
N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 103–117, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Exception Handling Within
Workflow-Based Web Applications

Marco Brambilla and Nicola D’Elia

Dipartimento Elettronica e Informazione, Politecnico di Milano,
Via Ponzio 34/5, 20133 Milano, Italy

mbrambil@elet.polimi.it, nd636136@polimi.it

Abstract. As the Web becomes a platform for implementing B2B applications,
the need arises of extending Web conceptual modeling from data-centric appli-
cations to data- and process-centric applications. New primitives must be put in
place to implement workflows describing business processes. In this context,
new problems about process safety arise, due to the loose control on Web cli-
ents. Indeed, user behavior can generate dangerous incoherencies for the exe-
cution of processes. This paper presents a proposal of workflow-enabling
primitives for Web applications, and a high level approach to the management
of exceptions that occurs during execution of processes. We present a classifi-
cation of exceptions that can occur inside workflow-based Web applications,
and recovery policies to retrieve coherent status and data after an exception. An
implementation experience is briefly presented too.

1 Introduction

In recent years, the Web is more and more being used as the implementation platform
for B2B applications, whose goal is not only the navigation of content, but also sup-
porting business processes, content management, value-added services and so on.
Conceptual modeling expertise from other fields (database, object-orientated pro-
gramming, hypermedia applications) has been widely recognized as valid starting
point for defining conceptual aids for Web application development too [7]. The first
generation of conceptual models for the Web [1, 2, 5, 6] essentially focus on captur-
ing the structure of data to be published, and the navigation primitives, represented by
such concepts as pages, content nodes, and links.
To cover business processes support, a second generation of conceptual models is
required. These new models should cope with process and workflow modeling, sup-
port Web service interaction, and integrate data-centric and process-centric modeling
primitives into a mix suited to the development of advanced B2B Web applications.
In this context, it is important to address the critical cases that can occur in the enact-
ment of business processes on a Web-based platform.
This paper presents an extension to a first-generation Web modeling language [5, 6]
to support the specification, design and implementation of B2B applications, and

104 M. Brambilla and N. D’Elia

offers an high-level analysis of critic aspects and exception management issues within
Web applications exploiting business processes. Exceptions that can happen in a Web
based application have peculiar characteristics with respect to traditional workflow
applications. This is due to two main aspects: (i) interaction options provided by
browser-based interfaces are very powerful, but they are more oriented to free navi-
gation than strict processes adherence(e.g., user is enabled to jump back and forth on
navigated pages, thus introducing dangerous repetition of process activities); (ii) user
cannot be forced to perform any action or task (e.g., he can stand on a page for long
time, or even close the browser and disconnect at any time).
Our approach is lightweight: we are interested in extending Web modeling to cope
with process and exception modeling, not to adapt workflow management systems to
the Web; about exceptions, we aim at defining a modeling paradigm for critical cases,
not to build transactional systems or low level exception handling mechanisms.
Many works have addressed the problem of exception interception and compensation.
They mainly studied transactional properties for activities, which is not in our scope.
However, some works deals with weaker properties. For example, [8] is based on the
concept of spheres, to make use of only those transactional properties that are actually
needed; [12] is one of the first works that address the problem in the Web context.
The paper is organized as follows: Section 2 briefly outlines the main concepts about
workflow and Web application modeling; Section 3 introduces the study of exception
and critical situations that can occur in the execution of processes on the Web; Sec-
tion 4 presents our approach to management and recovery of exceptional situations
within process execution; finally Section 5 reviews implementation experience and
Section 6 draws some conclusions and presents our ongoing and future work.

2 Conceptual Modeling of Web Applications and Workflows

Conceptual design consists in high-level, platform-independent specification of the
application, which can be used to drive the subsequent implementation phase. In this
section we focus on two aspects of conceptual design: (i) Web application design,
briefly describing the WebML model, that will be used in the sequel to describe our
proposals; (ii) Workflow modeling concepts and primitives.
It is important to point out that, although the paper uses the WebML notation to de-
scribe our contribution, the proposed approach is independent from the specific lan-
guage or notation that is adopted. Our approach to conceptual design relies on the
following guidelines: an Entity-Relationship diagram models the data stored, ma-
nipulated, and exchanged by the application actors, plus the metadata required for the
management of the business processes; process diagrams are treated as a higher-level
specification and are used to derive a set of hypertext models that "realizes" them.
These hypertext models belong to the site views of the user groups involved in the
process and must offer them the interface needed for performing their activities.

Exception Handling Within Workflow-Based Web Applications 105

2.1 Process Modeling

For specifying processes, we adopt the terminology and notation defined by the
Workflow Management Coalition [16], which provides a workflow model based on
the concepts of Process (the description of the supported workflow), Case (a process
instance), Activity (the elementary unit of work composing a process), Activity in-
stance (an instantiation of an activity within a case), Actor (a user role intervening in
the process), and Constraint (logical precedence among activities and rules enabling
activities execution). Processes can be internally structured using a variety of con-
structs: sequences of activities, AND-splits (a single thread of control splits into two
or more independent threads), AND-joins (blocking convergence point of two or
more parallel activities), OR-splits (point in which one among multiple alternative
branches is taken), OR-joins (non-blocking convergence point), iterations for repeat-
ing the execution of one or more activities, pre- and post-conditions (entry and exit
criteria to and from a particular activity).
Fig. 1 exemplifies a WfMC workflow specifying the process of online purchase,
payment and delivery of goods. The customer can choose the products to purchase,
then submits his payment information. At this point, two parallel tasks are executed
by the seller employees: the warehouse manager registers the shipping of the order,
and a secretary prepares a bill to be sent to the customer.

Products selection

Performed by:
Customer

Order payment

Performed by:
Customer

Shipping

Performed by:
Warehouse mgr

Billing

Performed by:
Secretary

AND

Fig. 1. Workflow diagram of the refunding request process

2.2 Hypertext Modeling

For hypertext modeling, we use the WebML notation[5, 6, 14], a conceptual language
for specifying Web applications developed on top of database content described by a
E-R diagram. A WebML schema consists of one or more site views, expressing the
Web interfaces that allow the different user roles to browse or manipulate the data
specified in the underlying E-R schema. A site view contains pages, possibly clus-
tered in areas, typically representing independent sections of the site. Pages enclose
content units, representing atomic pieces of information to be published (e.g., indexes
listing items from which the user may select a particular object, details of a single
object, entry forms, and so on); content units may have a selector, which is a predi-
cate identifying the entity instances to be extracted from the underlying database and
displayed by the unit. Pages and units can be connected through links of different
types to express all possible navigation.

106 M. Brambilla and N. D’Elia

Besides content publishing, WebML allows specifying operations, like the filling of a
shopping cart or the update of content. Basic data update operations are: the creation,
modification and deletion of instances of an entity, or the creation and deletion of
instances of a relationship. Operations do not display data and are placed outside of
pages; user-defined operations can be specified (e.g., e-mail sending, e-payment, ...),
and operation chains are allowed too.
Fig. 2 shows a simplified version of the two areas of the Customer site view of the e-
commerce site example, whose workflow have been illustrated in Fig. 1: the Products
area allows guests to browse products, by selecting in the Home page the product
group from an index (ProductGroups). Once a group is selected, all the products of
that group are shown in page Products. The Mailing List Subscription area allows the
user to subscribe to a mailing list through a form. The submitted data are used to
modify the profile of the User, by means of a modify operation called Modify Subscr,
which updates the instance of entity User currently logged.

MailingList Subscription Area

Subscription Page

Products Area

Products PageHome Page

ProductGroups

ProductGroup

Products

Product
[ProdGroup2Product]

ProductGroup

Selected Group

Insert data
Modify Subscr

User
[ID=CurrentUser]

Fig. 2. WebML site view diagram featuring areas, pages, content units, and operations.

2.3 Extending Hypertext Modeling to Capture Processes

In the specification of a Web application supporting business processes[3], the data
model, which is normally used to describe the domain objects, is extended with user-
related and workflow-related data, and the hypertext model is enriched by a set of
primitives enabling workflow dependent content of pages and navigation.
Process metadata. Data modeling is extended with the metadata used to represent the
runtime evolution of processes as shown in Fig. 3. The schema includes entities rep-
resenting the elements of a WfMC process model, and relationships expressing the
semantic connections between the process elements.
Entity Process is associated with entity ActivityType, to represent the classes of ac-
tivities that can be executed in a process. Entity Case denotes an instance of a proc-
ess, whose status can be: initiated, active, or completed. Entity ActivityInstance de-
notes the occurrence of an activity, whose current status can be: inactive, active and
completed. Entities User and Group represent the workflow actors, as individual
users organized within groups (or roles). A user may belong to different groups, and
one of these groups is set as his default group, to facilitate access control when the
user logs in. Activities are "assigned to" user groups: this means that users of that
group can perform the activity. Instead, concrete activity instances are "assigned to"

Exception Handling Within Workflow-Based Web Applications 107

individual users, who actually perform them. If needed, the model can be enriched at
will with new relationships to represent more complex assignment rules.

ActivityType

Name

User

Username
Password
...

Group

Name
...

0:N

1:1

Activity Instance

Status
StartTimeStamp
EndTimeStamp

Case

Status
Name
StartTimeStamp
EndTimeStamp

0:N 0:N

0:N 1:1 1:N

Assigned To

1:1

0:N

1:1

Process

Name
1:1 1:N

0:N

1:N
Default

Assigned To

Type

PartOf

PartOf

Order

Quantity
Price
Date

0:N

0:N
Assigned

Payment

CreditCard
Amount ...

0:N 1:1

PaymentToOrder

ProductGroup

Name
Description

Product

Name
Description
Image
TechnicalDetails

0:N

1:1

0:N 1:1

OrderToProduct

0:N

0:N
Created

CurrentStep

StepNo.
StepUrl

Current

0:1

1:1

Fig. 3. Data model incorporating workflow concepts and exception handling information

Application data is described by a usual E-R model representing information involved
in the current application. In our example, as depicted in the boxed part of Fig. 3, we
model a catalog (in which each Product belongs to a ProductGroup), the Orders that
the user submits and the Payment details. Orders are assigned to Activity Instances in
which will be processed, whilst Payments are connected to the Activity Instances in
which they are created. These relationships associate metadata concepts to application
information. In general, the designer can specify an arbitrary number of relationships
between the application data and the workflow data, which may be required to con-
nect the activities to the data items they use. Note that minimum cardinality of these
relationships is typically 0, since in most cases each activity instance is not associated
to all the application data, but only to a very small set of objects.
This schema already includes metadata for supporting exception handling informa-
tion. Such data are represented in bold face. In particular, the Created relationship
and the CurrentStep entity are needed for supporting recovery policies for exceptions.
Their use will be explained in the sequel of the paper.
Workflow hypertext primitives. In order to enact the process, some workflow-
specialized hypertext primitives are also necessary to design interfaces capable of
producing and consuming such metadata. At this purpose, a few additional primitives
are introduced in WebML for updating process data as a result of activity execution,
for accessing the data associated with a specific activity instance, and for expressing
the assignment of data objects to an activity instance eventually to be executed.
The portion of hypertext devoted to the execution of an activity must be enclosed
between the two workflow-related operations shown in Fig. 4(a): start activity and
end activity. These operations are triggered respectively by incoming and outgoing
links of the activity and have the side effect of updating the workflow data. Specifi-

108 M. Brambilla and N. D’Elia

cally, starting an activity implies creating an activity instance, recording the activity
instance activation timestamp, connecting the activity instance to the current case
(relationship PartOf), to the current user (relationship AssignedTo), and to the proper
activity type, and setting the status of the activity instance to "active". Symmetrically,
ending an activity implies setting the status to "completed" and recording the time-
stamp.

Start Activity End Activity

ActivityName ActivityName

Payments

W

Payment
[ActivityType="Billing"]

Assign

A

Payment
[Activity="Billing"]

[Case=CurrentCase]

PayID

(a) (c)(b)

If
Amount

[true]

[false]

Amount>1000$

(d)

Fig. 4. Start Activity and End Activity operations (a); workflow-aware content unit notation(b);
graphical notation of the Assign operation (c) and of the conditional operation (d)

The Start Activity operation can also be marked as the starting case activity, when the
activity to start is the first one of the entire process; dually, the End Activity operation
can be tagged as the end of the case, thus recording the general status of the process.
Workflow-aware content units can be used for retrieving the data objects related to a
particular activity. These units are like the regular WebML content unit but are tagged
with a "W" symbol denoting a simplified syntax for their selector, which shortens the
expression of predicates involving both application data and workflow data. For ex-
ample, Fig. 4 (b) shows a workflow-aware index unit that retrieves all the instances of
entity Payment that have been assigned to an activity of type “Billing”.
The assign operation is a WebML operation unit that connects application object(s)
to an activity instance, for which an activity type, a case and possibly a user are speci-
fied. Fig. 4(c) shows the graphical representation of the assign operation, which as-
signs a Payment to the activity called "Billing" for the current process case.
The navigation of a hypertext may need to be conditioned by the status of activities,
to reflect the constraints imposed by the workflow. Two dedicated operations called if
(see Fig. 4(d)) and switch operations allow conditional navigation, performing the
necessary status tests and deciding the destination of a navigable link.
Mapping rules have been defined from WfMC-based workflow description to
WebML hypertexts enhanced with workflow primitives [3].

2.4 Fine Grained Description of Activities

To study in a simple and effective way the exception handling problem, we define
some new concepts that describe the structure of activities.
We call step a hypertext page belonging to an activity. Steps are univocally num-
bered within an activity. Between two subsequent steps there can be a chain of opera-
tions, which is not relevant for our purposes. Indeed, since we do not consider server-

Exception Handling Within Workflow-Based Web Applications 109

side failures, a chain of operations can be seen as an atomic element that never fails
(server-side failure is addressed by standard WebML mechanisms, like KO links [6]).
We define the current step of an active activity as the last page that the server has
generated after a request by the client. This information is stored into the CurrentStep
entity of the workflow metadata schema (Fig. 3). Within a process case, it is always
possible to retrieve the currently active activities, and for each of them the current
step.
The current step has 2 important properties: (i) it is always uniquely defined for an
active activity; (ii) it gives us a correct idea of the progress of the activity.
It is important to notice that if the client uses the back and forward buttons of the
browser, the current step of the activity does not change, since the client does not
make any request to the server. Moreover, by clicking the back button we do not roll
back the operations between consecutive steps, we just reload an old page.

3 Critical Situations and Exception

Within the execution of a process, exceptional situations can occur, due either to user
behavior or to system failures. We define a critical situation as an incorrect browsing
behavior of the user (user-generated exceptions) or a technical failure of the system
(system failures).

3.1 User-Generated Exceptions

This section presents the critical situations that can arise from wrong browsing be-
havior. For Web context, this problem is much more relevant than for traditional
applications. The most evident examples are back and forward buttons of a Web
browser, that allow the user to explore the hypertext of the Web application in a free
way, while a workflow scenario has usually a strictly forced execution/ navigation
structure, and its steps must be executed in the proper order. Moreover, the user is
able to jump without restrictions from an application to another. Back and forward
buttons let the user go outside the pages of an activity still active or move back to a
completed activity and try to resume its execution. With respect to workflow activi-
ties, improper browsing can be of three types:
(i) improper inbound browsing: the user gets into a workflow activity without exe-
cuting the Start activity operation, for example by clicking repeatedly on the back
browser button, until a previously executed activity is reached;
(ii) improper outbound browsing: the user, during the execution of an activity, fol-
lows a wrong navigational path, exiting the activity without passing by the End activ-
ity operation. In this case the user leaves the pages of the current activity, either by
pressing repeatedly the back browser button or by following a landmark link (i.e., a
link which is always clickable within the whole Web application). In this way, the
user can potentially start an arbitrary number of activities, since he can try to start a

110 M. Brambilla and N. D’Elia

new activity beside the current one. Moreover, the user left an activity in status Ac-
tive, which cannot proceed, and thus remains halted;
(iii) improper internal browsing: the user, during the execution of an activity,
presses the back button of the browser one or more times reaching a previous page of
the same activity, and then clicks on a link, trying to repeat part of the activity. In this
way, the user is in a page that is different from the current step of the activity, since
the page from which the user resumes the browsing is different from the last page
requested to the server;
(iv) wait: the user does not request a page to the server for a given amount of time,
after which a timeout expires and the user session ends up. A Session End exception
is generated, and this behavior collapses in a system failure.

3.2 System Failures

System failures can occur both at client and at server side. Client-side failures are
problems that are generated by system breakdown, that is either a client crash or a
network failure. We do not consider server-side failures, since this problem for Web-
based workflows can be addressed in the same way of traditional workflow systems,
and several recovery theories and techniques already exist for this context (e.g., rules
based on active rules [4]). System failures result in a Session end exception at server-
side. To discover client-side failures, HTTP session is a standard technique employed
in Web applications. After a session has been established, a network failure or a client
failure will result either in the client not performing a request to the server for a given
amount of time, or in the server being unable to send the response back to the client.
When the server recognizes that the client is no more reachable, it will end up the user
session: client-side failures can be captured at application level by generating a Ses-
sion End exception. In this sense, client failure and network failure will be indistin-
guishable and will be collectively denoted also as Crash situations.
After a crash situation the activity instance executed by the user remains in Active
status, but is not completed. This means that the activity execution cannot proceed,
since the user lost his session, and if he tries to login he can only see the activities that
are in Inactive status (ready to be executed). Typically he is not allowed to perform
activities potentially in execution (i.e., in Active status).
If the activity instance is not recovered, the whole process case will possibly be
stopped, if there are other activities waiting for the completion of the crashed one.
A thrown Session End exception will help to track the crash for later recovery

3.3 Inconsistencies

Data and process inconsistencies can arise from system failure and incorrect browsing
behavior. Each of them will be addressed with a different approach:
1) activity/process halt: one or more activities (and the processes they belong to) get

halted and cannot be resumed or concluded by the user. These problems are de-
tected after they take place and are recovered by means of appropriate policies;

Exception Handling Within Workflow-Based Web Applications 111

2) inconsistent database: one or more database tuples are created or destroyed in an
unexpected way, resulting in an inconsistent database and workflow application;
these problems are caused by incorrect browsing behavior, and will be handled in
a preventive way, by detecting the user faults and generating an exception before
they result in a failure.

4 Exceptions and Recovery Policies

As we have seen in previous sections, if a critical situation occurs, the workflow ap-
plication might be in an inconsistent state due to the presence of a halted activity, i.e.
an activity in status Active that cannot proceed. The need arises to recover the halted
activity to bring the workflow application back to a correct state and let the process
execution proceed. To address the problem, we define the concepts of exception and
recovery policy.

4.1 Exceptions

To manage critical situations and to prevent/recover inconsistencies, we introduce the
concept of exception. An exception is an event that is thrown by the system, as a
consequence of a critical situation that is occurred.
An exception is either synchronous, if it is thrown after a page request, or asynchro-
nous, if it is not tied to a page request but can occur independently. In case of syn-
chronous exceptions, the user navigation can be immediately affected since the server
can decide to provide the user with a different page depending on the caught excep-
tion. On the other hand, the only asynchronous exception that we will consider is
Session End. It cannot influence immediately the user browsing, since he already
disconnected from the application (his session is no more valid). Table 1 resumes the
characteristics of exception types.

Table 1. Types and properties of the exceptions

Exceptions to be managed in order to guarantee the correctness of workflow-based
Web applications are the following:
1) Session End: the user disconnected the client, or a failure happened on the net-

work or at client-side. These events are undistinguishable from server side;

Exception Type Session Status Addressed Problem

Asynchronous Inactive
Technical Failure

Incorrect Browsing Behavior

Synchronous Active Incorrect Browsing Behavior

112 M. Brambilla and N. D’Elia

2) Activity Already Active: the user is trying to start an activity when there is an-
other activity already active in his session;

3) Wrong Starting Page: inside an activity, an action has been performed in a page
that is not the last one that the user has visited;

4) Action By completed Activity: an action has been performed within an activity
that has been already closed.

In the following section we will discuss all possible critical situations and exceptions
that can be generated.

4.2 Recovery Policies

We define a recovery policy (for a halted activity) as a collection of operations that
we perform on the activity and on the related data in order to bring the workflow
application to a correct state and to let the process proceed.
Policies can be classified with respect to three orthogonal dimensions:
- policy direction, that considers the way in which a coherent status of the process is
reached: the policy can try to recover a correct status that was previously visited by
the workflow application (backward policy), or can try to move to a new correct
status that was not previously visited by the workflow application (forward policy).
- policy definition, that considers who defined the policy. In this sense, we can have
policies defined either by the workflow design framework (predefined policy) or by
the web designer (user-defined policy, also known as compensation chain).
- policy execution, that considers whether the policy is applied in an automated way
(automatic policy) or in a manual way (manual policy). In the former case the policy
is automatically applied by the workflow engine after an exception is caught and the
engine detects a halted activity. In the latter case a user (the activity executor or an-
other suitable user) can choose the policy to execute through a Web interface (recov-
ery page), which is eventually reached after the activity interruption, through an ex-
plicit login of the user (Fig. 5).

Recovery Page

Halted activities

ActivityInstance
[status=“Exception”]
[user=CurrentUser]

Reject

Resume

Accept

Compensation chain

Synchronous
exception

Asynchronous
exception

Automatic
redirection

Manual
login

Fig. 5. Manual policies for synchronous and asynchronous exception management

Policies for Synchronous and Asynchronous Exceptions. Policy application can be
affected by the type of the exception to be managed. In particular, we will apply dif-
ferent policies depending on the fact that exceptions are synchronous or not.

Exception Handling Within Workflow-Based Web Applications 113

When a synchronous exception occurs the user session is still active. To take advan-
tage of this fact we consider only manual policy for synchronous events: when the
exception occurs the user will be redirected to a recovery page and will choose the
most appropriate policy(either predefined or user-defined) for the halted activity.
When an asynchronous exception (i.e., a Session End) occurs, the user session is not
connected any more and it is not possible to immediately apply manual policies.
Therefore we consider both automatic and manual policy for asynchronous events.
Automatic policies are applied automatically and transparently to the user, while
manual policies are applied by the user itself, when he starts a new session through a
new login. At that point the user can go in a recovery page and choose the best policy
to apply. This behavior is depicted in Fig. 5, together with the predefined policies that
are described in next section.

4.3 Predefined Policies

Our framework offers three predefined policies: Accept, Reject and Resume. To bet-
ter understand their behavior, we consider a very simple example, consisting in the
order payment activity, as described in Fig. 6: the activity starts, a payment is created
and connected to the order, and the user fills up a form with his credit card data.
Then, the payment is performed (through a black-box service) and the payment status
is updated. If an exception occurs the current step of the activity will be step 1 (since
it’s the only step of the activity).

Order page

Order To Pay

Order

Payment page

Payment

Payment

Data Entry

Start Payment
End Payment

PayActivity
PayActivity

W

CreatePayment

Payment

Connect

PaymentToOrder

ModifyPayment

Payment

Payment

Fig. 6. Payment activity. There is just one step (the payment page), a preceding chain of op-
eration (comprising the create payment unit and the connect unit) and a following chain (com-
prising the unit for the payment and the modify payment)

Accept policy. It accepts the operations already done by the halted activity, setting
the activity status to Completed, executing all the data assignment and activating all
the proper following activity. The process can proceed, but it may happen that part of
the halted activity was not executed. The accept policy is a forward policy, since it
tries to bring the workflow application to a correct status not previously visited, by
simply assigning the status Completed to the halted activity.
This policy is suitable only for activities that have some non critical parts, that can be
omitted. In all the other cases, it has resulted ineffective, since it leaves the activity
results meaningless, thus damaging the whole process case execution. For example,
suppose that an exception occurs in the payment activity in Fig. 6. Current step is 1,
and if we apply an accept policy, we will consider the activity executed even if the

114 M. Brambilla and N. D’Elia

payment unit has not been performed. The process will be enabled to continue, even
if the payment has not been performed. Therefore, in this case the accept policy is
not a correct choice.
Reject policy. It deletes the data created by the activity, trying to recover the initial
state of the database before the activity execution, and assigns the Inactive status to
the activity. The reject policy is a backward policy, since it removes the data created
by the activity (and all the relationships with connected objects), tries to recover the
initial state of the database before the activity execution, and assigns the Inactive
status to the activity. Reject policy is not a full rollback mechanism, since not all the
operations executed by the activity are undone (i.e., deletion and modification results
are kept as they are). Indeed, we don’t want to implement a transactional system, with
data versioning and so on. In this way, this policy can be implemented simply by
means of a “Created” relationship, that connects the Activity Instance to the objects
created in the activity itself (an example can be seen in Fig. 3). Once the reject is
invoked, the activity is set to Inactive (ready to start) and all the Created objects are
removed. Thus, reject is an approximate recovery of the initial state of the activity.
This behavior partially limits the effectiveness of the policy but improves its effi-
ciency, avoiding a performance burden resulting from a complete track of all the
operations of the activity. Reject policy is suitable for all the activities that should be
completely performed, and whose core task consist in creation of objects. With this
policy, users can be asked to complete the activity repeatedly, until it is successfully
finished. From empiric evaluations, this case results to be very frequent.
If we go back to the payment activity example (Fig. 6), by applying the reject policy
in case of exception, we will delete the created instance of payment entity and the
instance of the relationship PaymentToOrder, thus canceling the effect of both the
create payment unit and the connect unit. The activity is ready to be restarted and the
data are in a consistent status.
Resume policy. This policy lets the user resume browsing from the last visited page
of the activity before the failure. This policy can be applied only by manual choice of
the user, while the first two can be applied both automatically and manually. Brows-
ing is resumed from the last page of the activity generated by the server, i.e. the cur-
rent step. Note that operations with side effect are not improperly triggered by this
policy: if the side effect occurs between the previous and the current page, it is not
executed twice, because the user is provided with the url pointing directly to the page;
if the side effect occurs after the current page, it has not been executed yet, otherwise
the current page should point to the next one.
Resume is a backward policy, since it brings the application and the workflow to a
correct state that was previously visited. Indeed, if an exception occurs, either the user
session is expired or the page that is shown to the user is different from the current
step. The user cannot proceed with the execution of the correct activity, and the whole
process status is incorrect. As we said before, the resume policy can only be applied
through manual intervention by the user. This can be achieved by providing to the
user a recovery page, in which he can see the activities in incorrect status, and can
decide to resume them. By reloading the last page generated by the server on the user
browser, the activity execution can proceed (e.g., in Payment activity example in Fig.

Exception Handling Within Workflow-Based Web Applications 115

6, the resume policy lets the user reload the payment page and complete the pay-
ment).

4.4 Compensation Chains

To allow a more fine-grained exception handling, we allow the designer to define his
own recovery policies (e.g., sending warning emails to users, or implementing full
rollback capabilities for specific activities). This solution will be adopted to manage
the most critical activities only. The user can define operation chains that are trig-
gered by exceptions. We provide a new unit (called CatchEvent unit), with the fol-
lowing parameters: ExceptionType, ActivityType, ActivityInstance. Exception type
and Activity type are specified at design time and define the situation in which the
compensation chain is triggered. Activity instance is a runtime parameter, whose
value is available to operations of the chain, for retrieving further related data. Note
that, since triggering and execution of compensation chains is completely automatic,
no pages involving user interaction are allowed within chains. Fig. 7 shows a
sketched example of compensation chain for the Payment activity depicted in Fig. 6.

End Payment

PayActivity

ModifyPayment

Payment
[status=“undone”]

CancPaymtCatchEvent

PayActivity

!

Fig. 7. Payment exception compensation chain. The payment is canceled and the information
about it are update into the database

5 Implementation Experience

The concepts presented in this paper have been proved valid on the field, since a
prototype implementation has been developed and used to design sample applica-
tions. The implementation extends a commercial tool called WebRatio[15], which
allows to design and automatically generate Web applications from WebML models.
Our extension provides the workflow metadata schema and all the units presented in
Section 2.3. Moreover, new units for granting automatic policies enactment are avail-
able (Accept, Reject and Resume units).
Several case studies exploiting exception handling capabilities have been imple-
mented, thus validating and refining the approach. The results of this research, which
is part of the WebSI project, funded by the EC’s 5th framework, has been used by the
partners of the WebSI project for pilot applications, and by other projects.
Among them, Acer Business Portal (that includes remote service calls for providing
location and driving information to users, and workflow-based interaction between
Acer and its commercial partners), and MetalC project[11], which is the most com-
plex among the application we have developed, since it includes a set of B2B portals

116 M. Brambilla and N. D’Elia

(one for each business partner). The purpose of the project is to allow business inter-
actions between Italian companies of the mechanical field by means of their respec-
tive Web portals, through Web services calls. In this context, complex workflow
interactions have been put in place, to grant reliable cooperation. For example, the
purchasing process in a B2B scenario consist of a very complex set of interactions,
since the buyer typically asks for a quote, the seller makes his offer, then the buyer
sends his order for the best offer. In this context, exceptions management becomes
very critic. In the implemented communication platform all the discussed recovery
policies have been used. Some examples follows: (i) if an exception occurs within the
AskForQuote activity, an accept policy is performed, and the request is sent even if
not all the data are submitted (less relevant data are left in the last steps of the activ-
ity); (ii) if an exception occurs within the SendOrder activity, the reject policy is
applied: data created within the activity is deleted, and the user is asked to restart it;
(iii) in case of exception within the self-registration activity, which is a long sequence
of data submission by the partners, resume policy is exploited, to allow the user re-
sume the self-registration from the point in which he left the application.
An example of user defined recovery becomes necessary within the shipping confir-
mation activity: once the order has been confirmed and the goods are ready to be
shipped, the seller must notify the buyer about the sending. If an exception occurs
during the execution of this activity, a user-defined compensation chain is performed,
automatically executing the remaining steps of the activity.

6 Conclusions

In this paper we proposed a conceptual approach to exception handling within
workflow-based Web applications, described through a metadata model and a set of
primitives to be used into hypertext specification. To manage critical situations, we
proposed an approach based on exception handling (some Java implementation al-
ready exists that could be used to support this approach [17]), and definition of prede-
fined and user-defined policies, that have been tested on the field.
The main advantage of our approach stands in allowing to define exception handling
and compensation chains without lowering the abstraction level of the design.
Future work will address refinement of the implementation, to allow a more seamless
and transparent integration of exception handling within WebML specification, to
avoid the need of explicitly specifying in WebML all the basic steps of exception
handling. A second research direction is towards study of exception handling in re-
mote service calls. Some preliminary considerations have been done, and we expect
an approach similar to the one we have studied for workflow-based Web applications.

Exception Handling Within Workflow-Based Web Applications 117

References

1. Atzeni, P., Mecca, G., Merialdo, P.: Design and Maintenance of Data-Intensive Web Sites.
EDBT 1998: 436-450.

2. Baresi, L., Garzotto, F., Paolini, P.: From Web Sites to Web Applications: New Issues for
Conceptual Modeling. ER Workshops 2000: 89-100.

3. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and design
of workflow-driven hypertexts, Journal of Web Engineering, Vol. 1, No.1 (2002).

4. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G., Specification and implementation of excep-
tions in workflow management systems. ACM Transactions on Database Systems, Sept.
1999, (Vol. 24, No. 3), pp. 405-451.

5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites. WWW9/Computer Networks 33(1-6): 137-157 (2000).

6. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications, Morgan-Kaufmann, December 2002.

7. Conallen, J.: Building Web Applications with UML. Addison Wesley (OTS), 2000.
8. Hagen, C., Alonso, G.: Exception Handling in Workflow Management Systems, IEEE

Transactions on software engineering, October 2000 (Vol. 26, No. 10), pp. 943-958
9. IBM MQSeries Workflow Homepage:

http://www.ibm.com/software/ts/mqseries/workflow/v332/
10. Oracle Workflow 11i:

http://www.oracle.com/appsnet/technology/products/docs/workflow.html
11. MetalC project Homepage: http://www.metalc.it
12. Miller, J. A., Sheth, A. P., Kochut, K. J., Luo Z. W.: Recovery Issues in Web-Based

Workflow, CAINE-99, Atlanta, Georgia (November 1999) pp. 101-105.
13. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web Applications Design.

TAPOS 4(4): (1998).
14. WebML Project Homepage: http://www.webml.org
15. WebRatio Homepage: http://www.webratio.com/
16. Workflow Management Coalition Homepage: http://www.wfmc.org
17. Ofbiz WF Java implementation:

http://www.ofbiz.org/api/components/workflow/build/javadocs/

	1 Introduction
	2 Conceptual Modeling of Web Applications and Workflows
	2.1	Process Modeling
	2.2 Hypertext Modeling
	2.3 Extending Hypertext Modeling to Capture Processes
	Fine Grained Description of Activities

	3 Critical Situations and Exception
	3.1	User-Generated Exceptions
	3.2	System Failures
	3.3	Inconsistencies

	4 Exceptions and Recovery Policies
	4.1	Exceptions
	4.2	Recovery Policies
	4.3 Predefined Policies
	Compensation Chains

	Implementation Experience
	Conclusions
	References

