of effort.

Our annotations also work as delimiters for the HTML portion that the
agents should be looking after, that is, the part of the page they are responsi-
ble for monitoring and/or updating. In order to tell agents where the portion

Fig. 2. Sample Annotation for Web Pages

An Agent-Based Approach to Web Site Maintenance 275

they should be looking after ends, we split the “<agent ...>” and “</agent>”
tags, (using HTML comments around them) and enclosing the portion of HTML
within the two. We show in Fig.[2 a complete example of an annotation. In it, a
specific item of information of an HTML file is enclosed within tags <agent...>
and </agent>. We have associated the agent weatherAg with this portion of the
HTML file which will be responsible for updating the information every 15 min-
utes. The actual kinds of agents and their parameters are extensible. Webmasters
may create annotations and associate them to special purpose agents which they
also develop. We have explored a class of such agents which we explain below.

The Scanner Agent — The scanning process is itself carried out by an agent.
This agent is constantly running, checking for new annotations in the files
or changes to existing annotations. When a new annotation is found the
scanner agent starts up a corresponding agent which will be responsible for
that annotation in the HTML file. If there is already an agent responsible
for that piece of information, the scanner agent will skip the annotation.
Changes to existing annotations (type of the agent or parameters) will cause
the previously started agent to be killed and a new agent to be started
up instead. The scanner agent parses a hierarchy of HTML files, starting
up the team of agents that were specified by the Webmaster to look after
the Web site. The Webmaster will include an annotation everywhere in the
Web pages where there is a need for monitoring and updating of information
and/or formatting. A special agent, the publisher agent is started up for each
page with at least one annotation. This agent is responsible for collecting the
updates on the pieces of information within its page and update them in the
HTML file. The scanner agent does not abort when it finds ill-constructed
annotations, but skips over them and tells the Webmaster about them. The
scanning process does not check for the correctness of the HTML contents,
simply concentrating on the annotations and their associated effects (i.e.,
start up of agents).

Publisher Agents — The scanner agent starts up a publisher agent for each
HTML file with at least one annotation. This publisher agent is responsi-
ble for collecting the information from other agents looking after particular
portions of the file and updating it. An alternative to our approach would
be to have one agent looking after all annotated pieces of information of a
page as well as updating the HTML file. However, if the annotated pieces of
information have different frequencies for updates, then this one single agent
would need to assess the time elapsed for each previous update in order to
perform the next update. Although this is not an impossible task, such an
agent will be unnecessarily more complex.

Content Agents — For each piece of information annotated, a correspond-
ing content agent is created. This agent’s task is to access periodically the
data source as defined by the task frequency checking for any update in the
information content. Having a specific agent for each piece of information
isolates the details of the access to each data source, supporting multiple
data sources and facilitating changes in the data source of any information.

276 W.W. Vasconcelos and J. Cavalcanti

Hence, content agents manage and access data only and publisher agents
manage the Web pages visualisation (HTML files).

3.2 A Team of (Logic-Based) Agents

Each annotation may give rise to one or more agents, if the piece of information
has not already got an agent started up. All our agents are self-contained pro-
cesses with which Webmasters can communicate via message passing. The type
of agent specified in the annotation informs the scanner agent which contents
(functionalities) the agent ought to have. Each type is associated with a file con-
taining the source code the agent will use once started up. The parameters in
the annotation are passed to the agent which will use its source code with them.

In principle, any programming language can be used to represent the code.
We have employed a simple executable temporal logic called TeLA (Temporal
Logic of Assertions) [§] that confers a clean design on our agents and makes
it possible to formally verify them with temporal theorem provers [9] as well
as with model-checking tools such as SPIN and LTSA [11]. The temporal
dimension is also required to cope with the issues of frequency. We have used
SICStus Prolog to implement all our agents and infrastructure.

Our simple executable temporal logic has only one operator, the next time
operator (), and our formulae have a very restricted syntax, of the form Present
Conditions = () Assertions, the meaning of which is, if it can prove PresentCon-
ditions, a conjunction of non-temporal (ordinary) literals, at the current state of
affairs (current state of the system), then Assertions, a conjunction/disjunction
of (possibly temporal) literals will be made to hold in the next state.
This simple tempo-
ral logic is a prac-
tical compromise be-

| state(wait) A check(Msg) | =0 | state(process(Msg)) |

tween the expressive— | state(process(Msg)) N reply(Msg) | = 0O | state(wait) |
ness of full first-order
temporal logic [I3] and Fig. 3. Sample TeLA Agent

an efficient means to

compute models for its formulae. The creation of such models guides the ex-
ecution of temporal logic programs. We show in Fig. [3] a simple agent in TeLA.
The execution changes between two states, wait and process(Msg), where Msg
is a variable (we adopt Prolog conventions) to be instantiated to a message.
Our simple agent switches between these two states: it stays in the wait state
until a message Msg arrives (predicate check succeeds if a message is available for
the agent). When a message arrives it moves to state process(Msg) (first axiom)
— a state in which the agent will handle the message it just got. The second
axiom allows the agent to reply to the message it has received and the agent
goes back to the wait state.

We have enclosed the left and hand sides of the formulae in boxes to improve
visualisation. The formulae show an agent that keeps an account of its current
state, one of the set {wait, process(Msg)}, and the conditions that ought to
hold in order for the states to change. Actions can be conveniently encoded as

An Agent-Based Approach to Web Site Maintenance 277

conditions: when a predicate like check/1 is attempted to be proved, it causes
the execution of a routine to check if a message is available for the agent. A
set of temporal formulae such as those above is put to use by means of a proof
procedure that tries to build a model that satisfies all the formulae. The formulae
depict the program and the proof procedure its interpreter. When agents are
started up their corresponding program is the union of temporal formulae and
the proof procedure.

The proof procedure works by checking if the atomic formulae on the left-
hand side hold true. If they do, then the right-hand side is used to build a model
for the next state of the computation. The proof procedure builds a model for
the next state in which all formulae hold. In order to prove the left-hand side,
the proof procedure checks the model for the current state for all those atomic
formula that hold. However, the proof procedure also keeps a conventional (atem-
poral) logic program in which auxiliary predicates are defined — in our example
above, the check and reply predicates are proved by means of one such pro-
gram. The separation between temporal and atemporal aspects provides neater
programs.

3.3 Communication Among/with Agents

Our agents are started up and run as independent Prolog processes which ex-
change messages by means of the Linda process communication mechanism avail-
able in SICStus Prolog [12]. Linda [T5] is a concept for process communication,
consisting of an area, the tuple space (shown in Fig. [[) where data from a num-
ber of different processes can be stored and a few basic operations (write, read
and delete) can be performed on this area. The Linda concept has proven very
successful due to its simplicity and flexibility, being incorporated into a number
of programming languages, including Java [16]. SICStus Prolog incorporates a
Linda library and offers a repertoire of built-in predicates with which one can
write programs that run independently and exchange data. The messages our
agents exchange via the tuple space are variants of the FIPA-ACL [17] standard
adapted to Prolog’s syntax. The information within messages are XML con-
structs [7] transferred as strings. This standardisation allows for changes in our
infrastructure: for the sake of simplicity, we have used Prolog to implement all
components of our architecture. However, we could move to a more standard and
popular multi-agent platform like JADE [18] without much reimplementation.

Webmasters can communicate with agents, to find out about their status
and follow their activities. A simple interface allows communication between
the Webmaster and the team of agents. When agents encounter problems they
can send messages to the Webmaster alerting to the difficulties they meet and
whether they require intervention. Ideally, such interactions should be kept to
a minimum, conferring as much autonomy to the agents as possible when they
are being designed.

278 W.W. Vasconcelos and J. Cavalcanti

4 Working Example

In this Section we describe three main-
tenance agents as an example of the
use of our approach for automated Web
site maintenance. In this example there
is one publisher agent and two con-

Edt Miew Go Bookmaks Tools ghiedow Help

] g Waalher Forecast - hansus i

“Wasrner Forzcast far

hAMALE, BEAZIL

Morelay Tuesday Wednssdey Thirsdesy Fridey

tent agents. For simplicity, it is assumed

that all Web site content is kept in a Z 2 B 5
database and all agents have access to
this database. Let us consider a Web site
for weather forecast having the follow- Bl -t
ing information for each location: day of
the week, minimum temperature, max-
imum temperature and current temperature. This database can be repre-
sented by the Prolog [I4] facts weather(Location,Day,MinTemp,MazTemp)
and current_temp(Location,CurrentTemp). The information content in this
database is constantly updated from multiple sources. The agents’ task is to
keep this information updated on a page for a chosen location. Figure [illus-
trates a Web page of this sort. Given that this sort of information is volatile,
the content agents need to check the database periodically — for example, every
hour the database is checked for a new current temperature. The forecast for
maximum and minimum temperatures for the next 5 days does not change in
the same frequency, for that reason there is another content agent responsible
for keeping track of that particular information.

Charrsnt Tempesanes 200

Fig. 4. Weather Forecast Page

<html><head><title>Weather Forecast...</title></head>
<body>

<!-- <agent info="days_temp" type="weather_agl"
param="[every,12,hour] "> -->

<table><tr><td>Monday</td><td>Tuesday</td>...

<tr><td>33</td><td>31</td>... </table> <!-- </agent> -->

 Current Temperature

<!-- <agent info="curr_temp" type="weather_ag2"
param="[every,1,hour] "> -->

30 <!-- </agent> --> °C ...

Fig. 5. Annotation for Web Page Maintenance

In order to specify the content agents, the portion in the Web page code where
the information about current temperature and the 5-day forecast appears must
be annotated as presented in Fig. Bl These are identified, respectively, as agents
weather_agl and weather_ ag2. Note that a publisher agent is automatically
created for every page with an annotation. In this example we will identify this
agent as pub_ag.

A typical content update agent behaviour can be illustrated by a state tran-
sition diagram, depicted in Fig. @ From the initial state (start), the agent
immediately moves to the check state, where it checks the data source for an

An Agent-Based Approach to Web Site Maintenance 279

information update. At this point there are two possibilities: there is an update
to perform and the agent moves to state update, or there is no update to be

performed and the agent goes to state

sleep. Yet another possibility is a prob-
lem state, caused by unavailability of the @
data source, for example. In this case the

agent should notify the Webmaster and

finish its execution accordingly. We omit-
ted this state for simplicity.

Fig. 6. Content Agent Behaviour

When an agent is in state update it puts the new information on the tuple
space and notify all publisher agents that are expecting that message — we explain
below how this notification is done. After sending the information, the content
agent goes to sleep. The details of this coordination among agents is explained
in Section E11

State sleep cor-
responds to a time start = (O state(check)
(deﬁned by the fre- (state(check) A check_info(nil)) = () state(sleep)

(state(check) A check_info(I) A I # nil) =
O state(update,I)

quency of the task)

in which the agent re- (state(update,I) A notify_publishers(I)) =
mains inactive. When O state(sleep)
the agent gets active (state(sleep) A sleep(l,hour)) = (O state(check)

again it moves back

to state check. Fig. [T Fig. 7. Content Agent for Current Temperature
shows the specification of a content maintenance agent using TeLA. Predicate
check_info(I) encapsulates all necessary steps to access the data source and
retrieve the latest data. If there is no new information available, the predicate
returns nil. Predicate notify_publishers(I) makes the updated information
available to the publisher agent. Predicate sleep makes the agent inactive for a
specific duration of time, which is also specified in the Web page annotation.

The specification of the five-day forecast agent weather_agi is basically the
same. The only differences are the piece of information the agent is interested in
and the frequency of its update. In this case the agent looks after the information
with label days_temp, defined in the page annotation.

The publisher

agent is, however, start = (O state(check)

rather different as (state(check) A in(inform(_,pub_ag,wake_up))) =
O state(publish)

it needs to know (state(publish) A get_all(Request) A
about the Web extract_info(Request,Info) A publish(Info)) =

page visualisation O state(check)
style, the actual
page layout and
the specific place where the information managed by the content agents will
be published. It works by placing an information request on the tuple space
and it waits for a signal from the content agent responsible for that piece
of information. Once the content agent has placed an updated information,

Fig. 8. Publisher Agent

280 W.W. Vasconcelos and J. Cavalcanti

the publisher receives a “wake up” signal and updates the Web page. Fig. B
shows the publisher agent specification. In state check the publisher agent
waits for a “wake up” message from a content agent, denoted by predicate
in(inform(_,ag pub,wake up)). In state publish the publisher gets all
updated information it needs via predicate get_all (Request), then it extracts
the value of the pieces of information from the messages using predicate
extract_info/2, and finally publishes the Web page via publish(Info).
Details of the implementation of these predicates and those predicates used in
the content agents are given in Section Bl below. Note that the page layout is
associated with the publisher agent. It is encapsulated by predicate publish(I)
which inserts the updated piece of information I in its right place as defined in
the annotation.

Changing the style is also possible, via the publisher agent. This is pos-
sible because of an important feature of our approach: keeping content and
visualisation management separate. We can define individual styles for pieces
of information as a set of predicates where, given a piece of information,
it produces a corresponding publishable piece of code in a target mark-
up language, such as HTML. For example, itemize(L) where L is a list
of items with the form [item;,items, ..., item,] results in the HTML
code item;</1i>itemp</1i>... item, </1i>. Sim-
ilarly, other style predicates are defined as table(LL), paragraph(P),
enumerate (L), bigText (P), and so on, each resulting in a piece of code which
is placed in a page template. As a result the visualisation style of a particular
data is changed. This allows the publisher agent to change a piece of information
presentation style without affecting its content and completely independent of
content maintenance agents and data sources. This also reinforces the idea of
separation between information content and visualisation details.

Another use of the publisher agent is to re-publish a corrupted or deleted
page, as the agent includes the layout and all static information of a Web page.
The content maintenance agents provide the dynamic information of a page and
once with all this information a new page can be produced.

The agents presented in this example keep the Web page presented in Fig. [4
automatically updated. Whenever the current temperature or the 5-day weather
forecast changes in the database the content agents capture the new values and
send them to the publisher agent, which in turn updates the HTML file.

4.1 Agent Coordination

The maintenance agents are coordinated in a particular way, in order to provide
independence between content and publisher agents, allowing the same piece
of information to be used by more than one publisher agent and to minimise
overhead in message exchanging.

A major concept used in our agent architecture is the tuple space. It works as
a notice board where any agent can post and retrieve messages. Our coordination
mechanism is defined by this order of events:

An Agent-Based Approach to Web Site Maintenance 281

1. the publisher agents put a request for updated information on the tuple
space;

2. the content agents, when they have new updates, look up the tuple space
for requests for their pieces of information — each piece of information is
identified by the label provided by the Webmaster;

3. the content agents add their new information to the requests and put a wake-
up notice on the tuple space to alert the publisher agents there is something
for them.

The request message format is request (Sender,Receiver,Info) :Flag. In this
notation, Sender and Receiver are agent identifications. Info has the form
info(Label,Data), where Label is a unique identifier of a piece of information,
as defined in the page annotation and Data is its corresponding value. The
information label (originated in the Web page annotation) identifies a piece of
information and is used by publisher agents to find the right place of the data on
its Web page. Flag is used as an indication whether the information value Data
has been updated by a content agent. Our convention is to set Flag to value 0
indicating that Data has not been updated yet and zero otherwise.

The second type of message is only
a signal used to wake up publisher

Tuple Space
agents with the form inform(Sender, request (pub_sag,_, info(temp,) :0
B . . . request (pub_ag, ,info(days_temp,)):0
Receiver,Signal). This message is
necessary to avoid unnecessary re- M) ® ®
peated verifications of the tuple space pub_2g veather agl weather ag3
by publisher agents, checking for up- ——
dated information. Fig. [illustrates cequest (pub_ag, weather, agl, nto(teap,30)) 11
the giVen exalnple ShOWing hOW agents l.'equest(puhiag,weatheriagz,info(daysitemp,...)):1
. . inform(weather ag2,pub_ag,wake up)
communicate via the tuple space. The [
top half of the diagram illustrates the
pub_ag weather_agl weather_ag2|

pub_ag writing on the tuple space the
requests for the two pieces of informa- Fig. 9. Coordination via Tuple Space
tion it needs in its Web page — the en-

tries have “.” (anonymous variables) in the fields whose value is to be supplied
by a content agent.

The bottom half of the diagram of Fig. [9 depicts the content agents
weather_agl and weather_ag2 independently accessing the tuple space and al-
tering the requests with their information. The first agent to supply information
to the publisher agent pub_ag also inserts the wake-up notice. In our example,
weather_ag2 does this.

The agent implementation in TelLA presented in Figs. [7] and [§] makes use of
auxiliary (atemporal) predicates which actually perform the maintenance tasks,
such as accessing a database, checking messages on the tuple space and creating
the HTML files. It is important to point out that these predicates also have the
important role of hiding implementation details, keeping the agent specification
clean and easier to read. It allows, for instance, changing the access to data
sources, without changing the main specification in TeLA. We describe the im-

282 W.W. Vasconcelos and J. Cavalcanti

plementation details of these predicates below. The content agents also include
three such predicates:

1. check_info/1: succeeds if the data item has changed in the data source, re-
turning its value, or succeeds if the data item has not changed, returning nil.
The actual implementation might involve details for connecting and accessing a
database, via SQL queries, for example.

2. sleep/1: succeeds if the execution of an agent is suspended for the duration
specified by the arguments (number and time unit).

3. notify publishers/l: succeeds if there are requests from publisher
agents for the piece of information in the tuple space and sends the
updated value of the information and a signal to wake up the pub-
lisher agents who have requested that information. The code in Fig. [0
illustrates this predicate implemen-

tation for the agent that updates notify publishers(I) :-
. bagof _rd noblock(P,

the current temperature. Predicate B roquest info(P,_, info(curr_temp,_)) 0,
bagof _rd noblock(A,B,C) builds my_iﬁgl,}ff?“eSt) g
list C with all terms A that match send-info(Me, AllRequest,I).

3 < send_info(_, [1,.).
term B in the tuple space. In the S e (i [PiRestP].I) :-

3 1 1 out(request_info(P,Me,info(curr_temp,I)):1),
program in Fig. 10, AlZ.I.Request is a P e A g P
list of publisher agent ids, who have send_info(Me,RestP,I).

asked for information curr_temp.
Publisher agents also require special ~ Fig. 10. Content Agent Implementation
predicates described in [19].

5 Related Work

We can speculate that batch files and daemons have been employed in an ad-hoc
fashion by Webmasters to automate repetitive tasks, but these have not led to a
systematic approach to Web site maintenance. One major drawback with batch
files and daemons is their lack of responsiveness: in order to find out about them
(i.e., whether they are alive and running), the Webmaster must look up their
process identifications and their status or log files — scaling up clearly becomes
a problem.

Similar annotations, the associated scanning process and the bootstrapping
of agents were originally described in [20], using Java as a programming
language and JADE [1§] as a communication platform. Each agent incorporated
a particular functionality: a particular piece of information from another Web
site was specified for the agent to monitor and periodically fetch, using it to
update one’s Web site [22]. These two references inspired our work herewith
described and, apart from them, we have not been able to find any work on
using multi-agent systems to look after Web sites.

A number of methods and techniques for Web site development have been
proposed such as OOHDM [23], Araneus [24], Strudel [25], WebML [26], UWE
[27], and the logic-based approaches of [28] and OMSwe [29], among others. The
use of a formal approach for Web site modelling and development facilitates

An Agent-Based Approach to Web Site Maintenance 283

maintenance tasks as they usually provide a high-level view of the application
and separation between content, navigation structure and visualisation. This
allows, for instance, updating page templates or colour schemes without affecting
the page content or links. Although these works have addressed the problem of
Web site application development in the large, where maintenance is one of the
issues involved, our work proposes an approach to static Web page maintenance
which can also be adapted in order to be employed as part of a complete Web
site application development method, as those mentioned above.

Specific automated maintenance is not addressed by most methods, although
some claim support for it or offer some degree of automation. Given that there
are certain maintenance tasks which are well defined and repetitive, it is possible
to automate them in order to avoid human intervention, saving maintenance time
and keeping the Web site continuously updated. With this respect, two work are
closer to our proposed approach.

Sindoni [30] proposes an approach to enforce consistency between page con-
tent and database state. A specific algebra is proposed for defining views and
views updates, which uses the Araneus Data Model as the reference model.
Views updates are used by an algorithm that automatically updates the Web
site from a set of changes on the application database. Maintenance is performed
by removing or generating the appropriate sets of pages.

OntoWebber [31] is an ontology-based approach designed for the generation
of data-intensive Web sites, in particular Web portals. It addresses the prob-
lem of multiple and heterogeneous sources of data by defining integration and
articulation layers responsible for resolving syntactic and semantic differences
between the different data sources. The composition layer includes a specifica-
tion of a Web site view based on the Web site modelling ontologies. Ontologies
are described using DAML4-OIL [32], a semantic mark-up language for Web re-
sources. A generation layer process queries the site specification to produce the
Web pages. This approach offers some degree of automation by means of rules
defined as triggers. These rules update the source data, meta-data, and site view
specifications according to the fired triggers. However it is restricted to content
maintenance.

6 Conclusions and Discussion

In this paper we introduce an agent-based approach to the maintenance of Web
sites. Our approach caters for static Web pages whose contents require moni-
toring and updating. We offer a notation that Webmasters can use to annotate
particular points of a Web page (an HTML file) in order to specify that an agent
should monitor and update that portion of the page. The Webmaster can add as
many annotations as required in one Web page. Our architecture associates, via
a scanning process (carried out by an agent itself) an agent to each annotation.
This agent is started up and autonomously looks after its prescribed piece of
information. Any modifications to a Web page are centrally carried out by a

284 W.W. Vasconcelos and J. Cavalcanti

publisher agent with whom all agents communicate — each annotated Web page
has a publisher agent, started up by the scanning process.

It is important to decouple our proposed architecture and its implementation,
as explained here. We do not suggest that ours is the only or the best means to
implement the proposed architecture: our implementation should be considered
as a proof-of-concept prototype used to exploit and refine our ideas. However,
our implementation captures all basic functionalities of our architecture and is
evidence that our architecture is feasible. Some features of our proposal worth
pointing out are:

— Scalability — as many agents as required can be started up, provided that
there are available computational resources. In our experiments, we used up
to 250 agents in one single Pentium III PC (1GHz) running under Linux.
However, the scanner agent can be programmed to start up agents in differ-
ent machines. The SICStus Prolog tuple space employs a unique host:port
addressing which allows agent anywhere in the Internet to access it.

— Fase of use — agents are now responsible for tasks that relied on humans or
off-line daemons and batch files. Rather than keeping a record on the status
of daemons and batch files or the actions of humans, the manager can now
communicate with thousands of agents collectively or individually.

— Robustness — because the task of monitoring and updating the pages of the
Web site is divided among independent agents, if individual components fail
it is still possible to achieve some degree of overall functionality. Additionally,
we can enable agents to perform failsafe operations when they encounter
exceptional circumstances. For instance, if the data source an agent is using
suddenly becomes unavailable, the agent could provide a “Not Available”
default value to update the information on the Web page. The agent could
also send a message to the Webmaster and wait for further instructions.

— Backwards compatibility — any existing Web site can incorporate our archi-
tecture, as the annotations are naturally accommodated within HTML files.

— Extensibility — the class of available agents and their functionalities can be
gradually extended, and new annotations specifying them can be added at
will. Web pages can be gradually annotated as the Webmaster becomes used
to the new managerial style of administering a team of software agents.

Hyperlinks within Web sites may need constant monitoring as the objects they
point at may move or disappear — we envisage employing software agents for
constantly scanning the whole collection of HT'ML files, checking for broken ref-
erences. These agents notify the Webmaster and isolate the offending reference,
wrapping it as a comment. We are currently working on how these agents can
be incorporated into our architecture.

Work is under way to integrate our proposal for agent-based maintenance
with a high-level specification of Web sites, as described in [28[33]. This ap-
proach also uses logic to specify a Web application thus facilitating the desired
integration. We notice that in a high-level specification of a Web site application
the annotations for associating pieces of information to agents do not need to
be made in the HTML files directly; rather they should become part of the site

An Agent-Based Approach to Web Site Maintenance 285

specification. This opens new possibilities to improve both approaches to Web
site synthesis and maintenance.

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Wang, P.S., Katila, S.S.: An Introduction to Web Design and Programming.
Brooks/Cole-Thomson, U.S.A. (2004)

Hall, M.: Core Servlets & JavaServer Pages. Addison-Wesley (2000)

Weissinger, A.: ASP in a Nutshell, 2nd Edition. O’Reilly (2000)

Franklin, A. and Graesser, A.: Is it an Agent, or just a Program? In: LNAI. Volume
1193. Springer, Berlin (1997)

Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons
Ltd., England, U.K. (2002)

Musciano, C., Kennedy, B.: HTML & XHTML: The Definitive Guide. 4th edn.
O’Reilly, USA (2000)

Harold, E.R.: XML: Extensible Markup Language. IDG Books, U.S.A (1998)
Cavalcanti, J., Vasconcelos, W.: A Logic-Based Approach for Automatic Synthesis
and Maintenance of Web Sites. In: Procs. of the 14th Int’l Conf. on Soft. Eng. &
Knowl. Eng.(SEKE’02), ACM Press (2002)

Manna, Z., Pnuelli, A.: How to Cook a Temporal Proof System for your Pet
Language. In: Proc. 10th POPL-ACM. (1983) 141-154

Holzmann, G.J.: The SPIN Model Checker. IEEE Trans. on Soft. Eng. 23 (1997)
Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
& Sons, England, UK (1999)

SICS: SICStus Prolog User’s Manual. Swedish Institute of Computer Science,
available at http://www.sics.se/ sicstus (2000)

Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: MetateM: an Imper-
ative Approach to Temporal Logic Programming. Formal Aspects of Computing
7 (1995) 111-154

Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)
Carriero, N., Gelernter, D.: Linda in Context. Comm. of the ACM 32 (1989)
Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns and Practice.
Addison-Wesley, U.S.A. (1999)

FIPA: The Foundation for Physical Agents. http://www.fipa.org (2002)
Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA-compliant Agent Frame-
work. Technical report, CSELT S.p.A (1999) http://sharon.cselt.it/projects/
jade/.

Vasconcelos, W.W., Cavalcanti, J.: Agent-Based Web Site Maintenance. Technical
Report 0401, Dept. of Comp. Science, Univ. of Aberdeen, U.K. (2004) Available
at http://www.csd.abdn.ac.uk/ wvasconc/pubs/techreportAUCS0401.pdf.
Clarkson, D.: Agents for Web Management: An Architecture and its Implemen-
tation. MSc Report, MTP Programme in E-Commerce, Dept. of Computing Sci.,
Univ. of Aberdeen, U.K. (2003)

Spell, B.: Professional Java Programming. Wrox Press Inc (2000)

Shand, A.: Minion: An Approach to Automated Website Information Updating.
MSc Report, MTP Programme in E-Commerce, Dept. of Computing Sci., Univ. of
Aberdeen, U.K. (2003)

Schwabe, D., Rossi, G.: The Object-oriented Hypermedia Design Model. Comm.
of the ACM 38 (1995) 45-46

286

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

W.W. Vasconcelos and J. Cavalcanti

Atzeni, P., Mecca, G., Merialdo, P.: Design and Maintenance of Data-Intensive Web
Sites. In: Procs. of the Int’l Conf. on Extending Database Technology (EDBT),
Valencia, Spain (1998)

Fernandez, M., Florescu, D., Kang, J., Levy, A., Suciu, D.: Catching the Boat with
Strudel: Experience with a A Web-site Management System. SIGMOD Record 27
(1998)

Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites. In: Proceedings of the WWW9 conference,
Amsterdam, the Netherlands (2000)

Hennicker, R., Koch, N.: A UML-based Methodology for Hypermedia Design. In:
Procs. Unified Modeling Language Conference (UML’2000). Volume 1939 of LNCS.
Springer-Verlag (2000) 410-424

Cavalcanti, J., Robertson, D.: Synthesis of Web Sites from High Level Descriptions.
Volume 2016 of LNCS. Springer, Germany (2001)

Norrie, M., Palinginis, A.: From State to Structure: an XML Web Publish-
ing Framework. In: 15th Conf. on Advanced Information Systems Engineering
(CAiSE’03), Klagenfurt/Velden, Austria (2003)

Sindoni, G.: Incremental Maintenance of Hypertext Views. In: Procs. of the Int’l
Workshop on the Web and Databases, Valencia, Spain (1998) 98-117

Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: Model-driven ontology-based
Web site management. In: Procs. of the 1st Int’l Semantic Web working symposium
(SWWS’01), Stanford, CA, USA (2001)

W3C: DAML+OIL Reference Description (2001) http://www.w3.org/TR/daml+
oil-reference.

Cavalcanti, J., Robertson, D.: Web Site Synthesis based on Computational Logic.
Knowledge and Information Systems Journal (KAIS) 5 (2003) 263-287

	Introduction
	Web Site Maintenance with Agents
	An Agent-Based Architecture for Web Site Maintenance
	Annotated Web Pages
	A Team of (Logic-Based) Agents
	Communication Among/with Agents

	Working Example
	Agent Coordination

	Related Work
	Conclusions and Discussion

