
Secure Databases: An Analysis of Clark-Wilson
Model in a Database Environment

Xiaocheng Ge1, Fiona Polack1, and Régine Laleau2,�

1 Department of Computer Science, University of York
York, YO10 5DD, UK

{xchge,fiona}@cs.york.ac.uk
Fax: +44 1904 432767

2 Research Laboratory LACL, IUT Fontainebleau, Université Paris 12
Route forestière Hurtault 77300 Fontainebleau, France

laleau@univ-paris12.fr

Abstract. Information systems are vulnerable to accidental or mali-
cious attacks. Security models for commercial computer systems exist,
but information systems security is often ignored or added at or after
implementation. The paper explores common security models, and their
relevance to databases. It demonstrates how security-relevant concepts
can be extracted during a conventional database development.

Keywords: Databases, security models, access control, data integrity,
development methods

1 Introduction

This paper considers security models for information systems (ISs); the work is
part of ongoing research into a development process for commercial databases
that incorporates security. The research objective is to incorporate, in a formally
verifiable way, the fundamental requirements of commercial security. For simplic-
ity, we assume a target implementation of a relational DBMS and SQL3[13].

This section introduces key security concepts, outlines the overall research
plan, and summarises existing security models. Section 2 explores the Clark-
Wilson security model in the context of ISs. Section 3 looks at designing for
security with a conventional database development and SQL3 implementation.
The case study is necessarily brief, and does not cover the formal verification of
the security content, or conventional verification techniques such as normalisa-
tion. Section 4 compares our approach to existing work, whilst section 5 presents
our conclusions in the context of our ongoing research.

1.1 Background of Database Security

ISs are important to the modern society. Information stored in databases is a
valuable resource that enables an organisation to operate effectively. Modern
� Prof. Laleau’s contribution is supported by an EPSRC visiting fellowship, grant

006R02664.

A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 234–247, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Secure Databases: An Analysis of Clark-Wilson Model 235

organisations are so dependent on the proper functioning of their ISs that cor-
ruption or loss of data has serious consequences.

Database security is concerned with ensuring the confidentiality (or secrecy),
integrity, and availability of stored data. Confidentiality is the protection of data
from unauthorised disclosure either by direct retrieval or by indirect logical in-
ference; it also concerns the possibility that information may be disclosed by
legitimate users acting as an information channel, passing secret information to
unauthorised users. Integrity requires data to be protected from invalid modifica-
tion, insertion or deletion. Integrity constraints are rules that define the correct
states of a database, and maintain correctness under operation. Availability en-
sures that data is available to authorised users. Availability is very closely related
to integrity because service denial may cause or be caused by integrity violations.

Database security is not an isolated problem; it is affected by other compo-
nents of a system, such as the operating system (OS). The security requirements
of a system are specified by means of a security policy and enforced by security
mechanisms. For databases, [21, 5, 20] classify the secure database requirements.

Our research focuses on database integrity, and those aspects of confiden-
tiality that relate to data protection, namely access control. Of the following
security requirements, which are the minimum that need to be supported by the
IS, the first relates directly to integrity; the other two relate to confidentiality.

1. Integrity, Consistency. Semantic integrity constraints are rules defining the
correct states of the system during operation; they exist to protect against
malicious or accidental modification of data, and ensure the logical consis-
tency of data. Rules can be defined on the static state of the database, or
on transitions (as conditions to be verified before data is modified).

2. Identification, Authentication, Audit. Before accessing a system, every user
is identified and authenticated, both for the audit trail and for access per-
mission. Auditing is the process of examining all security relevant events.

3. Authorisation (access control). Authorisation applies a set of rules that de-
fines who has what type of access to which information. Access control poli-
cies govern the disclosure and modification of information.

In the context of requirement engineering, security aspects should not be
afterthoughts of database design process. We cannot simply ‘firewall databases,
because firewalls cannot do anything against invalid modification by authorised
users. We need an IS development method that incorporates security aspects.

1.2 Secure Database Design Process

Our design process (Figure 1) extends a conventional database design process[10]
with security; it includes a formalisation (referred to as OAZIS), to support
verification of the integrity of state and operations.

The first step, requirements collection and analysis, documents users’
data and functional requirements (ie required transactions). There are three
types of security requirement: logical, physical and organisational. We concen-
trate on logical requirements, derived by analysis of threats and risks.

236 Xiaocheng Ge, Fiona Polack, and Régine Laleau

Requirements collection
and analysis

Application program
design

Logical design (data
model mapping)

Transaction
implementation

Physical design

Policy selection and
security analysis

DBMS security aspect
review

Functional requirements

Security requirements

Database requirements

User group identification
and Access control list

Functional analysis
Access mode

analysis
Conceptual designViews design

High-level transaction specification
Conceptual schema (in high-

level data model)

Logical schema (in the data
model of a specific DBMS)

Internal schema (for the
same DBMS)

Application
implementation

DBMS-independent

DBMS-dependent

DBMS security
mechanisms

Fig. 1. The development process of OAZIS method

The logical security requirements are the basis for security analysis and
policy selection. This step is crucial. The security policy determines the access
mode for each subject (or role) on each object (data, operations). The permis-
sions of each user role are specified, and the access control list determined.

Once requirements have been analysed, functional analysis and concep-
tual design produce a conceptual schema, a concise description of data types,
relationships, and constraints. Sub-schemas are identified to aid the expression

Secure Databases: An Analysis of Clark-Wilson Model 237

of security constraints and access control. Basic data operations (create, delete,
and update) are used to specify transactions – both the user-required functional
transactions and those relating to the chosen security policy. The results of these
steps need to be verified against the security requirements, so development iter-
ates between conceptual modelling and model verification.

Logical design translates the conceptual model into a logical model for a
specific DBMS. Analysis of the security features in the conceptual model estab-
lishes which security requirements can be achieved by OS and DBMS security
mechanisms, or by specific security packages, resulting in a logical security model.
If any security requirements in the conceptual model cannot be addressed using
available mechanisms, the developer should design further specific mechanisms.

Finally, physical design implements the internal database structures, in-
cluding security mechanisms. Application programmes are coded for those parts
of transactions that cannot be implemented directly on the chosen DBMS.

1.3 Literature of Security Models

There are many security policies and models in the literature, relevant to various
environments. In a military environment, confidentiality is critical – all classified
information shall be protected from unauthorised disclosure or declassification
– so models focus on mandatory classification. For example, Bell-LaPadula [3]
and its derivatives describe models for confidentiality, whilst Biba [4] defines a
similar level-oriented integrity model. In the commercial environment, the goal
is to prevent fraud and errors – no user, even if authorised, should be able to
modify data in an invalid way – so models focus on integrity enforcement and
authorisation mechanisms to prevent illegal modification. The seminal work is
Clark-Wilson’s integrity model.

Policies and models are implemented by security mechanisms, which can be
either discretionary or mandatory. Discretionary models include mechanisms for
granting and delegating access permissions by (some) system users. Mandatory
security is built-in and cannot be changed by system users. These models govern
information access on the basis of classifications of subject and object1.

For our commercial security requirements, the Clark-Wilson model results in
a conceptual security model that is defined by identification of,

– data items for which security enforcement is crucial (CDIs);
– transformation procedures (TPs) that can access data;
– user roles, in terms of authorisation to use particular TPs.

The access control is specified as an access triple, < user , tp, data >, stating
that a user has permission to execute tp on data. Implementation is usually
discretionary, but there is no fundamental reason why a Clark-Wilson triple
could not be implemented as a mandatory security mechanism.
1 A subject is a person or application that actively accesses data/processes; objects are

passive data or processes stored in the IS. For military systems, the implementation
of mandatory security mechanisms is described in the U.S. Department of Defence
Trusted Computer System Evaluation Criteria (the Orange Book) [9].

238 Xiaocheng Ge, Fiona Polack, and Régine Laleau

To enforce basic access control and integrity mechanisms, Clark-Wilson iden-
tifies two principal mechanisms. The well-formed transaction preserves data
integrity and prevents users from arbitrarily manipulating data. Separation of
duty dictates that each critical operation comprises two or more subparts, each
of which has to be executed by a different user role. Our research is concerned
with how these mechanisms can be established during the database design pro-
cess.

2 Clark-Wilson and Information Systems

The Clark-Wilson security model derives from commercial data processing prac-
tices. It is based on time-tested business methods; thus it represents a real-world
approach, rather than an academic exercise. Furthermore, the Clark-Wilson
model can be used to evaluate the security of a complete system, rather than
just the subject-object accesses [11]. The focus on data integrity and well-formed
transactions makes it particularly attractive for database systems.

2.1 The Clark-Wilson Model

In 1987, Clark and Wilson proposed their commercial security model [6]. It can
be used for systems where integrity is enforced across both the OS and the
application. Clark-Wilson was extended to cover separation of duty in 1993 [1].

Clark-Wilson is not the first approach to model the integrity aspect of se-
curity. Biba [4] defined an integrity model based on the security classifications
of subjects and objects, using integrity level for classification. Later, Lipner [17]
tried to describe integrity using the Bell-LaPadula model. In his model, a list
of users is attached to transactions and data separately, to ensure that data
can only be manipulated by certified transactions. These are all lattice models,
with security verification based on the mathematical theory of lattices and rela-
tions. For IS, they are inadequate as they do not restrict data manipulation to
programs that implement well-formed transactions.

In Clark-Wilson, each datum in the system is classified as either a constrained
data item (CDI) or an unconstrained data item (UDI). CDIs must be protected,
whilst UDIs are conventional data objects whose integrity is not assured under
the model. No datum can be in both classes:

Data = CDI ∪ UDI ∧ CDI ∩ UDI = ∅

Operations on CDIs are performed by TPs and integrity verification procedures
(IVPs)2. IVPs ensure that all CDIs conform to some application-specific model
of integrity. TPs change the state of the set of CDIs.

Appendix A lists Clark-Wilson rules for certification, enforcement, and sep-
aration of duty. Enforcement rules specify security requirements that should be
2 Although it is tempting to think of a TP as a user transaction, the analogy is

unsound, as we will see later.

Secure Databases: An Analysis of Clark-Wilson Model 239

TP

IVP

CDI_a

CDI_b

Log
CDI

Users

System in valid state

C1: IVP validates CDI state

UDI

C5: TPs validate UDI

C2: TPs preserve valid state C4: TPs write to log file

C3: Suitable separation of duty

C1

C3
C5

C2

C4

Certification Rules

CDI_c

C2

C5

(a) Certification Rules

TP CDI

Security Officer

E1: CDIs changed only by authorised TP

E4: Authorisation lists changed only by security officer

E3: Users are authorised

E1

E4

E3

E2

E2: Users authorised for TP

Enforcement Rules

Authorisation

User Set

(b) Enforcement Rules

Fig. 2. Certification and Enforcement Rules of the Clark-Wilson Model

supported by the protection mechanisms in the underlying system. Certification
rules specify security requirements that the application system should uphold.

Figure 2 (derived from [6]) shows how these rules apply to data manage-
ment. UDIs represent data that exists outside the secure system. Certification
rules ensure that such data is properly validated on entry to the system – for

240 Xiaocheng Ge, Fiona Polack, and Régine Laleau

example, rule C5 requires that well-formed TPs that convert UDIs to CDIs per-
form only the complete, certified transformations; rules C1 and C2 require that
CDIs conform to the IVPs on entry and under subsequent transformations. Rule
C4 requires the logging of all transactions, as is normal for databases – though
database logging is for rollback, whilst Clark-Wilson logging is for audit; rule C3
requires appropriate separation of duties. Since data can only be entered in ac-
cordance with the certification rules, for the systems in which we are interested,
it follows that all data in the database are CDIs. The enforcement rules prevent
modification of CDIs in ways that contravene the IVPs. Rules E2 to E4 relate to
TP authorisation of access, whilst remaining rules ensure that only well-formed,
certified TPs can be used to modify CDIs.

2.2 Applying Clark-Wilson Using a DBMS

Conventional DBMSs support many of the Clark-Wilson mechanisms for access
authorisation and control. However, implementations based on standard SQL
require some compromises. SQL3 access control mechanisms are primarily on
data not transactions, so the access-control triples cannot be directly or fully
implemented for user transactions. Inspiration for implementation mechanisms
comes from Lee [16] and Shockley [23], who independently developed an imple-
mentation of the Clark-Wilson model, using the Biba model categories and trust
subjects to interpret access triple authorisations at the data level.

Figure 3 shows a classical DBMS and the related OS and programming func-
tions. The fundamental database principle, that data can only be accessed via
the DBMS, is assumed, and the DBMS provides authorisation checking, trans-
action and data management and logging. The OS authentication also applies
as normal and can be extended at the DBMS interface, for example with extra
access rules. We now consider how these concepts can be related to the Clark-
Wilson rule-application in Figure 2.

First, we consider validation of UDIs. In figure 3, the application object, out-
side the DBMS box, represents a UDI. Following rule C5, the application object
is processed by an application program, invoking integrity enforcement procedures
such as procedure preconditions or an integrity contract. During execution, con-
nection to the DBMS server is established, and the user who is executing the
application program is authenticated by DBMS-level authorisation. If authenti-
cation succeeds, then a database transaction takes over, applying its own checks
on data integrity via the DBMS integrity enforcement. The transaction is logged,
part in the DBMS transaction log and part by the OS (rule C4).

Secondly, we review the implementation of the enforcement rules on CDIs.
At login, users are checked by OS authentication; they can then access either ap-
plication programs or database transactions according to the relevant access rules
(rule E3). Under rule E4, access permissions can only be modified by a specific
user role (security officer). Enforcement rule application is strongest if as much
processing as possible takes place under the control of DBMS access rules. This is
the case with Stored Procedures (supported by, for instance, ORACLE[19], IBM
DB2[12], and Microsoft SQL server [18]) and DBMS programming facilities such

Secure Databases: An Analysis of Clark-Wilson Model 241

User

Authentication

DBA

Security
officer

DBMS

Authorisation:
OS-levelApplication Programs

Authorisation:
DBMS-level

Access rules:
OS part

Access rules:
DBMS part

DBMS security methods

Database Transaction

DBMS functions
(SQL operations)

Database data
Application object

Authertication Log

Application
Execution Log

DB
Transaction

Log

Legends:

: Roles involved in the information system

: Subsystem and its support techniques

: Appendable-only data

: Editable data

: Dual-direction information flow : Single-direction information flow

Integrity Enforcement
pre-post conditions

Application transaction in
programming language

Integrity Enforcement

Relational schema,
integrity constraints

and trigger mechanism

Fig. 3. DBMS classical architecture

as Oracle’s PL/SQL. For complex algorithms, library procedures, graphics, and
access to other systems, it is necessary to use program code managed by the OS;
each time a CDI is exported to an embedding program, it reverts to UDI status.

A typical database transaction is made up of a number of separate TPs,
some of which convert UDIs into DBMS CDIs, and some of which update CDIs.
Transactions must also implement IVPs. Most database transactions (and their
associated access control) must therefore conform to the Clark-Wilson rules. Ac-
cess triples grant access to whole TPs. However, most SQL authorisation mecha-
nisms are defined on data and simple commands using the GRANT statement
(coupled with views):

242 Xiaocheng Ge, Fiona Polack, and Régine Laleau

GRANT list of privileges
ON data object
TO list of users
[WITH GRANT OPTION]

Access is given TO specified users and roles, ON specified data structures.
The access can be via any of the basic commands listed in the GRANT state-
ment. The basic commands are SELECT, DELETE, INSERT, UPDATE,
REFERENCES, TRIGGER and EXECUTE. One side-effect of SQL ac-
cess control is to reduce the likelihood that transactions commit. For instance,
consider transaction T:

BEGIN T
SELECT ∗ FROM X;
DELETE FROM X WHERE ...;

COMMIT T

On table X, role U has permission for SELECT and DELETE, whilst
role V has only SELECT permission. If U executes T there is no problem,
provided that integrity constraints are not violated. If, however, V executes T,
the transaction always aborts. Here, a solution would be to implement T as a
stored procedure, and grant EXECUTE permission on T only to U . This is not
a general solution, as some transactions cannot be defined as stored procedures.

Application programs are beyond the scope of SQL access control, and can
violate confidentiality. For example, if transaction T had additional program
commands to store or pass on the value of X.∗, the values stored in X would be
available to users who might not have SELECT access to X.

A final problem with SQL authorisation is WITH GRANT OPTION.
Although this is a popular concept, as it allows distributed management of au-
thorisations, it contradicts Clark-Wilson rule E4.

Our development process addresses these limitations by considering security
mechanisms during design, as well as at implementation. Our eventual goal is
to use a formal language to specify both the security policy and the functional
requirements, and to check their mutual consistency. We can derive implementa-
tions that meet the specification, using SQL integrity and access control, stored
procedures, and application code.

3 Designing for Security: A Case Study

We now illustrate some aspects of our process. Our research shows that,

– access triples, TPs and separation of duty can be analysed in use case models;
– data details can be checked via class models, extended for modelling ISs to

include the constraints needed to enforce data integrity;
– well-formedness can be designed in to transactions, checked using interaction

diagrams, and implemented by the usual embedded SQL approaches;
– IVPs can be modelled as operation preconditions, event guards etc; these

can be implemented in SQL constraint and trigger statements.

Secure Databases: An Analysis of Clark-Wilson Model 243

The scenario is a system for processing university examination papers.

Each academic year, thousands of students sit examinations. The pa-
pers have to be set by the lecturer, then checked by an Exam Board (EB).
Students’ scripts are marked by lecturers. Marks are checked and entered
by administrators. The examination, processing and marks achieved are
reviewed by EB, which has authority to modify marks. Finally, students
are given access to their marks and degree grades.

ProcessPaper

ViewMark

DataInput

GradeStudent

ViewGrade

ReviewMark

SitExam

MarkPaper

CheckPaper

Student Lecturer

EBAdministrator

M

M M

Fig. 4. Use cases of the examination management system

Figure 4 shows use cases for the system. Because of the characteristics of
UML use case diagrams, each link between an actor and a use case presents
an access triple in form of < actor , usecase, data > – that is, each use case
represents a TP. The implementation must enforce rule E3, that only programs
that implement an access triple can be executed on the data.

Each use case models the processing of data into a valid final state (rule C2).
For example, Mark , is accessed and modified by each of the use cases labelled
M . The link between the actor Administrator and use case DataInput generates
the access triple < Administrator ,DataInput ,Mark >; the implementation must
check the integrity rules on Mark before it becomes a CDI in the database.

In order to make sure that the design meets the separation of duty require-
ment (rule C3), we can list all the access triples relating to the modification of
each CDI. For the data item Mark , these are:

< Lecturer ,MarkPaper ,Mark >

< EB ,ReviewMarks,Mark >

< Administrator ,DataInput ,Mark >

Three different roles are involved in processing Mark before a student can
access it – separation of duty is preserved, at least at the conceptual level.

244 Xiaocheng Ge, Fiona Polack, and Régine Laleau

The conceptual model class diagram, defining structural integrity, is not il-
lustrated here. In our approach, data constraints are expressed in a suitably
formal language (UML recommends OCL; we use Z; elsewhere, we also recom-
mend B [22]). Transactions are specified using UML interaction diagrams, with
well-formedness checked by ensuring that structural integrity is maintained; we
can also translate the models to a formal language for analysis. Rule C1 says that
all IVPs must properly ensure that all CDIs are in a valid state when an IVP is
executed – the modelled constraints effectively specify Clark-Wilson IVPs.

IVPs exist for all three mark-processing transactions (some related to the
wider organisation):

– the lecturer’s marking must conform to published marking criteria;
– at entry, values are checked against data domains and other constraints;
– the EB checks human aspects of the examining system – illness, academic

misconduct, exam irregularities – and adjusts marks accordingly, but within
the data constraints, plus time constraints imposed by the university.

Part of the IVP controlling data input relates to the constraint that the value
of Mark must be an integer on the university mark scale, 0 and 100. In SQL, we
can implement this either as a CHECK statement, or as a TRIGGER:

CREATE TRIGGER EnforceMark BEFORE INSERT
ON achievement
REFERENCING NEW ROW AS new

BEGIN
IF new.mark > 100 THEN ROLLBACK
ELSE COMMIT

END IF

A well-formed transaction combines such clauses and TPs, enforcing integrity.

4 Related Work

The main recent work on designing secure systems is UMLsec [14, 15], an ex-
tension of UML to include standard security requirements for critical systems,
targeted at general security-critical systems design. UMLsec extends use case
diagrams, activity diagrams, class diagrams, sequence diagrams, statechart dia-
grams, and deployment diagrams. It covers a wide area of information security,
providing a rich set of security semantic in UML diagrams.

Like UML, the UMLsec graphical notation can be used with any develop-
ment process, but does not directly represent IS characteristics such as keys and
transactions. UMLsec’s philosophy is based on the lattice models’ multi-level
security classification; Clark-Wilson is not level-oriented, and separation of duty
is outside the scope of UMLsec. We cannot use UMLsec as the basis for our
development process.

In terms of the application of security models to IS, Cuppens et al [8, 7]
reviewed applicable models, and have formally specified, in deontic logic, rules

Secure Databases: An Analysis of Clark-Wilson Model 245

and obligations for database confidentiality, integrity and availability. Prolog
implementation is used to check rules for contradiction. Cuppens’ work is more
extensive than ours, and expresses many of the security aspects covered by the
Clark-Wilson rules. However, publications do not address the completeness or
consistency of the formal security models. Implementation of security mech-
anisms does not relate to commercial DBMSs and SQL, focusing instead on
object-oriented databases with a novel prolog-based query language.

5 Conclusion

In this paper, we summarise support for the Clark-Wilson security model in a
conventional DBMS context, and an approach to database design that builds
security requirements into the design.

The discussion of security models suggests that the Clark-Wilson focus on
well-formed transactions makes it appropriate for ISs. Indeed, the main disadvan-
tage normally cited for Clark-Wilson, that the IVPs and associated techniques
are not easy to implement in real computer systems [2], is largely overcome in
the database context. For relational database, some integrity constraints are in-
herent in the theory (entity and referential integrity); others can be stated as
static constraints using SQL. Some dynamic integrity constraints can be imple-
mented using the SQL3 triggers, and others can be stated in code. These enforce
the integrity of CDIs accessed and modification by TPs.

Although conventional DBMSs have most of the security features needed
to implement the Clark-Wilson rules, access triples are not fully supported; a
combination of OS and DBMS facilities is required. A verification of security
can be achieved by calculating the overall data accesses of the implemented
transactions and ensuring that these match triples constructed in design for
each required transaction.

The case study extract presents part of an approach for building security
requirements into the development process. The conventional conceptual models
used for ISs specification and design provide the basis for expressing, checking
and implementing the necessary security features. Work is ongoing on the detail
of the development process, incorporating the formal analysis of system integrity,
and dynamic TP/IVP enforcement of integrity by transactions.

The ability to map designed security features to the SQL concepts supported
by current DBMSs is also critical to the success of our approach. The case study
shows just one aspect of this – the derivation of a trigger to enforce a simple
data constraint. We are devising template translations from our conceptual and
formal models to SQL, and are working on a prototype of a tool that can express
formally-verified integrity rules as appropriate SQL constraints and triggers.

246 Xiaocheng Ge, Fiona Polack, and Régine Laleau

References

1. M. Abrams, E. Amoroso, L. LaPadula, T. Lunt, and J. Williams. Report of an
integrity research study group. Computers and Security, 12:679–689, 1993.

2. E. Amoroso. Fundamentals of Computer Security Technology. Prentice Hall, 1994.
3. D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations

and model. Technical Report MTR 2547 v2, MITRE Corporation, 1973.
4. K. J. Biba. Integrity constraints for secure computer systems. Technical Report

EST TR-76-372, Hanscom AFB, 1977.
5. S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison-

Wesley, 1994.
6. D. D. Clark and D. R. Wilson. A comparison of commercial and military computer

security policies. In IEEE Symposium on Security and Privacy, pages 184–194,
Oakland, April 1987.

7. F. Cuppens. Modélisation formelle de la sécurité des systèmes d’informations.
Habilitation, Paul Sabatier University, Toulouse, France, 2000.

8. F. Cuppens and C. Saurel. A logical formalization of integrity policies for database
management systems. In S. Jajodia, W. List, G. W. McGregor, and L. Strous,
editors, Integrity and Internal Control in Information Systems. Kluwer, 1998.

9. DOD. TCSEC: Trusted computer system evaluation criteria. Technical Report
5200.28-STD, U.S. Department of Defense, 1985.

10. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin
Commings, 2nd edition, 1994.

11. S. N. Foley. The specification and implementation of “commercial” security require-
ments including dynamic segregation of duties. In 4th ACM Conf. on Computer
and Communications Security, pages 125–134. ACM Press, April 1997.

12. IBM. DB2 universal database: SQL reference, release 7. IBM Corporation, 2000.
13. ISO. International standard – SQL. Technical report, ISO/IEC 9075-1, 1999.
14. J. Jürjens. Towards development of secure systems using UML. In FASE 2001,

Genova, Italy, volume 2029 of LNCS, pages 187–201. Springer Verlag, April 2001.
15. J. Jürjens. UMLsec: Extending UML for secure systems development. In UML

2002, Dresden, Germany, volume 2460 of LNCS, pages 412–425. Springer Verlag,
Sept-Oct 2002.

16. T. M. P. Lee. Using mandatory integrity to enforce “commercial” security. In
IEEE Symposium on Security and Privacy, pages 140–146, Oakland, April 1988.

17. S. B. Lipner. Non-discrentionary controls for commercial applications. In IEEE
Symposium on Security and Privacy, pages 2–10, Oakland, May 1982.

18. Microsoft. SQL server, version 7.0. Microsoft Corporation, 1999.
19. Oracle. Oracle8i SQL reference, release 8.1.6. Oracle Corporation, 1999.
20. G. Pernul, W. Winiwarter, and A. Min Tjoa. The entity-relationship model for

multilevel security. In Int. Conf. on Conceptual Modeling / the Entity Relationship
Approach, pages 166–177, 1993.

21. C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall, 3rd edition,
2003.

22. F. Polack and R. Laleau. A rigorous metamodel for UML static conceptual mod-
elling of information systems. In CAiSE 2001, Interlaken, Switzerland, volume
2068 of LNCS, pages 402–416. Springer Verlag, June 2001.

23. W. R. Shockley. Implementing the Clark/Wilson integrity policy using current
technology. In 11th National Computer Security Conference, pages 29–37, Balti-
more, October 1988.

Secure Databases: An Analysis of Clark-Wilson Model 247

A Clark-Wilson Certification Enforcement,
and Separation of Duty Rules

The following rules are directly quoted from [6]:

C1: All IVPs must properly ensure that all CDIs are in a valid state at the time the
IVP is run.

C2: All TPs must be certified to be valid. That is, they must take a CDI to a
valid final state, given that it is in a valid state to begin with. For each TP,
and each set of CDIs that it may manipulate, the security officer must spec-
ify a “relation”, which defines that execution. A relation is thus of the form:
(TPi , (CDIa ,CDIb ,CDIc , . . .)), where the list of CDIs defines a particular set of
arguments for which the TP has been certified.

E1: The system must maintain the list of relations specified in rule C2, and must ensure
that the only manipulation of any CDI is by a TP, where the TP is operating on
the CDI as specified in some relation.

E2: The system must maintain a list of relations of the form:

(UserID ,TPi , (CDIa ,CDIb ,CDIc , . . .))

which relates a user, a TP and the data objects that TP may reference on behalf
of that user. It must ensure that only executions described in one of the relations
are performed.

C3: The list of relations in E2 must be certified to meet the separation of duty re-
quirement.

E3: The system must authenticate the identity of each user attempting to execute a
TP.

C4: All TPs must be certified to write to an append-only CDI (the log) all information
necessary to permit the nature of the operation to be reconstructed.

C5: Any TP that takes a UDI as an input value must be certified to perform only
valid transformations, or else no transformations, for any possible value of the
UDI. The transformation should take the input from a UDI to a CDI, or the UDI
is rejected.

E4: Only the agent permitted to certify entities may change the list of such entities
associated with other entities: specifically, those associated with a TP. An agent
that can certify an entity may not have any execute rights with respect to that
entity.

The following rules are from [1]:

SP1: User roles should be administered by two different agents: one agent assigns roles
to users, but is constrained by information in the system that defines the roles.
The other agent can define roles.

SP2: The use of so-called “primary CDIs” is recommended to support separation of
duty. Primary CDIs have values that require corroboration by two or more dif-
ferent users. A primary CDI should change only as a result of the last TP in an
enabling sequence.

SP3: To apply integrity to mechanisms that implement integrity, access triples can be
protected from unauthorised modification by storing them in CDI-triples and
restricting access to the Triple Manager by a role assignment. Similarly, TPs
and IVPs can be protect from unauthorised modification by assigning roles and
including TP/IVP management TPs in appropriate access rights.

	1 Introduction
	1.1 Background of Database Security
	1.2 Secure Database Design Process
	1.3 Literature of Security Models

	2 Clark-Wilson and Information Systems
	2.1 The Clark-Wilson Model
	2.2 Applying Clark-Wilson Using a DBMS

	3 Designing for Security: A Case Study
	4 Related Work
	5 Conclusion
	References
	A Clark-Wilson Certification Enforcement, and Separation of Duty Rules

