Why Model Checking
Can Improve WCET Analysis

Alexander Metzner

Safety critical Embedded Systems group
Department of Computer Science
Carl von Ossietzky University Oldenburg
metzner@informatik.uni-oldenburg.de

Abstract. Calculating predictions for an upper bound of the execution
time of real-time tasks in embedded systems is a necessary step in de-
signing such systems. There exist successful analysis methods, based on
abstract interpretation and integer linear programming (ILP) for that
problem. In [12] it is stated, that model checking is not adequate for this
task. The approach presented in this paper shows that model checking is
adequate and, furthermore, can improve the results. This is done by defin-
ing an automaton based semantic for control flow graphs of programs for
abstract and concrete instruction cache analysis. A binary search based
bunch of model checker runs is used to calculate the upper bound of
execution time.

1 Introduction

Schedulability analysis is one of the key factors in the design of a hard real-time
system, that has to fulfill timing constraints stemming from the interaction with
a physical environment. Particularly, in safety critical systems, as used in the do-
mains of automotive, avionics or power-plant electronics, the guarantee to meet
given deadlines is a stringent property of the system. To prove this property,
common schedulability analysis methods[6] need an upper bound for the execu-
tion time of programs, so-called worst case execution time (WCET). This bound
has to be safe and accurate: it will never under-estimating the real behaviour.
Furthermore it should be as close as possible to the real maximal execution time
of the program. Deriving such execution time bounds from software is a challeng-
ing task, since modern processor and cache architectures have to be taken into
account. The dynamics of programs, ie. which paths through a program are valid
or not, also influence the WCET, independent from the architecture. Therefore,
usually the analysis of WCET is separated into two tasks, namely the low level
analysis (dealing with architectural features) and the high-level analysis (dealing
with program paths)[11]. In this paper, we focus on the first one, but give some
hints how possibly to combine this with a high-level analysis.

There exist several approaches to tackle the low-level analysis with respect
to caches and pipelines. In general, the low level analysis consists of two sub-
problems. Firstly, the timing behaviour of instructions of a program must be

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 334-347, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Why Model Checking Can Improve WCET Analysis 335

predicted. Secondly, the longest path through the program must be calculated
by using the predicted instruction timing. In [10] an abstract cache behaviour
classification is defined, that statically predicts the worst case behaviour of each
memory reference. [11] derives a similar classification of memory accesses using
an abstract interpretation for cache behaviour prediction and integer linear pro-
gramming for finding the longest path by a method called implicit path enumer-
ation[7]. Only ILP is used in [8] for pipeline and simple cache analysis, whereas
[3] uses data-flow analysis methods for pipeline and cache analysis.

Both tasks, the behaviour prediction and the longest path finding problem,
can be solved by a model checker[9]. Since a model checker traverses the entire
state space of a model and therefore returns a concrete path in the program,
better results can be obtained than all mentioned approaches above, because of
their abstract nature. However, [12] claims model checking to be an inadequate
technique for this analysis task. The approach presented in this paper will show,
that model checking can be used for WCET analysis and furthermore it could be
a benefit to use it. In order to prove this, we have implemented an experimen-
tal framework for an instruction cache analysis within the OFFIS verification
environment[1] based on the VIS model checker[4].

2 Basic Modelling

Calculations of the WCET for programs are performed on the control flow graph.
In this section we define the construction of the control flow graph of a program
from the program code. Further, we define an automaton based representation
of the control flow graph that is used in the next chapter to build the semantics
for WCET analysis.

The starting point of a WCET analysis in a low level manner are executables,
object code or assembler code. Our approach analyses timing behaviour of a
program at assembler code level. For effectiveness reasons, the control flow graph
is built from blocks of assembler instructions instead of single instructions. The
idea is, to merge strongly connected instructions to so called basic blocks[10],
that consists of the longest sequence of instructions with only one entry and one
exit.

Definition 1 (Basic Block).

A basic block is constructed from a control flow of an assembler program by merg-
ing sequential instructions to blocks of instructions. Only the first instruction of
a block may be target of a jump and the last instruction must be a jump or the
last instruction of the program. There are no other jumps within this block.

Definition 2 (Basic Block Graph (BBG)).
A basic block graph is a tuple B = (BB, Tg, L) with:

— BB set of basic blocks of a program
— T € BB x BB transition relation according to the control flow

336 Alexander Metzner

— L C BB x BB x Ny x INT the labelling relation for loops (minimal and
mazximal iteration count)

For each basic block b; € BB that is a head of a loop the following attributes are
defined:

— backjump : BB — 2B8B: All source basic blocks that jump backwards to b;

— exits : BB — 288 All basic blocks which are outside the loop headed by b;
and which are targets of basic blocks inside the loop

— cost : BB — INg the number of processor cycles of an execution of each basic
block in the worst case

Note, that the assembler instructions of each basic block are considered in
the cost attribute. The attribute backjump denotes all basic blocks that lead
to a further iteration of loops, whereas exits denotes all blocks that finish the
loop. The labelling relation must be defined by the user or a high level analysis
in order to avoid unbounded loops and defines the possible interval of iterations
for each loop. It has to be defined for each backjump basic block to the loop
head.

For simplicity reasons, we restrict our analysis to the prediction of instruction
cache related timing, so an analysis of the pipeline behaviour with respect to
timing is assumed to be given with the cost attribute. (Below, we will give a
hint, how the integration of pipeline analysis is possible, too).

The basic block graph can be statically derived from the assembler program
and represents a control flow graph of the program. In order to calculate a
safe upper bound of the execution time by using model checking techniques,
we represent the basic block graph by a finite state machine, that contains all
possible paths through the program.

Definition 3 (Basic Block Automaton (BBA)).
The Basic Block Automaton is a tuple BBA = (sg, St,S,Z,V,T) with:

S the set of states

— 8o € S the initial state

— St C S the set of termination states

T the set of inputs (used to resolve non-determinism,)

— V the set of variables (used for loop counters, cache contents and consumed
time)

— T C SU{L} xS the transition relation. The L element is used to define the

it transition.

For each transition t € T the following functions are defined:

— guard : T — BEXPRYYT o guarding condition of type boolean expression

— action : T — 2495IGNV with ASSIGNy = {v == e | v € V Ae €
EXPRVY1Y an action on each transition to conditionally update the sys-
tem variables. EXPR is defined as usual, with the notation of c?ey : eq for
conditional expressions.

Why Model Checking Can Improve WCET Analysis 337

We will define the semantics of a BBG in terms of a BBA. The main idea
is to represent all paths through a BBG by an automaton that jumps each step
from basic block to basic block. A sequence of states represents a path in the
BBG. On each step the emerging costs of the successor state are added to a
global variable, which contains the consumed time (from the init state to the
actual state), ie. the runtime on the actual path. In the next chapter we will
show for two different kinds of semantics, how this is done with respect to the
cache architecture and the BBG.

3 Two Different Semantics for BB Graphs

The well known method from [11] to calculate safe and accurate WCETs uses
a mixture of abstract interpretation (AI) for cache behaviour classification and
integer linear programming to derive the worst case path through a BBG. To
handle this problem by model checking, one can think of mainly two different
approaches: First, model checking can replace the integer linear programming
in order to solve only the subtask of finding the longest path. Secondly, it can
replace both subtasks, the path finding as well as the prediction of cache be-
haviour, to solve the entire problem. Changing only the method of critical path
finding will not lead to more accurate WCETs with respect to ILP, but it will
help to avoid ILP specific problems. In section 3.1 the semantic of this approach
is described.

On the other hand, employing the model checker for precise cache behaviour
prediction can improve the results due to the avoidance of over-approximations
of the abstraction methods of AI. We describe the semantics for precise cache
behaviour prediction in section 3.2.

3.1 Model Checking for Path Finding

If the task for model checking is reduced to finding the longest path in a BBG,
we have to assume a pre-calculated prediction of the behaviour of cache accesses.
This is done by the prediction of the worst case hit/miss behaviour and is de-
rived statically by an implementation of the abstract interpretation formalisation
found eg. in [11]. The idea is to collect abstract states of the cache contents in
order to compute an over-approximation of timing. In the next section, when we
show why model checking can lead to more accurate results, this method will be
explained in more detail. Here we are only interested in the classification for all
memory accesses. Each memory access is predicted to behave like always-miss
(am), always-hit (ah) or first-miss (fm). Memory accesses of type “am” will pro-
duce a cache miss each time. “fm” means that only the first access leads to a
cache miss, all further accesses will produces cache hits. Finally, “ah” indicates
a cache hit for every access to this memory location.

Since the approach presented in this paper is restricted to the behaviour
of instruction caches, this analysis is performed for each instruction in a basic
block b;. For efficiency reasons, the cache behaviour prediction of instructions

338 Alexander Metzner

within one basic block are merged and the syntax of a BB is extended by the two
mappings (all accesses that are not handled by these two mappings are treated
as always hit):

— get_am : BB — INy number of always miss in a BB
— get_fm : BB — INg number of first miss in a BB

Exploiting this knowledge we can abstract from the concrete cache architecture.
We only have to consider the penalty of cache hits and misses (in processor
cycles). For pipeline architectures we assume, that each instruction can be ex-
ecuted within one cycle, including the hit penalty of the instruction memory
access (pipelined RISC concept).

The main idea of the semantic for path finding is to sum up the emerging
costs (in processor cycles) of all basic blocks on a concrete path through the
BBA in a variable cycles. This is performed at the transitions to each block. The
addend is constant for the fixed costs of instruction execution in the pipeline and
the cache accesses that are predicted as “am” and “ah”. In order to handle the
category first-miss, we have to introduce one boolean variable f;, for each basic
block b;, if there exist “fm” accesses within this block. The content of the f,
variable indicates, whether this is the first time of access or a subsequent one.
Consequently, the cost that has to be added to cycles on entering b; contains
the miss and the hit penalty, respectively.

In order to resolve the non-determinism that occurs in each branch in the
BBG (conditional jumps in the assembler program are the source of these non-
determinism, because at this low level analysis we do not care about the condi-
tions in the source program), an input 7n.enq is required. Since an input, deter-
mining the chosen path of a branch, is independent from all other branches in
each step, one input n..nq is sufficient for this task.

Loop iteration bounds are used to avoid unbounded unrolling of loops. As
always the case in real-time systems, software with divergent loops is not allowed
and for the worst case analysis we need the interval of loop iterations for each

loop.
3,51 »

Therefore, for each loop a local
1((1<3 || n) && 1<5) (<3|) && 1<5

TRUE/:=0

loop counter [, is inserted, that con-
tains the actual number of loop unrolls
for the current path. Figure 1 shows
the transformation from a loop in the
BBG to the BBA. For each transition
to a loop head, that is not a backward
jump from within the loop, the loop
counter is initialised with 0. On each
backward jump towards the loop head, the loop counter is incremented to indi-
cate a new iteration. Exiting the loop is performed by taking a transition to a
basic block outside the loop, which we called exit block. The path to an exit block
always uses branching blocks®, thus the transformation has to follow the rule of

Fig. 1. Semantic transformation of loops

1 Otherwise it would be no exit block, because if a block within a loop has only one
successor, this target block must be within the loop, too.

Why Model Checking Can Improve WCET Analysis 339

introducing an input variable n..,qs. However, this alone would allow unbounded
loop iterations, hence we have to take the iteration bounds into account. This
is done by an extended guard at the transition of branching blocks, that leads
to a loop exit (=((lp, < ma V Neond) A lp; < my,)). Exiting the loop by using the
input variable n.onq is only possible, if the number of iterations is greater than
the minimal iteration count (mg) and is enforced if the maximal iteration count
(my) is exceeded (see figure 1)2. This leads to the following definition:

Definition 4 (BBA semantics of a BBQG).

The semantics BBA = (so,S7,5,Z,V,T) of a given basic block graph B =
(BB, Tg, L) is defined by the following rules:

Let Speaa = {b | b€ SAT; € BB,3l = (b;,b,-,-) € L} be the set of all loop
heads within B.

- S=BB

— 89 = b with I; € BB,tg € Tg : tg = (b,b;) AVb; € BB : ftg € Tp : tp =
(ijb)

— STZ{b|bEBB/\VbiEBB:ﬂtBETB:tBZ(b,bi)}

— 7 ={ncond} with Neona € BOOL

-V ={cycles} U{ly, | bj € Sheaa} U{fo, | bj € BB : get_fm(b;) > 0}

— T =T U {tinit} with tinig = (L,s0)

With a transition t = (by,be) € T it holds:

Neond € L if 3b; #be € BB, 3t; = (bl,b;) € Tg
A guard(t;) = “Neond N bi € Shead
MNeond € L if 3b; #be € BB, 3t; = (bl,b;) € Tg

A guard(t;) = neond A bi € Shead

ﬁ((lbi <mgqV ncond)

ANy, < mu)

with lp, €V Aeona €L if 3bj € Shead : ba € exits(b;)

guard(t) — AN = (b, mg,my) € L

(lbi <mgqV ncond)

Alp, < My,

with ly, € V Aeona €L if 3b; € Shead, Ibj € BB,

dt; eI, 3N e L:

bj # by N\ bj S G,Tits(bi)

Atj = (b1, b;)
AN = ('abi;mdvmu)
TRUE else

2 Using the first exit in case of bound exceeding is a structural property of assembler
code for loops that is constructed by common compilers.

340 Alexander Metzner

For each basic block b; let cqm(b;) = get_am(b;) x MISS_.PENALTY be the cost
of a cache miss of type “am”. Let cpm = get_fm(bj) x MISS_.PENALTY the
similar attribute for “fm” classified misses. Let action,, (assignment for cache
and pipeline costs) be defined as follows:

{cycles := cost(so) + cam(S0) + cfm(s0)}
U{fs, = FALSE | Vf,, € V : b; # 5o}
U{fs :== TRUE} if t = tinit
{cycles := cost(b2) + cam(b2)

+ (fo,)7¢rm (b2) : 0}
U{fp, := TRUE} if get_fm(bz) >0

Nt F tinit

{cycles := cycles + cost(bz) + cam(b2)} else

actiony, (t) =

To avoid unbound unrolling of loops, action; is defined:

{lp, := 0} if ba € Shead N b1 € backjump(bs)
action(t) = {lb2 = lp, + 1} if ba € Shead N b1 € backjump(bs)
1] else

With this two parts, the action function can be constructed by
action(t) = actiony,(t) U action(t)

This BBA of a given BBG can now be translated to a model for a model checker.
What we can do with model checking techniques, is the proof of Mppa |
EF(¢n), where ¢y is the state formula:

én=(\/ b)Acycles>N
t:by€ST

The target of this proof is a path to one of the termination blocks whose cost (in
processor cycles) is greater than N. Since searching for WCET is an optimisation
problem with the objective function of maz(cycles), we must execute a bunch of
model check runs to converge to the real WCET. This is performed in a binary
search manner and we do an update on N each run: If Mppa = EF(¢y) fails,
the value of NV has to be decreased, otherwise it has to be increased®. If we have
found a proof for Mg | EF(¢n,—1) and the proof of Mppa = EF(¢y,) fails,
we have reached the maximum for the variable cycles and thus we have found,
that the WCET equals N;.

3.2 Model Checking for Cache Behaviour Prediction

As mentioned above, the former approach can compete with other techniques,
like ILP based methods presented in [11]; it shows that with model checking
techniques a low level analysis of WCET is possible as well. Furthermore, the

3 Note, that with very slightly changes the BCET can easily be analysed with the
same technique.

Why Model Checking Can Improve WCET Analysis 341

ILP method is known to suffer from numerical instabilities that can produce non-
valid solutions. In contrast, model checking based techniques by construction do
not suffer from problems like this and always calculate valid solutions.

To get some improvements on WCET analysis, we try to transfer the pre-
diction of cache accesses from the statical way to the dynamic way under the
control of a model check run. This increases complexity, but, however, we can
avoid too pessimistic over-approximations of the static analysis.

Static analysis, such as Al based Hen {ehial)
methods, do not consider concrete linea X (el
paths through a program but work {en /hneb X
with abstract ones. The prerequisite lineb x L el tbn)
Cis

for this abstraction is a safe over-
approximation of the cache behaviour.
Since model checking considers a con-
crete path, at some points in a control
flow graph the pessimistic prediction
of abstract cache behaviour can be improved. These points are basic blocks,
that are targets of more than one predecessor block. Regarding the abstract
cache behaviour, the abstract analysis method is not able to determine, which
predecessor is used (because this is only known in a concrete path). Therefore,
at these points so-called join-functions merge all possible paths in a safe way
with respect to WCET.

For example, in figure 2 the lower block loads a cache line, that is used in the
successor block, but the upper block does not use this line. In order to give safe
predictions, the join-function does some kind of set intersection of abstract cache
states with the result, that in an “am” or “fm” analysis this cache accesses in
both blocks leads to a cache miss for cache line b. This also holds, if the concrete
path uses the block that pre-loads cache line b.

To overcome this drawback, we give in this section a BBA based semantic
for BBGs with dynamic cache analysis. We will reuse parts of the above defined
semantic, namely most of the construction rules and the whole guard function.
To model the cache behaviour of concrete paths, we introduce new variables
to represent the contents of the lines of an instruction cache with given size,
associativity and other parameters.

Fig. 2. Merging paths in an abstract cache
behaviour analysis. Crosses mark cache
miss prediction.

In order to model dynamic cache program lines
contents on a concrete path, the whole) = abstract representation
cache memory must be taken into ac- 7% -~ { . 1n}
count. Each access to instruction 2

memory is deterministically mapped N ol

into one set of the cache and belongs *E

to a so called “program line”[10]. Pro-

gram lines are the set of instruction Fig. 3. Abstract cache content representa-
memory locations in a program that tion.

are mapped to the same cache set with

the same tag (see figure 3). If we assume a critical word first loading strategy

342 Alexander Metzner

(modern processors usually implement this strategy), only the first access of in-
structions within one program line to a cache set leads to a miss. Hence, we can
abstract without loss of precision from collecting each memory location access
by collecting only the program lines. While traversing a concrete path, we col-
lect the program lines per cache line and set, that are loaded, and we delete the
program lines that are replaced (depending on the replacement strategy). This is
performed in the sequence of memory accesses on the concrete path. Therefore,
the definition of a basic block graph is extended by the set of program lines of
each BB:

pl: BB — 2" denotes all program lines of a basic block

set : NT — IN* gives the cache set that belongs to program line p

Note, that we assume implicitly, that the size of the cache is sufficient to record
all program lines of a basic block*. With this additional information we can now
define the BBA-based semantic for a basic block graph with cache behaviour
prediction.

Definition 5 (BBA semantic of BBG with cache behaviour predic-
tion).

The semantics BBA = (so,St,S,Z,V,T) of a given basic block graph B =
(BB, Tg, L) is defined by the following rules:

— Let Shead, S0, ST,Z, T be defined as in definition 4.

=V = {cycles} U{ly, | bj € Sheaa} U{ICyn | ICqn € NU{L} AN g €
{1,...,SETS} ANh € {1,..., A}} with SETS is the number of cache sets,
A is the associativity of the cache and L denotes an invalid cache line

— Let guard(t) and action;(t) be defined as in definition 4

Let the cost of memory accesses of a basic block b on a cache with associativity
A be defined as

Ccache(b) = Z < \/ (Icset(p),i = p)) 70: MISS_.PENALTY
pepl(b) “i={1,...,A}

and the cost of entering the first basic block by transition ti,;: as

Cinit = Z MISS_ PENALTY

pepl(so)

With t = (b1,b2) € T, the assignments for cache and pipeline costs are defined:

{cycles := cost(so) + Cinit if t = tini
{cycles := cycles + cost(ba) + Ceache(b2)} else

action,(t) = {
The assignments for dynamic cache prediction action. is defined with

hlt(p) = . \/ (Icset(p).,i = p)

4 This is the standard case in modern processors, since basic blocks are typically small.

Why Model Checking Can Improve WCET Analysis 343

{ICpo:=1L|pe{l,...,SETS}\{set(pl(s0))}
ANae{l,...;A}} U

Upepi(so) {(Rit(p))?AGE(p) : LOAD(p)} if t = tinit

Upepi(ns) 1(hit(p))?AGE(p) : LOAD(p)} else

With these three parts, the action function can be constructed by

action.(t) =

action(t) = action,, (t) U action;(t) U action.(t)

The concrete cache contents (ie. the program line actually stored in the cache
lines) are represented in (SETS - A) ICs , variables, that are updated on each
memory reference. The cost of an access depends on the hit/miss state and is
calculated by checking whether the program lines of the target block are within
the cache variables or not. In the init transition a completely invalidated cache
is assumed (worst case scenario).

The real cache behaviour of loading lines is hidden by the AGE(p) and
LOAD(p) macros, because they depend on the used cache architecture. For a
two-way associative cache (A = 2) with the popular LRU strategy, AGE(p) and
LOAD(p) are defined with s = set(p) (the :=: notation denotes swapping the
contents):

AGE(p) = (ICs2 = p)?Cs0 :=: ICs1 : < null >

LOAD(p) =I1Cs0:=1Cs1; ICs1 :=p

For higher degrees of the associativity this is a bit more complex, but the basic
scheme is the same, even if we have more complicated and less predictable (in
an abstract analysis) replacement schemes, like the pseudo-LRU used in the
Embedded Pentium|5].

4 Evaluation and Discussion

For an evaluation of the two described approaches, first, the design-flow and
construction of the model from an assembler program is described. A very short
sketch of our model checking environment is given, too. Using this framework,
the result of an evaluation of three example case studies will be demonstrated
and discussed. As mentioned above, we restrict the evaluation on the behaviour
of an instruction cache and assume a “perfect” pipelined RISC architecture with
a priori generated costs of one cycle per instruction.

4.1 Design-Flow

Starting point of the analysis is a C program with user annotations to bound
the number of loop iterations. This is transfered to assembly language whereby
the annotations are preserved. From this assembler program, we build the basic
block graph and generate the BBA, which itself is a C program that represents
the given semantic as a finite state machine. This is the base for the use of the

344 Alexander Metzner

cycles==?
OFFIS VE T UL
—‘ C2SMI ‘ ‘wimess genr binary
search
SMI VIS
i N i

Fig. 4. The design-flow of WCET analysis using model checking techniques provided
by the OFFIS verification environment.

OFFIS verification environment[1], in which the C program is transformed|[2] to
an input language for the model checker core. As model checker engine we use
the VIS[4]. Figure 4 gives an overview over our design-flow for WCET analysis.

For the inquiry whether M = EF(¢y), we use the drive to property checking
of the OFFIS VE (technically an invariance check) and produce a witness in
case of a result of true. The witness contains the value of the cycles variable for
the concrete path to one of the termination basic blocks. The result is used to
increase or decrease the bound N, until we reach the termination point, where

it holds Mppa = EF(én,_1) A Mepa ¥~ EF(¢n,).

4.2 Experimental Results

For evaluation of our approach we take three case studies as inputs for the above
described design-flow to calculate the WCET. The case studies are derived from
running projects and are located in the domain of embedded systems, partly
implemented with typical CASE tools of an embedded systems development
process (see table 1 for details).

Table 1. Case studies with number of instructions, description and source of the code.

| case study|instructions | comment |

robot ~ 250 control of a LEGO mindstorm to find a light
source and react on collisions, hand written C
code

collision ~ 1100 collision detection and avoidance for a satellite

control unit, derived C code from STATEMATE
specification
ﬂight ~ 2500 flight control unit to compensate side drift, gen-

erated C code from SCADE

As cache parameters we choose an instruction cache of 128 sets with 8 instruc-
tions (4 bytes per instruction) per line and an associativity of two (altogether a
cache size of 8KB; the size is typical for processors used in todays embedded sys-
tems). The evaluation machine was a SUN BLADE 2000 (900 MHz UltraSparc
III processor, 2 GB main memory) and the results are summarised in the table
2 below. The times in time(4) and time(C) are the time to find the WCET,

Why Model Checking Can Improve WCET Analysis 345

including witness generation. As mentioned above, the results of WCET(A) are
identical to the WCET the approach in [12] would calculate. Hence we can di-
rectly compare [12] and the results from WCET(C) to highlight the improvement
of our approach. The time of one single model check run ranges from 8 seconds
for robot to 21 seconds for flight with abstract cache analysis and from 13 sec-
onds for robot to 315 seconds for flight with concrete cache analysis. However, the
results have shown, that WCET analysis with model checking techniques is pos-
sible and can partly improve the results of the abstract analysis on case studies,
that are typical in their size and complexity for tasks in embedded systems.

To limit the number of iterations in the binary search procedure for the
abstract cache analysis, we determine an interval, that was derived at the lower
bound by a reachability analysis® and on the upper bound by a rule of thumb.
For the concrete cache analysis we use the result of the abstract analysis and
the number of joins to decrease the number of iterations (shown by iter. (4,/C)
in table 2).

Table 2. Evaluation of the three benchmarks with results and runtime for the abstract
and the concrete cache behaviour analysis and maximal iterations of the binary search.
The letter A denotes the abstract, C' the concrete cache analysis. bits denotes the state
bits of the problem.

[case study| WCET(A)|bits(A)]WCET(C)]bits(C)] time(A)] time(C) [iter. (A/C)]

robot 387 35 376 75 |0:46 min| 0:36 min 9/4
collision 502 38 478 135 |2:00 min| 4:56 min 10/5
flight 1782 40 1749 362 |2:16 min|15:24 min 11/4

4.3 Discussion and Perspectives

As mentioned in the last chapter, the improvement of the concrete cache anal-
ysis compared to abstract cache analysis is founded in the more accurate cache
behaviour prediction at merging points in the control flow graph. Analysing the
number of these points can give a good hint whether a concrete cache analysis
could be profitable or not. In our case studies, we determine that 33% to 50% of
the joins lead to additional cache miss predictions in the abstract cache analysis
with respect to the concrete one. As a whole this results in an improvement of
1.5% to 5% of the predicted WCET, if only instruction caches are taken into
consideration.

The investigation of concrete paths increases the complexity, as shown by
bits in table 2. The used operations (addition and comparison with constants)
are not expected to lead to state explosion problems. Thus the main factor for
complexity are the IC; , variables which depend on the cache architecture and
the size of the program. Since we are dealing with tasks (parts of functions),
program sizes greater than the flight examle are quite unusual. Furthermore,

5 The reachability analysis checks for the reachability of one termination block and
returns a witness for the cycles variable within a few seconds on each of the models.

346 Alexander Metzner

cache lines, that are not used, are sliced from the BBA during construction.
This could also be possible for the associativity: For cache lines that are known
to store only one program line there is no need for more than one cache line
in the BBA, thus we can assume for this lines an associativity of one). This is
currently not implemented but would decrease the number of state bits.

Regarding pipeline analysis, there occurs the same problem at merging
points, since without a concrete path the analysis method cannot determine
which of the predecessor blocks is on the path. Hence there is an over-approxi-
mation by taking the maximal delay, too. The consequences to the accuracy of
the execution time computation are hard to predict, because this deeply depends
on the used processor architecture. In well balanced pipelines there are no great
differences in the delay of two predecessor blocks, but in pipelines with instruc-
tions of various execution time intervals there can possibly be ten’s of cycles
difference (for example using floating point execution units is very popular but
yields exactly this problem). We conjecture, that with modern processor archi-
tectures the improvement of a concrete analysis could reach the same magnitude
as for the cache analysis. Note, that for the pipeline analysis we do not need a
pipeline behaviour analysis under control of the model checker. A pre-analysis
can provide path specific delays for each basic block that can be integrated in
the BBA in a similar way as we do this for caches at the moment. Thus, the
complexity of the problem should not grow dramatically. If we take the same for
data caches into account, the use of model checking can reach an improvement
of about 10% in average.

More over, the described technique will allow for a more accurate path val-
idation of WCET analysis by combining it with a high level analysis. In a high
level analysis, for example, the mutual exclusiveness of parts of the paths can be
proven. This can simply be exploited in our analysis by introducing new inputs
n; at the branching blocks instead of the one input used now. By formulating
an assumption over these inputs, the impossible paths through the control flow
graph can be avoided and a more accurate WCET prediction can be achieved.

5 Conclusion

As a conclusion, our experimental environment for WCET analysis using model
checking techniques and the evaluations with some typical embedded systems
examples have shown, that this approach not only is able to produce valid exe-
cution times, but also can improve the results of the analysis with respect to the
well known abstract analysis. Furthermore, for the abstract cache analysis, our
approach always produces correct runtime predictions, different from the ILP
approach that sometimes suffer from numerical instabilities.

Altogether we have shown, that model checking can be used quite well to
solve the problem of determining execution time bounds. The application in a
verification framework for the development of embedded systems opens a wide
area of coupling the WCET analysis directly to the design in a CASE tool and
promises further use cases, for example the combination with property checking
for a high level path analysis, that can support the low level analysis, or the
combination with automatic code generators.

Why Model Checking Can Improve WCET Analysis 347

References

1.

11.

12.

T. Bienmiiller, W. Damm, and H. Wittke. The STATEMATE Verification Envi-
ronment — Making it real. In 12th international Conference on Computer Aided
Verification, number 1855 in LNCS, 2000.

W. Damm, C. Schulte, M. Segelken, H. Wittke, U. Higgen, and M. Eckrich. Formale
Verifikation von ASCET Modellen im Rahmen der Entwicklung der Aktivlenkung.
Lecture Notes in Informatics, P-34, 2003.

S.-S. Lim et al. An accurate worst case timing analysis for RISC processors.
Software Engineering, 21(7):593-604, 1995.

The VIS Group. VIS : A System for Verification and Synthesis. In 8th international
Conference on Computer Aided Verification, number 1102 in LNCS, 1996.

Intel Corp. Intel Embedded Pentium Processor Family Dev. Manual, 1998.

M. Joseph, editor. Real-time Systems Specification, Verification and Analysis.
Prentice Hall International, London, 1996.

Y. Li and S. Malik. Performance analysis of embedded software using implicit
path enumeration. In Workshop on Languages, Compilers and Tools for Real-Time
Systems, pages 88-98, 1995.

Y. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path
analysis for real-time software. In IEEE Real-Time Systems Symposium, 1995.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

. F. Mueller. Static Cache Simulation and its Applications. PhD thesis, Dept. of

CS, Florida State University, 1994.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analyses. Real-Time Systems, 18(2/3):157-179, 2000.
R. Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor ILP alone.
Lecture Notes in Computer Science, 2937, 2003.

	1 Introduction
	2 Basic Modelling
	3 Two Di.erent Semantics for BB Graphs
	3.1 Model Checking for Path Finding
	3.2 Model Checking for Cache Behaviour Prediction

	4 Evaluation and Discussion
	4.1 Design-Flow
	4.2 Experimental Results
	4.3 Discussion and Perspectives

	5 Conclusion
	References

