
N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 266–270, 2004.
© Springer-Verlag Berlin Heidelberg 2004

ADVISOR SUITE: A Tool for Rapid Development of
Maintainable Online Sales Advisory Systems

Dietmar Jannach and Gerold Kreutler

University Klagenfurt
Universitätsstraße 65

9020 Klagenfurt, Austria
0043 463 2700 3757

{dietmar.jannach, gerold.kreutler}@uni-klu.ac.at

Abstract. A sales advisory system is a tool supporting customers in the deci-
sion-making and buying process by interactive and personalized requirements
elicitation and the provision of comprehensible product proposals and expla-
nations. The particular challenges when building such systems lie in the strong
interdependencies between the recommendation and personalization logic and
the corresponding adaptive, web-based user interface. The ADVISOR SUITE tool
described in this paper is a system that follows a consistent knowledge-based
approach for all tasks that are required to build such intelligent sales advisory
systems for arbitrary domains. The development of advisory applications is
based on a conceptual model of online sales dialogues, a “Model-View-
Controller” application architecture, a generic controller component, as well as
(semi-)automatic, template-based web page generation. Experiences from
various real-world applications show that the knowledge-based approach and
the corresponding graphical tools of ADVISOR SUITE significantly accelerate the
development and maintenance process for such applications.

1 Introduction and Overview

Online customers are increasingly overwhelmed by the variety of comparable
products or services available on the online channel. Web-based sales assistance and
recommendation systems are a means for supporting online customers in their product
selection and decision-making processes. These systems provide the best value for the
customers when they simulate the behavior of a real sales assistant. Therefore, they
acquire the customer’s real needs in a personalized dialogue ([1], [2]), and come up
with a suitable set of proposals and provide adequate explanations for these proposals,
which is required to increase the customer’s confidence in his buying decision.

The purpose of the ADVISOR SUITE framework described in this paper is to provide
a domain-independent tool for integrated development and maintenance of such web-
based sales advisory applications. At the core, ADVISOR SUITE is an expert system
where the knowledge of the domain expert is made explicit in a declarative
knowledge base. This knowledge both comprises the recommendation guidelines of
the domain, as well as information about how the real customer requirements have to
be elicited, i.e., knowledge about efficient sales dialogues. The main challenge of

ADVISOR SUITE: A Tool for Rapid Development 267

such an approach is that there are strong interrelations between these two types of
knowledge. Typically, the user’s preferences are acquired by asking questions in an
interactive dialogue. The user’s answers (i.e., his/her profile) obviously influence the
personalized set of products to be recommended, but also determine the further
dialogue flow which should be adapted, e.g., to the user’s skill level.

Consequently, the web pages used in the online dialogue must be extremely
flexible and dynamic such that changes in the knowledge base are immediately taken
into account and do not require manual adaptation of the dynamic HTML code.
Nonetheless, the web pages have to be comprehensible and editable by a Web
developer who aligns the pages’ style to the corporate layout or integrates the
application into an existing web site.

Run timeDesign time

Advisor Repository

Knowledge Acquisition Tools

HTML

<html>
 <head>
 </head>

</html>

HTML

<html>
 <head>
 </head>

</html>

GUI
Generation

Module

Advisor Suite
Server

Interaction &
Personalization

Agent

HEWLETT
PACKARD

Web Server
Virtual advisor session

Fig. 1. Architecture of the framework

Fig. 1 shows the overall architecture of the ADVISOR SUITE framework. The required
knowledge is acquired using graphical knowledge acquisition tools and stored in a
common repository. The server component utilizes that knowledge and creates
interaction and personalization agents that manage the user input for each advisory
session. Before the system is started, the needed web pages for the dialogue and a
generic controller component implementing the personalization logic are generated.

2 Combining the Recommendation Logic and Adaptation Logic

In our approach, the customer properties are the glue between the recommendation
logic and the personalized adaptation of the user interface and the dialogue. First,
these properties, i.e., the user’s interests and preferences, determine the products to be
proposed and their degree of fit with the requirements. The possible values (answers)
for the properties are typically finite and pre-defined. The computation of suitable
products is based on a priority-based filtering technique similar to [3] and declarative
rules like,

“If the customer’s experience in the domain is low and he has limited financial
reserves, we propose low-risk investments.”1

1 Simplified example taken from the domain of online investment advisory.

268 D. Jannach and G. Kreutler

Such advisory rules are modeled in a graphical tool and are expressed in a high-
level, end-user oriented language; the individual ranking of the remaining products is
based on a standard personalization technique [4] and the evaluation of the products’
utilities for the customer. More details on the knowledge-based recommendation
approach can be found in [5].

On the other hand, the customer properties also steer the interaction process, i.e.,
the sequence of the dialogue pages. In many cases, for instance, the interaction style
depends on the user’s self estimate of his knowledge level in the domain. Expert users
can be asked fewer, but more complex and more technical questions, novice users
might need more help and a different form of explanations. Within the ADVISOR
SUITE framework, this adaptation and personalization knowledge that an experienced
sales agent will have is also made explicit. Again, the personalization process is
driven by the customer properties and made explicit with rules like,

“If the user has limited knowledge on the domain, proceed to a page where he is
asked if he wants to have a look on more introductory material.”

Fig. 2. Modeling the dialogue

These rules are maintained with the help of a special development tool which is
depicted in Fig. 2. In particular, the used modeling approach is based on a simple but
general conceptual model of a sales advisory dialogue, where the major concepts are
chosen in a form such that they are close to the resulting web application and use a
non-technical representation: Basically, sales assistance dialogues consist of dialogue
steps (pages) that contain one or more questions on customer preferences or desired
product properties. Each dialogue step can have a number of possible successor
pages, whereby the actual successor page is determined dynamically based on the
personalization rules described above. A dialogue can have “special steps”, like hints
on conflicting requirements or additional information or result and explanation pages.
Our experiences from several practical applications show that domain experts are able
to cope with this level of complexity and can describe the structure of a good dialogue
using these concepts after a very short training phase. An important factor for user
acceptance also lies in the conceptual integration of this knowledge with the

ADVISOR SUITE: A Tool for Rapid Development 269

recommendation logic, e.g., the same customer properties used for product filtering
now appear as questions in the dialogue; the language for expressing complex
conditions is the same as for page successor relations and for filtering rules.

Custom
footer
area

Menu
area

Animated
avatar

Answer display

Question display

Cascading style sheets
(Layout and positioning)

Navigation area

Fig. 3. Structure of a dialogue page

3 User Interface Generation

The dynamic HTML pages of the final application have to be very flexible and must
immediately reflect changes in the knowledge base, e.g., when a new question is
defined. Moreover, they have to be simple enough such that they can be easily
adapted by a Web developer who for instance wants to change the layout of the pages.
ADVISOR SUITE uses the following basic techniques to deal with that problem. First,
we make extensive use of Custom Tags [6] which are syntactically similar to standard
HTML tags, but implement application-specific functionality. The usage of these tags
helps us both to avoid the problematic mixture of static HTML-code with procedural
scripting code and also leads to a more clear and legible page source code. On the
other hand, we also rely on automatic web page generation based on an elaborated
template mechanism. Each dialogue page is actually built up from different,
predefined areas and like question or explanation areas, headers and footers. The GUI
Generation Module in Fig. 1 automatically assembles and parameterizes the needed
web pages from small, pre-defined templates such that the basic dialogue can be
generated (in a rapid prototyping process) without programming. Fig. 3 shows the
layout and the different areas of such a generated page.

4 Conclusions

Over the last years, several approaches (e.g., [7], [8], [9], [10], and [11]) have been
presented that aim at applying state-of-the-art Software Engineering practices to the

270 D. Jannach and G. Kreutler

specific requirements of the development of web applications. To some extent, our
work can be seen as an implementation of best-practices from these approaches for a
specific application domain: The design process is based on a generic, conceptual
model of a sales advisory application; the separation between the business logic,
controller, and presentation layers is very rigid. As such, our system shows the
practical applicability of the basic idea of these approaches.

However, our work differs from most of the above-mentioned approaches as we
want to support the full development process up to the automatic generation of the
web pages; although we limit ourselves to a specific class of web-based systems, a
broader analysis of the applicability of the presented ideas will be part of our future
work. Another difference lies in the choice of the modeling notation, where we
deliberately did not use a standard technique, e.g., based on UML (Unified Modeling
Language). With the goal of short training times for the domain expert, we opted for a
proprietary, end-user oriented notation with a defined semantics that is needed for
automated application generation. Our future work will include a detailed evaluation
of the applicability of standard modeling techniques from the field of Software
Engineering for domain experts with limited background in that area.

References

[1] Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
and Zanker, M.: A Framework for the Development of Personalized, Distributed Web-
Based Configuration Systems, AI Magazine, Vol. 24(3) Fall 2003, 93-110.

[2] Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
and Zanker, M.: Personalizing on-line configuration of products and services,
Proceedings 15th European Conference on Artificial Intelligence, Lyon, France, IOS
Press, 2000.

[3] Schiex, T., Fargier, H., Verfaille, G.: Valued Constraint Satisfaction Problems: Hard and
Easy Problems, International Joint Conference on Artificial Intelligence, Montreal,
Canada, 1995, 631-639.

[4] von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research,
Cambridge University Press, Cambridge, UK, 1986.

[5] D. Jannach and G. Kreutler, Building on-line sales assistance systems with ADVISOR
SUITE, Proc. of 16th Intl. Conference on Software Engineering and Knowledge
Engineering (SEKE'04), Banff, CAN, 2004.

[6] Goodwill, J.: Mastering JSP Custom Tags and Tag Libraries, Wiley Publishers, 2002.
[7] Ceri, S., Fraternali, P., and Matera, M.: Conceptual Modeling of Data-Intensive Web

Applications, IEEE Internet Computing, Vol. 6 , No. 4, pp. 20-30.
[8] Conallen, J.: Building Web Applications with UML, Addison Wesley, Reading, MA,

2000
[9] Rossi, G., Schwabe, D., Esmeraldo, L., Lyardet, F.: Engineering Web Applications for

Reuse, IEEE Multimedia 8(1), 2001, pp. 20-31.
[10] Jacyntho, M. D., Schwabe, D., Rossi, G.: A Software Architecture for Structuring

complex Web Applications, Journal of Web Engineering, 1 (1), October, 2002, pp. 37-60.
[11] Gomez, J., Cachero, C., Pastor, O.: Extending a Conceptual Modelling Approach to Web

Application Design, Proc. of the 1st International Workshop on Web-Oriented Software
Technology, Valencia, Spain, June 2001.

	1 Introduction and Overview
	2 Combining the Recommendation Logic and Adaptation Logic
	3 User Interface Generation
	4 Conclusions
	References

