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Abstract. The logic of equality with uninterpreted functions (EUF)
and its extensions have been widely applied to processor verification,
by means of a large variety of progressively more sophisticated (lazy or
eager) translations into propositional SAT. Here we propose a new ap-
proach, namely a general DPLL(X) engine, whose parameter X can be
instantiated with a specialized solver SolverT for a given theory T , thus
producing a system DPLL(T ). We describe this DPLL(T ) scheme, the
interface between DPLL(X) and SolverT , the architecture of DPLL(X),
and our solver for EUF, which includes incremental and backtrackable
congruence closure algorithms for dealing with the built-in equality and
the integer successor and predecessor symbols. Experiments with a first
implementation indicate that our technique already outperforms the pre-
vious methods on most benchmarks, and scales up very well.

1 Introduction

The logic of equality with uninterpreted functions (EUF) [BD94] and its exten-
sions has been widely used for processor verification (see, e.g., [BD94,BGV01]
[BLS02b,VB03]).

For deciding validity – or, dually, unsatisfiability – of formulas in this kind of
logics, during the last five years many successively more sophisticated techniques
have been developed, most of which can be classified as being eager or lazy. In
the eager approaches the input formula is translated, in a single satisfiability-
preserving step, into a propositional CNF, which is checked by a SAT solver
for satisfiability. The lazy approaches [ACG00,dMR02,ABC+02,BDS02,FJOS03]
instead abstract each atom of the input formula by a distinct propositional
variable, use a SAT solver to find a propositional model of the formula, and
then check that model against the theory. Models that are incompatible with
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the theory are discarded from later consideration by adding a proper lemma to
the original formula. This process is repeated until a model compatible with the
theory is found or all possible propositional models have been explored. Also
less lazy variants exist (e.g., in CVC, [BDS02]), in which (partial) propositional
models are checked incrementally against the theory while they are built by the
SAT solver; however, from partial models that are consistent with the theory no
information is derived, contrary to what is proposed here. The main advantage of
such lazy approaches is their flexibility, since they can relatively easily combine
new decision procedures for different logics with existing SAT solvers.

For the logic of EUF the eager approaches are in general faster than the lazy
ones, probably because the theory information is used to prune the search, rather
than to validate it a posteriori. Among the eager approaches for EUF, two differ-
ent encodings into propositional logic are at present predominant. The first one,
known as the EIJ (or per-constraint) encoding, abstracts each equality atom
ti=tj by a propositional variable eij and takes care of the equality by imposing
additional transitivity constraints [BV02,SSB02]. A drawback of this technique
is that when the number of transitivity constraints is too large, the exponential
blowup in the formula may make it too hard for the SAT-solver. The second
one, known as the small domain (SD) encoding [PRSS99,BLS02b], is essentially
an O(n log n)-size encoding that gets transitivity for free, at the expense of a
certain loss of structure, by translating equalities into formulas instead of into
single propositional variables. In order to get the best of both encodings, two
different hybrid approaches were presented in [BLS02a] and [SLB03], based on
an analysis of the input problem that estimates properties such as the number
of transitivity constraints.

In this paper we introduce the first (to our knowledge) technique that is
not based on such lazy or eager translations into SAT. Building on independent
previous work by some of the authors [Tin02,NO03], we propose a new approach
based on a general engine for propositional solving, DPLL(X), parametrized by
a solver for a theory of interest. A system DPLL(T ) for deciding the satisfiability
of CNF formulas in a theory T is produced by instantiating the parameter X
with a module Solver

T
that can handle conjunctions of literals in T . For instance,

in the case of the pure EUF logic, T is just the theory of equality.
The basic idea is similar to the CLP (X) scheme for constraint logic program-

ming: provide a clean and modular, but at the same time efficient, integration of
specialized theory solvers within a general purpose engine, in our case one based
on the Davis-Putnam-Logemann-Loveland procedure [DP60,DLL62]. In [Tin02]
a DPLL(T ) scheme was already given in a more high-level abstract form, as a
sequent-style calculus. Although no detailed interface was defined there between
the DPLL(X) engine and the theory solver, several optimization strategies were
already discussed. The framework given here can be seen as a concrete realiza-
tion of the calculus in [Tin02], except that, contrary to [Tin02], we do not expect
Solver

T
to give always complete answers. Relaxing that requirement does not af-

fect completeness, but turns out to be crucial for efficiency, at least in the EUF
case. A DPLL(X) scheme was introduced and informally described in [NO03].
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There, however, emphasis was placed on the development of new congruence
closure algorithms to be used in the theory solver for the EUF logic.

The concrete DPLL(T ) scheme and its architecture and implementation pre-
sented here combine the advantages of the eager and lazy approaches. On the
one hand, experiments reveal that, as soon as the theory predicates start playing
a significant role in the formula, our initial implementation of DPLL(T ) already
outperforms all other approaches. On the other hand, our approach is similar in
flexibility to the lazy approaches: more general logics can be dealt with by simply
plugging in other solvers into our general DPLL(X) engine, provided that these
solvers conform to a minimal interface, described later.

This paper is structured as follows. In Section 2 we describe in detail the
DPLL(T ) scheme and the kind of logics it can be applied to, discussing the
advantages and disadvantages of the small interface. The architecture of our
current DPLL(X) implementation is given in Section 3. Section 4 describes our
solver for EUF, which includes incremental congruence closure algorithms that
deal with the built-in equality and the integer successor and predecessor symbols,
as well as with backtracking. Finally, Section 5 gives experimental results of our
preliminary implementation of DPLL(T ) for EUF, and Section 6 concludes and
outlines a number of promising research directions for future work, in particular
for instantiating the DPLL(X) engine with solvers for other theories.

2 From DPLL to DPLL(T )

In this section we describe the main characteristics of the DPLL(T ) scheme. Any
DPLL(T ) system consists of two parts: the global DPLL(X) module and a solver
Solver

T
for the given theory T . The DPLL(X) part is a general DPLL engine

that is independent of any particular theory T . Here we will use as examples
three possible instances for the theory part T : the ones for propositional logic,
pure EUF, and EUF with successors and predecessors.

2.1 The Logics under Consideration

In this paper we will consider the satisfiability problem of formulas in CNF, that
is, of a given set S (a conjunction) of clauses. By a clause we mean a disjunction
of literals, each literal l being of the form A or ¬A, where A is an atom drawn
from a set A. What A is depends on the theory T under consideration.

An interpretation I is a function I:A → {0, 1}. We write I |= l if the literal l
is true in I, that is, if l is a positive atom A with I(A) = 1 or l is a negated atom
¬A with I(A) = 0. For each theory T , we will consider only T -interpretations,
that is, interpretations that agree with the axioms of T , in a sense that will be
made precise below for the theories considered here. An interpretation (resp. T -
interpretation) I is a model (resp. T -model) of a clause set S if in each clause of
S there is at least one literal l that is true in I. The aim of this work is to design
algorithms for deciding whether a clause set S has a T -model, and exhibiting
such a model whenever it exists. For all logics under consideration in this paper,
this problem is easily shown to be NP-complete.
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Propositional Logic. The atoms are just propositional symbols of a set P ,
and the interpretations under consideration are unrestricted, i.e, any truth
assignment I:P → {0, 1} is admitted: the theory T is empty in this case.

Pure EUF. An atom is either of the form P (t1, . . . , tn) where P is an n-ary
symbol of a set of fixed-arity predicate symbols P , or an equation of the form
s=t, where s, t and t1, . . . , tn are terms built over a set of fixed-arity function
symbols. All constants (0-ary symbols) are terms, and f(s1, . . . , sn) is a term
whenever f is a non-constant n-ary symbol and s1, . . . , sn are terms1. In the
following, lowercase (possibly indexed) s, t, and u always denote terms, and
literals ¬s=t are usually written as s �= t. In pure EUF the theory T expresses
that ‘=’ is a congruence, i.e., it is reflexive (R), symmetric (S), transitive (T),
and monotonic (M); hence the only admissible interpretations I are the ones
satisfying the conditions below for all terms s, t, si, and ti:

R: I |=s=s
S: I |=s=t if I |= t=s
T: I |=s=t if I |=s=u and I |=u=t for some term u
M1: I |=f(s1 . . . sn)=f(t1 . . . tn) if I |=si=ti for all i in 1..n
M2: I |=P (s1 . . . sn) if I |=P (t1 . . . tn) and I |=si=ti for all i in 1..n

EUF with Successors and Predecessors. This subset of the CLU logic
from [BLS02b] is the extension of EUF with two distinguished unary func-
tion symbols, Succ and Pred . Besides the congruence axioms for ‘=’, the
interpretations I must also satisfy the following for all terms t:

I |=Succ(Pred(t))=t I |=Pred(Succ(t))=t ∀n>0, I |=Succn(t) �= t

where Succn(t) denotes the term Succ(. . .Succ(t) . . .) headed with n Succ
symbols applied to t; hence the last axiom scheme denotes an infinite set of
axioms. Note that I |=Predn(t) �= t is a consequence of the above.

2.2 DPLL(X): The General DPLL Part of DPLL(T )

The DPLL(X) part of a DPLL(T ) system is the one that does not depend on the
concrete theory T . It can be like any DPLL procedure, with basically all its usual
features such as heuristics for selecting the next decision literal, unit propagation
procedures, conflict analysis and clause learning, or its policy for doing restarts.
Like in the propositional case, it always considers atoms as purely syntactic
objects. The only substantial difference with a standard propositional DPLL
procedure is that the DPLL(X) engine relies on a theory solver for T , denoted
here by Solver

T
, for managing all information about the current interpretation I.

1 Here we do not consider any if-then-else constructs, since they do not increase the
expressive power of the logics and are eliminated, in linear time, in a structure-
preserving preprocessing phase, which moreover preserves conjunctive normal forms.
Each occurrence of a (sub)term if-then-else(F, s, t) is replaced by a new constant
symbol v, and (¬F ∨ v = s) ∧ (F ∨ v = t) is added to the formula. Boolean
if-then-else(A, B, C) constructs are simply considered as (¬A ∨ B) ∧ (A ∨ C).
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Another difference is that it does not use certain optimization for SAT solvers,
such as the pure literal rule, which as already pointed out in [BDS02,Tin02],
among others, is in general not sound in the presence of a theory T .

2.3 The Solver
T

Part of DPLL(T )

SolverT knows what the real atoms A are, and knows about the theory T under
consideration. It maintains a partial interpretation I: one that is defined only
for some literals of the set L of all literals occurring in the problem input to the
DPLL(T ) prover. In the following, the literals of L are called L-literals. Inside
Solver

T
, I is seen as a stack of literals, which is possible because I can equiva-

lently be considered as the set of all L-literals that are true in I. In the following,
this stack will be called the I-stack. We say that a literal l is a T -consequence
of I, denoted I |=T l, if l is true in all total T -interpretations extending I. It is
assumed that for every L-literal l the solver is able to decide whether I |=T l
or not. Essentially, Solver

T
is an abstract data type with the following five sim-

ple operations, which are all is needed for the interface between DPLL(X) and
SolverT :

Initialize(L: Literal set). This procedure initializes Solver
T

with L. It
also initializes the I-stack to the empty stack.

SetTrue(l: L-literal): L-literal set. This function raises an “inconsis-
tency” exception if I |=T ¬l with the current I-stack. Otherwise it pushes
l onto the I-stack, and returns a set of L-literals that have become a T -
consequence of I only after extending I with l.
For example, in the EUF case, if I |= a=b and I |= d=c, one of the literals
returned by SetTrue(d=b) can be f(a, a)=f(b, c), if this is an L-literal.
For efficiency reasons, the returned set can be incomplete; for example, in
EUF, with SetTrue(f(a) �= f(b)) it may be expensive to detect and return
all consequences a′ �=b′ where I |=a=a′ and I |=b=b′ (see also Section 4).

IsTrue?(l: L-literal): Boolean. This function returns true if I |=T l, and
false otherwise. Note that the latter can be either because I |=T ¬l, or
because neither I |=T l nor I |=T ¬l.

Backtrack(n: Natural). This procedure pops n literals from the I-stack. Note
that n is expected to be no bigger than the size of the I-stack.

Explanation(l: L-literal): L-literal set. This function returns a sub-
set J of I such that J |=T l, for a given literal l such that l was returned
as a T -consequence of a SetTrue(l′) operation and no backtracking popping
off this l′ has taken place since then.
Intuitively, these conditions ensure that the “proof” of I |=T l that was found
when l′ was asserted is still valid. Note that several such J may exist; for
example, in EUF, both { a �= b, b=c } and { a �= d, d=c } may be correct
explanations for the literal a �=c.
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This operation is used by DPLL(X) for conflict analysis and clause learning.
In our implementation it is used specifically to build an implication graph
similar to those built by modern SAT solvers. For this application, it is also
required that all literals in J are in the I-stack at heights lower than or
equal to the height of the literal l′ (i.e., no other “later” proof is returned;
see Section 3 for an example).

We point out that the solver is independent from the characteristics of the
DPLL(X) procedure that will use it. For example, it does not know about de-
cision levels, unit propagation, or related features. In fact, a solver with this
interface could be used as well in the context of non-DPLL systems, such as
the lazy (or lemmas-on-demand) approaches, or even in resolution-based sys-
tems. Note that something like the Explanation operation is needed as well to
produce the lemmas in such lazy approaches, and in general, in any deduction
system that has to produce proof objects.

These five operations constitute in some sense a minimal set of operations for
the exchange of information between the two main components of a DPLL(T )
system. Having only these operations provides a high degree of modularity and
independence between the global DPLL(X) engine and the theory solver SolverT .

Our current DPLL(T ) implementation has a DPLL(X) engine built in house
to use the operations above. However, because of the simplicity and modularity
of the solver interface, we believe that developers of state-of-the-art SAT solvers
would need relatively little work to turn their solvers into DPLL(X) engines.

Although our implementation already performs very well for EUF, a tighter
interconnection by means of more operations might enhance its performance.
This could be achieved for example by having more fine-tuned theory-specific
heuristics for choosing the next decision literal (see Section 6). However, possible
efficiency gains would come at the expense of less modularity, and hence require
more implementation work, especially when developing solvers for new theories.

3 Our Architecture for DPLL(X)

The current modular design is the result of developments and experiments with
our own DPLL(X) implementation (in C). The current system has a clear Chaff-
like flavor, mirroring Chaff’s features as described in [MMZ+01,ZMMM01], with
a 2-watched literal implementation for efficient unit propagation, and the VSIDS
heuristic for selecting the next decision literal, in combination with restarts and
the 1UIP learning scheme. Most of Chaff’s features lift from DPLL to DPLL(X)
without major modifications, so here we only point out some differences.

One difference arises in unit clause detection. In the propositional case, when
a literal l becomes true, ¬l is the only literal that becomes false before unit
propagation is applied to the clause set, so new unit clauses can only come from
clauses containing ¬l. In DPLL(T ), on the other hand, additional literals can be
set to false as a consequence of the assertions made to the theory solver. This
possibility considerably increases the extent of unit propagations in DPLL(T)
and, correspondingly reduces the size of the search space for the DPLL(X) en-
gine. For example, in the EUF case, if a �=c∨P is in the clause set and I |=T a=b,
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a �=c −→ P
↗ ↘

f(a) �=f(b) −→ a �=b �

↘ ↗
c=b −→ ¬P

(a) Correct Explanation creates no cycles

a �=c −→ P
↙↗ ↘

a �=b �

↘↖ ↗
c=b −→ ¬P

(b) Wrong Explanation may
create cycles

Fig. 1. Creation of undesirable cycles in the implication graph.

then setting a literal such as b=c to true will make a �= c false and so produce
P as a new unit consequence. We point out that this fact will be discovered by
the DPLL(X) engine only if the set returned by the call SetTrue(b=c) does
in fact contain a �= c which, depending on the theory solver implementation,
might or might not be the case. In any case, failing to return a �= c does not
affect the completeness of the overall DPLL(T ) system, only the extent of unit
propagation.

Another source of incomplete unit clause detection is that two different lit-
erals may in fact be equivalent in the current state of the interpretation: again
in the EUF case, if in Solver

T
we have I |=T a=b, and there is a two-literal clause

a=c ∨ b=c, then the unit consequence a=c (or, equivalently, b=c) will not be
detected.

Concerning conflict analysis, the construction of the implication graph is
more complex in DPLL(T ) than in Chaff. In the latter, a node labeled with a
literal l with antecedents nodes l1, . . . , ln is always due to a clause ¬l1∨. . .∨¬ln∨ l
on which unit propagation has taken place. Hence, to build the implication graph
it suffices to have, together with each such l, a pointer to its associated clause.
In DPLL(T ), an implication graph can contain, in addition to nodes like the
above, also nodes l that are a T -consequence of their antecedents l1, . . . , ln. Such
nodes l are those returned by SetTrue calls to Solver

T
, and can be recognized as

such since they have no pointer to an associated clause. Their antecedents can
be obtained from the solver itself by calling Explanation(l). For example, a run
of the DPLL(X) algorithm on the clauses:

f(a) �=f(b) ∨ d �=e a=b ∨ a �=c a=b ∨ c=b a=c ∨ P c �=b ∨ ¬P

can be as follows:

1. SetTrue(f(a) �=f(b)). Decision. SetTrue returns a �=b, a T -consequence.
2. SetTrue(a �=c). Unit propagation of a �=b on a=b ∨ a �=c.
3. SetTrue(c=b). Unit propagation of a �=b on a=b ∨ c=b.
4. SetTrue(P ). Unit propagation of a �=c on a=c ∨ P .
5. SetTrue(¬P ). Unit propagation of c=b on c �=b ∨ ¬P . Conflict!

The implication graph is built backwards from P and ¬P . When a �=b is reached,
Explanation(a �=b) is called, and indeed one possible explanation is f(a) �=f(b).
This process results in the graph depicted in Figure 1(a). Note that {a �=c, c=b}
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also has a �=b as a T -consequence, but using that set would lead to the graph in
Figure 1(b), which has cycles. To avoid cycles, it is enough for Explanation(l)
to return explanations that are “older” than l, as precised in the definition of
Explanation.

4 A Solver for EUF

A key ingredient for a solver for EUF is an algorithm for congruence closure. Now,
the O(n log n) DST congruence closure algorithm given in [DST80] (see also
[NO80]) needs a relatively expensive initial transformation to directed acyclic
graphs of outdegree 2. In [NO03] we proposed to replace this transformation by
another one, at the formula representation level: we Currify, like in the implemen-
tation of functional languages; as a result, there will be only one binary “apply”
function symbol (denoted here by a dot “·”) and constants. For example, Cur-
rifying f(a, g(b), b) gives ·(·(·(f, a), ·(g, b)), b). Furthermore, like in the abstract
congruence closure approaches (cf. [Kap97,BT00]), we introduce new constant
symbols c for giving names to non-constant subterms t; such t are then replaced
everywhere by c, and the equation t=c is added. Then, in combination with
Currification, one can obtain the same efficiency as in more sophisticated DAG
implementations by appropriately indexing the new constants like c, which play
the role of the pointers to the (shared) subterms like t in the DAG approaches.
For example, we flatten the equation ·(·(·(f, a), ·(g, b)), b)=b by replacing it by
the four equations ·(f, a)=c, ·(g, b)=d, ·(c, d)=e, and ·(e, b)=b.

These two (structure-preserving) transformations are done in linear time once
and for all on the input formula given to our DPLL(T ) procedure. As a con-
sequence, since all compound terms (atoms) occuring in the EUF formula have
gotten a “name”, i.e., they are equal to some constant, all equality atoms in the
EUF formula are in fact equations between constants. Furthermore, the congru-
ence closure algorithm of SolverT only needs to infer consequences from a fixed,
static set of equations E of the form ·(a, b)=c, where a, b and c are constants
(note that the · symbol does not occur outside E). This makes our (DST-like)
algorithm surprisingly simple and clean, and hence easier to extend. Our im-
plementation of [NO03] also runs in O(n log n) time, but of course it can be
much faster than algorithms for arbitrary terms2. Once the closure is computed,
deciding whether two constants a and b belong to the same class, i.e., all positive
IsTrue?(a=b) operations, can be done in constant time.

The data structures for congruence closure are:

1. Pending unions : a list of pairs of constants yet to be merged.
2. The Representative table: an array indexed by constants, containing for each

constant its current representative (this can also be seen as a union-find data
structure with eager path compression).

3. The Class lists : for each representative, the list of all constants in its class.

2 In fact, it is about 50 times faster than earlier implementations such as [TV01] on
the benchmarks of [TV01].



DPLL(T ): Fast Decision Procedures 183

4. The Lookup table: for each input term ·(a, b), a call Lookup(Representative(a),
Representative(b)) returns in constant time a constant c such that ·(a, b) is
equivalent to c, and returns ⊥ if there is no such c.

5. The Use lists: for each representative a, the list of input equations ·(b, c)=d
such that a is the representative of b or c (or of both).

Each iteration of the algorithm roughly amounts to picking a pending union,
and then using the lookup table and the use lists for efficiently detecting new
pairs of constants to be merged. We refer to [NO03] for a detailed description and
analysis of the algorithm, as well as for its extension to successor and predecessor
symbols, which is also O(n log n).

We now briefly describe the other data structures and algorithms for the
SolverT operations, following a notation where unprimed constants a, b, c are
always representatives of primed ones a′, b′, c′; symbols d and e can be represen-
tatives or not.

The Literal Lists and Their Use for SetTrue. Upon its initialization, SolverT

builds, once and for all, for each constant d, a positive literal list containing all
positive DPLL(X) literals of the form d= e, i.e., all positive literals contain-
ing d that have been communicated to Solver

T
in the Initialize operation.

Analogously, there is also a negative literal list for each d.
If a positive SetTrue, and its subsequent congruence closure, produces a

union such that a class with former representative a is now represented by a
different b, then, for each a′ in the class list of a, the positive literal list of a′ is
traversed and all a′=b′ in this list are returned as T -consequences. Also the nega-
tive literal list of all such a′ is traversed, returning those a′ �=c′ such that a �=c is
stored in Diseq, a hash table containing all currently true disequalities between
representatives; analogously also the negative literal list of all b′ is traversed.

After a SetTrue operation of a negative equation with representative form
a �=b, the negative literal list of all a′ is traversed (or equivalently, the one of all
b′, if this is expected to be less work), returning all a′ �=b′.

Backtracking. This is dealt with by means of a mixed policy: unions between
constants are stacked in order to be undone. The Diseq hash table and the Lookup
data structure (another hash table) are not restored under backtracking but
instead have time stamps (the I-stack height combined with a global counter).

Explanations. A newly derived positive equality is a T -consequence of a set of
positive SetTrue operations and of the equations inside the congruence closure
module. Negative equations are also T -consequences of such positive equalities,
but in addition they are always caused as well by a single negative SetTrue.

Hence, for retrieving the explanations for DPLL(X) literals, we need to be
able to proceed “backwards” in our data structures until the set of initial SetTrue
operations is reached. At each congruence propagation deriving d=e as a conse-
quence of ·(a′, b′)=d and ·(a′′, b′′)=e, (pointers to) these two equations are kept,
allowing one to continue backwards with the explanations of a′=a′′ and b′=b′′. In
addition, there is a method for efficiently extracting from a (slightly extended)
union-find data structure the list of unions explaining a certain equality.
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Finally, for explaining a negative equality d1 �=e1, there is an additional table
for retrieving the single negative SetTrue(d2 �=e2) operation that caused it; the
remaining part of the explanation can then be found backwards, as the union of
the explanations of d1=d2 and e1=e2.

5 Experimental Results

Experiments have been done with all 54 available benchmarks (generated from
verification problems) that can be handled in EUF with successors and predeces-
sors. Most of them were provided by the UCLID group at CMU3. All benchmarks
are in SVC format [BDL96] (see [BLS02a] for more details on them).

The table below contains (in its second column) the translation times for the
four eager approaches described in Section 1: SD and EIJ [VB03], and the two
hybrid methods Hybrid1 [BLS02a] and Hybrid2 [SLB03]. All translations were
done using the state-of-the-art translator provided within the UCLID 1.0 tool.
Furthermore, for two major SAT solvers, zChaff [MMZ+01] (version 2003.12.04)
and BerkMin [GN02] (its recent version 561) the running times on the trans-
lated formulas are given. For a fair comparison with our system, the times for
the zChaff and BerkMin runs include the translation times as well, since those
translations are not mere formats conversions but the result of sophisticated al-
gorithms for reducing the size and the search space of the propositional formula
produced. The choice of zChaff and BerkMin is motivated by the fact that our
current DPLL(X) engine is modeled after zChaff and that BerkMin is presently
considered one of the best SAT solvers overall. The first table has an extra
column with the running times of SVC (version 1.1) as well.

Results are in seconds and are aggregated per family of benchmarks, with
times greater than 100s rounded to whole numbers4. All experiments were run
on a 2GHz 512MB Pentium-IV under Linux, with the same settings for each
benchmark except for the “Two queues” benchmarks where our system had
learning turned off. Each benchmark was run for 6000 seconds. An annotation
of the form (n t) or (n m) in a column indicates respectively that the system
timed out or ran out of memory on n benchmarks. Each timeout or memory out
is counted as 6000s.

We point out that our current DPLL(X) implementation is far less tightly
coded than zChaff, and is more than one order of magnitude slower than zChaff
on propositional problems, even when the overhead due to the calls to Solver

T

is eliminated. Considering that BerkMin consistently dominates zChaff on all
the benchmark families, it is remarkable that our system performs better than
the UCLID+BerkMin combination on the great majority of the families. In fact,
there is no unique translation-based approach that outperforms DPLL(T ) on
more than two benchmark families. Furthermore, DPLL(T ) is faster than SVC
on all benchmarks, and so also faster than the lazy approach-based systems CVC
[BDS02] and Verifun [FJOS03] which, as shown in [FJOS03], are outperformed

3 We are grateful to Shuvendu Lahiri and Sanjit Seshia for their kind assistance.
4 Individual results for each benchmark can be found at www.lsi.upc.es/~oliveras,

together with all the benchmarks and an executable of our system.
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by SVC. We see this as strong initial evidence that DPLL(T ) is qualitatively
superior to existing approaches for deciding satisfiability modulo theories5.

Benchmark family SD BerkMin Chaff DPLL(T) SVC

Buggy Cache 2.3 2.4 3.4 6.7 (1t) 6000

Code Validation Suite 16.2 44.9 43.9 3.7 56.9

DLX processor 3.9 10.2 13.3 1.2 16.9

Elf processor 34.1 5882 (1t) 6104 575 (1t) 6078

Out of order proc.(rf) 27.1 (2t) 18211 (3t) 19213 6385 (2t) 12666

Out of order proc.(tag) 54.3 247 1457 1979 (4t) 28788

Load-Store processor 22.2 51.4 239 30.3 (3t) 18476

Cache Coherence Prot. 20.4 4151 (1t) 9634 3601 (4t) 26112

Two queues 5.1 407 1148 73.6 1872

Benchmark family EIJ BerkMin Chaff DPLL(T)

Buggy Cache 6.3 6.4 9.3 6.7

Code Validation Suite 40.7 41 41.8 3.7

DLX processor 13 13.9 14.4 1.2

Elf processor (2m) 20.1 (2m) 12021 (2m) 12021 575

Out of order proc.(rf) 70.6 (1t) 7453 (2t) 13926 6385

Out of order proc.(tag) 210 510 837 1979

Load-Store processor (1m) 32 (1m) 6034 (1m) 6037 30.3

Cache Coherence Prot. (3m) 102 (3m) 18257 (3m) 18437 3601

Two queues (3m) 19.4 (3m) 18028 (3m) 18034 73.6

Benchmark family Hybrid 1 BerkMin Chaff DPLL(T)

Buggy Cache 6.2 6.4 9.2 6.7

Code Validation Suite 13.2 13.5 13.5 3.7

DLX processor 13.1 14.1 15.2 1.2

Elf processor 187 941 1646 575

Out of order proc.(rf) 65.3 (1t) 7524 (2t) 13009 6385

Out of order proc.(tag) 175 612 799 1979

Load-Store processor 64.1 79.6 88.4 30.3

Cache Coherence Prot. (3m) 102 (3m) 18257 (3m) 18438 3601

Two queues (3m) 19.5 (3m) 18019 (3m) 18028 73.6

Benchmark family Hybrid 2 BerkMin Chaff DPLL(T)

Buggy Cache 3 3.2 3.7 6.7

Code Validation Suite 27.7 28 28.6 3.7

DLX processor 11.3 12.9 14.3 1.2

Elf processor 47.2 3182 5467 575

Out of order proc.(rf) 53 (1t) 10626 (2t) 13913 6385

Out of order proc.(tag) 140 6918 (2t) 12173 1979

Load-Store processor 40.1 45.47 47.71 30.3

Cache Coherence Prot. 37.3 209 690 3601

Two queues 5.7 793 1832 73.6

5 This evidence was confirmed recently by further experiments (also reported in de-
tail at www.lsi.upc.es/~oliveras) showing that DPLL(T)’s perfomance dominates
that of ICS 2.0 as well on the benchmarks listed here.
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As expected, translation-based methods will normally outperform DPLL(T )
for problems where the theory T plays a very small role. But this is no longer
the case when theory predicates start playing a significant role, as in the fami-
lies Code Validation, Elf and OOO processors (rf), and Two queues. This phe-
nomenon becomes dramatic for instance in benchmarks from group theory6.

6 Conclusions and Future Work

We have presented a new approach for checking satisfiability in the EUF logic.
This approach is based on a general framework and architecture in which a
generic DPLL-style propositional solver, DPLL(X), is coupled with a special-
ized solver Solver

T
for a given theory T of interest. The architecture is highly

modular, allowing any theory solver conforming to a simple, minimal interface
to be plugged in into the DPLL(X) engine. The fundamental advantage with
respect to previous approaches is that the theory solver is not only used to val-
idate the choices made by the SAT engine, as done for instance in CVC, but
also to propagate the entailed literals returned by SetTrue, using information
from consistent partial models, considerably reducing the search space of the
SAT engine. Initial results indicate that in the EUF case this leads to significant
speed-ups in overall performance.

More work needs to be done on our implementation. Aspects such as lemma
management, decision heuristics and restarting policies are still immature, More
accurate theory-dependent heuristics need to be explored. Also minimal-model-
preserving optimizations should be worked out; for instance, the notion of P-
terms [BGV01] has its counterpart in our framework, and so could be used.

Finally, other future work of course concerns the development of new theory
solvers, or the conversion of existing ones (e.g., those used in CVC), into theory
solvers conforming to our interface: solvers for EUF with associativity and tran-
sitivity (AC) properties for certain symbols, EUFM (EUF+memories) [BD94],
Separation Logic [SLB03], or the full CLU logic [BLS02b].
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