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Abstract. In this paper we propose a method for the deductive verifica-
tion of out-of-order scheduling algorithms. We use tlpvs, our pvs model
of linear temporal logic (ltl), to deductively verify the correctness of a
model based on the Mips R10000 design. Our proofs use the predicted
values method to verify a system including arithmetic and memory oper-
ations and speculation. In addition to the abstraction refinement tradi-
tionally used to verify safety properties, we also use fairness constraints
to prove progress, allowing us to detect errors which may otherwise be
overlooked.

1 Introduction

Modern out-of-order microprocessors use dynamic scheduling to increase the
number of instructions executed per cycle. These processors maintain a fixed-
size window into the instruction stream, analyzing the instructions in the window
and executing them out of order so as to improve performance. However, it is
typically required that the results of this out of order execution be the same as
that of a sequential execution of the program. Proving this correlation is non-
trivial: The out of order scheduling algorithm is often complex, and may use a
variety of data-structures not used in the sequential algorithm.

The two prevalent methods for the formal verification of hardware designs are
model checking (e.g. [ABHS99,BCRZ99,JM01]) and deductive verification (e.g.
[SH98,HGS00,CGZ96]).

There are obvious advantages to the model-checking techniques, the most
important being that it is fully automatic and requires no strong familiarity with
the internal details of the design. A very serious limitation of model-checking
techniques is the limited size of designs which can be fully automatically verified.

The alternative approach based on deductive verification suffers from no such
limitations and, in principle, can be used to verify very big designs provided their
structure is based on regular patterns. The main drawback of the deductive
approach to reactive system verification (as outlined, for example, in [MP95]) is
that it is not fully automatic and requires much user ingenuity and supervision.
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In the past several years we have considered several out-of-order execu-
tion designs, developing the predicted values method for proving correctness
using refinement. This method was applied to Tomasulo / Pentium II-like mod-
els [AP99,AP00] and to a much simplified Mips model [AP01]. None of these
models included memory operations, and progress was not proved. The signif-
icant amount of human interaction required was a limiting factor in the com-
plexity of the model, and the types of properties, we could verify.

For this reason, we developed tlpvs [PA03], a system for the formal veri-
fication of linear temporal logic (ltl) properties built on the pvs [OSRSC01]
verification system. Using tlpvs we were able to apply the predicted values
method to a significantly more complex model, based on the Mips R10000. In
verifying what is arguably the most elaborate out-of-order execution mechanism
verified within the academic community to date, we demonstrate the generality
of our methods with respect to different execution models, and the feasibility of
their use on more complex models.

Furthermore, tlpvs allows us to use fairness conditions to prove progress
properties, checking for a class of errors likely to be missed otherwise. Most
abstraction based verification methods for verifying out-of-order execution algo-
rithms prove that there is an abstract state matching every concrete one, but do
not ensure that the fairness requirements in the abstract system are met. They
are therefore unlikely to detect a livelock or deadlock situation. We demonstrate
progress in the concrete system by refinement to a weakly fair abstract system.

This paper makes a number of contributions: It is the first report of the suc-
cessful verification of a detailed model based on the Mips architecture. In it we
demonstrate that the predicted values method is general enough to be used on
different architectures and extend its use to systems with memory. Furthermore,
we extend the verification method to include progress, thus verifying that dead-
lock does not occur. We also demonstrate the use and advantages of tlpvs in
microprocessor verification.

In the next section we discuss related works. Section 3 describes our model,
mips, Section 4 explains the use of predicted values and Section 5 overviews
tlpvs. In Section 6 we describe our proof of correctness. Space constraints limit
the detail in this paper; annotated pvs files are available at [Tlpvs].

2 Related Works

Out-of-order execution mechanisms have been a very popular area of research
in the last few years. Quite a number of techniques have been developed and
applied to a variety of models. However, the models used and simplifications
made are not standardized, making comparisons difficult.

The method of completion functions proposed by Hosabettu et al [HGS00] is,
like ours, purely deductive, and uses pvs. Completion functions are used to com-
plete every unfinished instruction in the implementation system which can then
be compared with the specification system. Whereas the completion functions
recursively compute the future value of the instruction, we use predicted values
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to obtain the same value without flushing, and without constructing completion
functions. We believe that in the examples we have examined predicted values
are easier to calculate and support than completion functions.

Whereas completion functions can be seen as implicit flushing mechanisms,
explicit flushing mechanisms have also been used in out-of-order verification. In
Burch and Dill’s seminal paper [BD94] a pipelined systems is verified using refine-
ment and flushing. After flushing the implementation state it is compared with
the specification model. However, this approach does not work for out-of-order
architectures as flushing the large buffers of partially completed instructions is
too complex [SJD98a]. In order to verify out-of-order scheduling an incremental
flushing mechanism [SJD98a] was proposed, as well as induction [SJD98b].

More recently, Lahiri and Bryant [LB03] used shadow variables , as well as
refinement maps, to verify various processor models using UCLID, a deductive
system based on the logic of CLU. Their shadow variables are taken directly
from the abstract system – it is verified that the values computed in the con-
crete state match these auxiliary values. These auxiliary variables are similar to
our predicted value fields, however conceptually our proof of the correctness of
prediction is independent of the abstract system, while this proof is dependent
on both. They also verify models including superscalar dispatch and retirement
(though not, apparently, in conjunction with speculation / memory operations.)

Jhala and McMillan [JM01] use refinement maps to modelcheck out-of-order
execution systems. Like [LB03] they use auxiliary variables calculated by the
abstract system. This proof has a fundamentally deductive flavor although in-
variants are proved using model checking. This has the advantage of increased
automation. However, the amount of user understanding needed to construct the
correct refinement maps, and use the co-induction and abstraction mechanisms
is, in our experience, far from negligible. Furthermore, this method relies heavily
on symmetry, and it is unclear how it would work in asymmetric systems.

In [SH98] a model including speculation, memory operations, external in-
terrupts and precise exceptions is deductively verified. An intermediate model
comprising a table of history variables (MAETT) is used to verify the system
in ACL2. The entire system state is stored in this table at dispatch time, and
removed if a flush occurs. Like them, we also use auxiliary variable to allow for
roll-backs in the case of a mispredicted branch, however we save only memory
values, and only when branches are executed. Far more, and more complex, aux-
iliary variables are used than in our proofs, but none are used to ‘predict’ future
values. The model is impressively detailed, but the proof has the disadvantage
of being specific to one configuration and limited to bounded resources.

Our fully parameterized model, mips, is not restricted to bounded resources,
and we do not explicitly use symmetry in our proofs. However, we exclude ex-
ceptions, a feature included in most of the models mentioned above. In the past
we have used predicted values to verify systems with exceptions [AP00], and
believe that there is no difficulty, in principle, in doing so in this case also.

While other researchers chose to extend their models and thus demonstrate
how their methods scale up in the face of increasing complexity, we chose to test
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Fig. 1. Data structures for mips. Shading indicates auxiliary variables.

the flexibility of our methods by trying them on a totally different out-of-order
execution mechanism – that of the mips model. To the best of our knowledge no
other method has yet been used to verify this out-of-order execution mechanism.
Its varied data structures and complex control algorithm make it more challeng-
ing than our Tomasulo-based models; we believe that it is the most complex
model verified in the academic community to date. Furthermore, this is the first
out-of-order processor verification effort which includes a proof of progress – a
necessary feature which appears to have been universally overlooked.

3 A Model Based on the Mips R10000

In this section we detail our model, mips, based on [Yea96,Gwe94]. We have tried
to make our model as accurate as possible, but made some simplifications, and
took some assumptions in cases where the exact implementation was unclear
to us. The more significant of these are explicitly noted. Our model includes
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arithmetic and memory operation, load forwarding, branch prediction and spec-
ulation, but not exceptions. The two most prominent differences between the
Mips R10000 algorithm and the Tomasulo-like algorithms on which models are
generally based are the register renaming and branch verification strategies.

Register renaming is effected by clearly distinguishing the logical register
numbers, referenced within instruction fields, from the physical registers, which
are locations in the hardware register file (RF ). A register map table (RMT )
maps each logical register to a physical register in RF . Other registers in RF
may be used to hold prior values of logical registers. A busy-bit table (BB)
indicates for each physical register whether it contains a valid value. The free
list (FL) records the list of physical registers not currently in use.

The processor verifies branch prediction as soon as the branch condition
is determined, even if earlier branches are still pending. If the prediction was
incorrect the processor immediately aborts all instructions fetched along the
mispredicted path, and restores its state to that before the misprediction. Every
dispatched branch is stored in a branch stack (BS ). In addition to the alternate
branch address pc (program counter), the BS stores a copy of the current RMT ,
a pred bit indicating whether the branch was predicted taken, and the address
queue write pointer position, aq wrPtr1. This is significantly more complex than
flushing the entire re-order buffer when retiring a mispredicted branch – the
mechanism typically used in verification models.

The active list (AL) is a circular buffer which maintains program order be-
tween all dispatched but not yet retired instructions. (It is functionally compara-
ble to the re-order buffer in Tomasulo-type models.) Arithmetic and branching
instructions awaiting execution occupy entries in the integer queue (IQ). Simi-
larly, memory instructions occupy entries in the address queue (AQ)2. We model
memory as a mapping from address to value, both of which are undefined.

The active list and address queue are both ordered circular buffers, with write
pointers pointing to the next free entry, and read pointers noting the oldest queue
entry. The integer queue and branch stack are unordered.

During dispatch an instruction is allocated the next entry in the active
list. In addition, instructions are allocated entries in the IQ or AQ depending
on their type. The current physical registers for operands are looked up in the
RMT , their availability checked in the BB , and the information stored in the
IQ (AQ). The IQ (AQ) entry also contains a dest field indicating the physical
register in which the result will be stored, a tag al pointing to the active list
entry associated with this instruction and any immediate value (im) encoded in
the instruction. Address queue entries also have a done field recording whether
the address has been calculated, and a field storing the address. A branch mask
brnch mask is calculated for new entries in the IQ by noting which entries of the
BS are currently occupied. Intuitively, this mask will later be used to determine

1 It appears that the write pointer and a prediction bit are stored, but this is not
explicitly stated in the literature.

2 The Mips R1000 also has a floating-point queue, very similar to the integer queue,
which we have not modeled.
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whether this instruction is along the path of a mispredicted branch and should
be flushed.

If the instruction has a target register, t, it is also allocated a free physical
register from the FL, and the RMT is updated accordingly. The identity of the
previous physical register to which t was mapped is stored as old reg in the AL.

Branch instructions are predicted, and the relevant information is stored in
a new entry of the branch stack. The index of the BS entry is stored in the AL
as the bid (branch id)3.

Address calculation can be performed when all operand values are avail-
able. Using operand values obtained from the register file, the address is calcu-
lated and stored in the AQ . A done bit in the AQ is set after address calculation.

Load execution occurs after the load address has been calculated and the
address of all preceding stores in the AQ have also been calculated. If any of
these stores is to the same address as the load, then the value of the most recent
preceding store is forwarded to the load. Otherwise, the value is obtained from
the memory. The new value is written to the target register in the RF , the BB
is updated, and the done bit in the AL entry is set.

Arithmetic instruction execution is enabled when all operands in the
IQ are ready. The calculated value is written back to the RF , and the BB . The
AL entry is updated, as are all matching operand fields in the AQ and IQ . The
IQ entry is freed. If the instruction is a correctly predicted branch, then the BS
entry is freed, and the corresponding branch mask bit is reset in all IQ entries. If
the instruction is a mispredicted branch, then the program counter (pc) is set to
the alternative value and all instructions succeeding are flushed: All IQ entries
whose branch mask matches this branch are freed; the write pointer of the AL
is set to the entry succeeding the branch (effectively freeing all entries after it);
the RMT is restored to the values stored in the BS , i.e. all mappings due to
instructions succeeding the branch are undone; physical registers allocated to
instructions along the mispredicted path are returned to the free list; the write
pointer of the AQ is restored to its position when the branch was dispatched.

The instruction at the head of the AL can be retired if its done bit is set.
The physical register stored in its old reg field is freed and added to the free list.
Thus, a physical register is freed only when the next instruction targeting the
same logical register is retired. The value in the old reg register may be needed
as an operand value for instructions dispatched after it but before the next
instruction targeting the same logical register. The retirement policy ensures
that register values are available as long as there is a possibility that they will
be needed. If the instruction is a load or store, the entry at the head of the
address queue (which must match this instruction) is also freed. In the case of a
store memory is updated with the store value.

To this system we add a number of auxiliary variables (shaded in Fig. 1).
Some auxiliary fields duplicate information in a more accessible form (the aq iq?
field of AL records whether it is an arithmetic or a memory instruction) or

3 It is likely that the AL does not really have a bid field, and another mechanism,
which we could not determine, relates BS entries to those in the AL and IQ .
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provide pointers to related data structures (the slot fields in the active list points
to the instruction’s IQ or AQ entry). The auxiliary BS .pvmem field allows us to
roll-back memory in the case of a mispredicted branch (Section 4.1). The system
also contains many auxiliary predicted value fields, the use of which is explained
in the next section.

4 Out-of-Order Execution and Predicted Values

Verification of out-of-order (OOO) systems often makes use of refinement. That
is, the concrete, out-of-order implementation design is compared to an an abstract
system specifying all the acceptable correct computations. Typically, the abstract
system is taken to be a sequential system in which each instruction is completed
(issued, executed, retired) in one step.

A difficulty with this comparison is that in the OOO execution systems the
register file and memory are updated many cycles after the instructions are is-
sued. Thus the program counter in the two systems may match if we synchronize
at dispatch time, but the register file only if we synchronize at retirement time.

We developed the predicted values approach to deal with this disparity. Pre-
dicted values are auxiliary fields mapped to some or all of the value fields in the
system, predicting the eventual value. This prediction is fully deterministic and
depends only on other values in the system at the time of its calculation. Using
the terminology of [AL91] these are history, not prophecy, variables. Predicted
values form a “shadow” system mirroring the “real” computation except that
all computations occur at dispatch time, using predicted values for operands.

Our method consists of two verification steps:

1. Correctness of prediction: We determine conditions under which values and
predicted values in the OOO system agree. These are ordinary, single system
invariants.

2. Refinement: We use refinement to prove a relationship between the predicted
values in the OOO system, and values in the sequential system. The systems
are synchronized at dispatch time.

This method has the advantage of allowing us to relatively easily synchronize
the out-of-order and sequential systems at dispatch time, proving refinement
without costly flushing or complicated roll-back mechanisms.

4.1 Using Predicted Values in mips

In the initial state all predicted value fields are equal to the real values. When the
first instruction is dispatched its predicted value is calculated by applying the
instruction operation to the predicted values of its operands. We consider, first,
an arithmetic operation. When it is dispatched its predicted value is calculated
from the predicted value of its operands in the RF , and stored in the IQ entry
and as the predicted value of its target register in the RF .

Similarly, loads and stores calculate their predicted addresses (pvaddr ) by
using predicted values in the RF . The predicted value of a load is the predicted
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value at the pvaddr location in memory. Stores update the predicted value of
the pvaddr location in the memory.

When branches are dispatched, the system speculates whether or not to take
the branch using value fields in the system, a decision noted in the BS .pred field.
(Note that this is not a predicted value – it is a system based branch prediction
that may be incorrect. It records whether the branch is speculatively taken.)
Using predicted value fields from the RF for the source operands, the branch
condition is evaluated, determining whether it should be taken. This value is
stored in the pv field if the IQ . The pred ok field records whether the branch is
mispredicted (by comparing BS .pred with IQ .pv ). In addition, a complete copy
of the memory predicted values is stored in the BS .pvmem field.

When a mispredicted branch is verified and flushed, it is necessary to restore
the RMT and the mem to the state they were in before the misprediction.
Instructions along the mispredicted path may have updated the RMT and these
updates are undone by copying the BS .rmt field to the RMT . The real values
in memory will not have been affected by these instructions as stores update
memory only when they are retired. However, we do update the predicted values
in memory when stores are dispatched. Analogously to the treatment of the
RMT , we save the predicted memory values as BS .pvmem when a branch is
dispatched, and restore them if it is verified as being mispredicted.

Predicted values are neither read nor written during address calculation,
instruction execution (excluding misprediction verification) and retirement.

5 A Brief Overview of tlpvs

In order to reduce the enormous manual effort in conducting deductive proofs,
we developed tlpvs which includes a formal pvs specification of ltl based
on [MP95] and a framework for defining systems. A number of rules for proving
safety and response properties are included in the system, each one accompanied
by a strategy supporting its use. These rules and strategies greatly reduce the
routine theorem proving interaction.

All proof rules used are defined and proved correct within tlpvs. In doing
so we eliminate the pen-and-paper application of “known” rules typical in many
proofs, and the validity of our final proof rests solely on the correctness of pvs.

5.1 Parameterized Fair Systems

The computational model of parameterized fair systems [PA03] is used for defin-
ing systems in tlpvs. This is a variation of the fair discrete systems of [KP00]
which, in turn is derived from the model of fair transition systems [MP95].

A parameterized fair system (pfs) S = 〈V, Θ, ρ,F ,J , C〉 consists of

– V : A finite set of typed system variables. We define a state s to be a type-
consistent interpretation of V . A (state) predicate is a function which maps
states into truth values. A bi-predicate defines a binary relation over states.

– Θ : The initial condition . A predicate characterizing the initial states.
– ρ: The transition relation . A bi-predicate relating a state to its successor.
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– F : A non-empty fairness domain . This is a domain which is used to param-
eterize the fairness requirements of justice and compassion.

– J : The justice (weak fairness) requirement . This is a mapping from F to
predicates (J : [F �→ predicate]). For every t ∈ F , a computation must
contain infinitely many J [t]-states.

– C : The compassion (strong fairness) requirement . These were not needed in
this proof. See [PA03] for details.

A run of a pfs is an infinite sequence of states satisfying the requirements of
initiality and consecution. A computation is a run satisfying the justice and
compassion requirements.

Our definitions of ltl are taken from [MP95], and for brevity are omitted.

6 A Proof of the Correctness of mips

In this section we use refinement to prove that every execution of mips has a
matching sequential execution, thus proving the safety property that mips com-
putes values correctly. Thereafter we prove progress by proving that a matching
computation of the sequential system can be found, in which infinitely many
non-idling steps are taken.

More precisely, we prove that our concrete system, mips: SC = 〈VC , ΘC , ρC ,
F

C
, J

C
, C

C
〉, refines an abstract system seq: S

A
= 〈V

A
, Θ

A
, ρ

A
,F

A
,J

A
, C

A
〉

in which each instruction is completed in a single step. Since both mips and
seq include a program counter (pc), memory (mem), and register file (RF ), we
subscript mips instances with “C”, and seq instances with “A”.

Let Σ
C

and Σ
A

denote the sets of concrete and abstract states respectively.
Let Ω, referred to as the domain of observations, denote a set of elements.
Let O

A
: Σ

A
�→ Ω and O

C
: Σ

C
�→ Ω be two functions termed the abstract

and concrete observation functions, respectively. They indicate the parts of the
systems compared in the refinement relations. We define an interpolating system

S
I

= 〈V
I

= V
C
∪ V

A
, Θ

C
∧ Θ∗

A
, ρ

C
∧ ρ∗

A
,F

C
,J

C
, C

C
〉

where ρ∗
A
(VI , V

′
C
, V ′

A
) and Θ∗

A
(VC , VA) may refer to all variables in VC ∪VA . Func-

tions Θ∗
A

and ρ∗
A

allow us to “choose” from the possible transitions of seq, one
that correctly matches the mips transition. We denote the V

C
(V

A
) component

of V
I

by V
I
⇓C (V

I
⇓A, respectively).

Within tlpvs we define, and prove the validity of, rule ref (Fig. 2). Intu-
itively, R1 and R2 together ensure that the SA component of a run of SI is a run
of S

A
. Premise R1 requires that an initial S

A
-state matching the initial S

C
-state

can be found. Premise R2 requires that an S
A
-state satisfying ρ∗

A
can always be

found, ensuring that an SI -successor state can be built. Premise R3 asserts that
throughout the computation the observation functions of the two systems agree.
The conclusion, that S

C
refines S

A
, denoted S

C
	 S

A
, is formalized as:

(1) For every computation seq
C

of S
C
, there is a run seq

A
of S

A
,

such that at every time t, OC (seqC (t)) = OA(seqA(t)).
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Rule ref

R1. ΘC (VC )−→∃VA : Θ∗
A

(VC , VA) ∧ ΘA (VA)
R2. ρC (VI⇓C , V ′

C
)−→∃V ′

A
: ρ∗

A
(VI , V ′

C
, V ′

A
) ∧ ρA(VI⇓A, V ′

A
)

R3. SI |= �(OC (VI⇓C) = OA (VI⇓A))

SC � SA

Fig. 2. Rule ref: Proving refinement.

Formula Θ∗
A

initializes the pc, mem, and RF in SA with the same values as in
Θ

C
. Transition relation ρ∗

A
defines an instruction execution whenever ρ

C
defines

a dispatch which is not along a mispredicted path. All other ρ
C
-transitions cause

ρ∗
A

to idle. Premises R1 and R2 are trivial to verify. We discuss the proof of R3:
We define O

A
as the tuple (pcA, memA, RFA).

If the current state of mips does not include a mispredicted branch (detected
by checking the auxiliary pred ok variable in BS ) then O

C
is defined as

(pcC , λa : memC .pv(a), λr : RFC(RMT (r)).pv )

That is, we take the current program counter and the predicted values for mem-
ory. We use the predicted value of each logical register r, obtained from the RF
by using the RMT to identify the physical register to which r is mapped.

Otherwise, OC is derived from the branch stack. Letting firstMis be the index
of the first mispredicted branch, we define O

C
as

(BS (firstMis).pc, BS (firstMis).pvmem , λr : RFC(BS (firstMis).rmt(r)).pv)

That is, we take the alternative branch address store in the BS , the copy of mem-
ory predicted values stored when the branch was taken, and the predicted values
for logical registers obtained using the BS .rmt mapping. Intuitively, BS .pvmem
and BS .rmt record “snapshots” of the system before the misprediction occurred,
and unlike RMT and mem , do not include changes made by instructions along
the mispredicted path.

Result (1) refers to auxiliary variables in mips. From it we derive

(2) For every computation seq
C

of S
C
, there is a run seq

A
of S

A
,

such that at every time t at which seq
C
(t).AL is empty:

pcA = pcC

∧ RFA = λr : RFC(RMT (r)).v
∧ memA = λa : memC(a).v

by proving that predicted values and real values match under certain conditions.
Verifying that R3 of ref holds required that a number of system properties

be proved invariant. Similarly in deducing (2) from (1).
We proved the invariance of 19 general properties if mips, such as that if

slot S of the IQ is occupied, then its al field points to an occupied entry in the
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AL, in which the done bit is false. We also prove the invariance of 7 properties
relating directly to predicted value. Properties in this group include prediction
correctness (under which conditions value and predicted values are guaranteed
to agree) and relationships between predicted values in different structures.

Most of the 26 properties whose invariance we proved, the bulk of the verifi-
cation effort, fell into 1 of 4 groups of mutually inductive properties. We defined,
and proved the correctness of, a simple compositional mutual induction rule
which allowed us to verify each property in the group separately.

6.1 Proving Progress

The refinement proof described above is not very dissimilar from that of other
researchers e.g. [LB03,JM01]. However, we claim that it is insufficient. There are
errors that may not be found by the above method – errors which prevent the
system from progressing. Consider, for example, a version of mips in which we do
not return the old reg register to the FL on retirement. Within a finite number
of steps the system will flush itself out (AL empties) but be unable to dispatch
the next instruction with a target as there are no “free” physical registers. The
matching abstract run will be one with an infinite suffix of idling transitions.

To prove progress we define the justice condition for seq as λn : pcA 
= n. I.e.,
for every n ∈ IN+, we require that infinitely often the program counter is not n.
Intuitively, the sequential system can always progress, and doing so causes the
program counter to change. However, it is possible for a program to violate this
condition by containing a branch, at location m, with m as its branch target.
We obviate this undesirable scenario by assuming that ∀n : prog(n).brtgt 
= n.

We now try to prove that

(3) For any computation seq
C

of S
C
, there is a computation seq

A
of S

A
,

in which infinitely many non-idling steps are taken,
such that at every time t OC (seqC (t)) = OA(seqA(t)) and
if seq

C
(t).AL is empty then: pcA = pcC

∧ RFA = λr : RFC(RMT (r)).v
∧ memA = λa : memC(a).v

That is, we try to show that every computation of mips matches a fair run of
seq in which progress is made (infinitely many instructions are completed). It
is easy to derive (3) from (1) and (2) once we prove the response property

(4) mips |= ∀n : �((getPC = n)−→�(getPC 
= n))

where getPC is defined as pcC if the system contains no mispredicted branches,
BS (firstMis).pc otherwise.

We use a derivation of the well rule of [SPBA00] (Fig. 3) to verify (4).
The justice requirements we define for mips are that every sub-transition

(dispatch, address calculation, execution, retirement) which is enabled infinitely
often is eventually taken.

We define a ranking function which decreases every time a partially executed
instruction which is not along a mispredicted path progresses (e.g. its address is
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Rule well
For pfs S = 〈V, Θ, ρ,F ,J , C〉,
Given initial and goal predicates p, q, helpful predicates {ht : t ∈ F},
a well founded relation 	 over A, and ranking functions δ : Σ 
→ A

W1. p → q ∨
∨

t∈F
ht

W2. ∀t ∈ F : ht ∧ ρ → q′ ∨
∨

u∈F
(δ 	 δ′ ∧ h′

u) ∨ (h′
t ∧ δ = δ′ ∧ ¬J ′[t])

�(p−→�q)

Fig. 3. Rule well. Primed variables refer to values in the next state.

calculated, or the instruction is retired). Instructions along mispredicted paths
do not effect the rank. When an instruction which is not along a mispredicted
path is dispatched (a goal dispatch), the pc changes and the goal state is reached.

The helpful predicate requires that if AL is empty then an instruction be
dispatched, otherwise that the instruction at the head of AL progress. To prove
that h′

u always holds for some u, we show that the instruction at the head of
the AL (if any) can always progress, and that a dispatch is always enabled if
the AL is empty. The latter required us to prove new safety properties regarding
resource recovery, properties unnecessary for the proof of (2).

Justice conditions ensure that instruction at the head of the queue progresses,
and thus the rank decreases. Well-foundedness ensures that as long as no goal
dispatch occurs, the rank continuously decreases until the AL is empty. At this
point justice conditions ensure that a goal dispatch occurs.

7 Conclusion

In this paper we present the predicted values method for the verification of
out-of-order execution. Using predicted values we are able to prove refinement
between a complex out-of-order execution system and a simple sequential system.

Our ability to verify a model of the size and complexity of mips is in no
small part thanks to the use of tlpvs, which eliminates part of the drudge work.
Despite this, our proofs are by no means automatic, and the effort required (two
to three person months) is significant. However they are fully automated, with
every rule being proved within the pvs theorem prover (as part of tlpvs). We
have not sufficed at using a “known” refinement rule (or any other rule), but have
verified the rule as well. In totally eliminating the pen-and-paper element, we
believe that we provide a higher degree of certainty than most previous proofs.
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