
A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 219–233, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Two-Hemisphere Model Driven Approach:
Engineering Based Software Development

Oksana Nikiforova and Marite Kirikova

Institute of Applied Computer Systems, Riga Technical University
1 Kalku, Riga, LV-1658, Latvia

{ivasiuta,marite}@cs.rtu.lv

Abstract. Several model driven approaches are currently used and developed,
namely, generic model driven approaches, agile model driven approaches, busi-
ness process model driven approaches, etc. This paper proposes the model
driven approach, which is based on a two-hemisphere model. The two-
hemisphere model integrates application and problem domain issues. The
model utilizes automatic model transformations, but in the same time allows
room for input of tacit knowledge. It is a practice-oriented approach which ties
together methods of business process modeling, object oriented, and model
transformation approaches in order to support cognitive needs of requirements
holders and object oriented software developers, and provide framework for
explicit and transparent representation of mutually related business and soft-
ware development knowledge. It utilizes tacit knowledge of stakeholders (in-
cluding software designers), but in the same time reflects this knowledge in ex-
plicit and automatically reconfigurable models that form the basis for automatic
code generation.

1 Introduction

“Agile” is one of the most popular words in current software development practice.
Agile software development methods, agile modeling, etc are attracting more and
more interest and attention. However the ultimate goal of the agility is not just soft-
ware development, - it is business agility [1], [2] that is to be achieved by organiza-
tions to survive in a rapidly changing turbulent environment. The role of information
technology and information systems in supporting business agility is well understood
[1], [3], [4]. One of the most debated promises to support business agility is the
Model Driven Architecture [4] that aims at automatic model transformation from a
platform independent application domain model into platform specific design and
implementation models [5]. The approach is developed by the Objects Modeling
Group and is based on the UML [6] (object oriented) application domain model.
However this approach does not address the question of how to develop such an
UML platform independent model, which would meet business needs and would be
ease adaptable to the changes of those needs. Therefore there is room for the claim
that a sophisticated application domain model is not needed, i.e., that the agile model
at this level is barely good enough [7]. This thesis is backed up by the practical as-

220 Oksana Nikiforova and Marite Kirikova

sumption that tacit models that are close to the reality are better than sophisticated
explicit models that are far from the reality. The claim reflects the main problem of
contemporary object oriented approaches: an attempt to gather requirements on the
bases of use case descriptions without automatically tracking relationships between
use cases and without automatically analyzing their consistency. Automatic checking
of correspondence between application model and problem domain model also is not
supported.

Several model driven approaches are currently used and developed, namely, ge-
neric model driven approaches, agile model driven approaches, business process
model driven approaches, etc. With respect to the model that drives the software
development process we may distinguish between the art based model driven ap-
proaches (driven mainly by tacit or mental models) and the engineering based ones,
which are driven by externalized explicit models. This paper proposes a model driven
approach, which is based on an explicit two-hemisphere model. The purpose of the
paper is to demonstrate that sophisticated models are not an obstacle in software de-
velopment and that engineering based approaches can well support business agility.
The two-hemisphere model integrates application and problem domain issues. The
model utilizes automatic model transformations, but in the same time allows room for
input of tacit knowledge. It is a practice-oriented approach which ties together meth-
ods of business process modeling, object oriented, and model transformation ap-
proaches in order to support cognitive needs of requirements holders and object ori-
ented software developers, and provide framework for explicit and transparent
representation of mutually related business and software development knowledge. It
utilizes tacit knowledge of stakeholders (including software designers), but at the
same time reflects this knowledge in explicit and automatically reconfigurable models
that form the basis for automatic code generation.

 The paper is structured as follows. In Section 2 we analyze several model driven
software development approaches. Section 3 introduces the two-hemisphere model
driven approach and discusses its applicability from business, software development,
and cognitive perspectives. Section 4 briefly illustrates some model transformations
utilized in the two-hemisphere model driven approach.

2 Software Development Driven by Particular Models

The notion Model Driven Approaches [8] has become popular only recently, how-
ever, all approaches are model driven. The question is only what type of model drives
the approach. Is it a tacit mental model of the designer or a particular explicit model
represented using particular formal notations that are supposed to be understood by
all participants of software development team. In this section we discuss briefly the
following software development approaches:
• Traditional object oriented approach (TOO)
• Generic model driven approach (GMD)
• Agile model driven approach (AMD)
• Business process model driven a approach (BPMD)
• Two-hemisphere model driven approach (2HMD)

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 221

Differences between approaches are graphically illustrated in Fig. 1. The fully ex-
plicit model here is depicted by filled rectangle, semi explicit model (some aspects of
systems are represented by explicit representations, while other aspects are presented
only in tacit mental models) are shown by non-filled rectangles, and fully or mainly
tacit models (non essential proportion of explicit representations may be present) are
represented by cloud like notation. Differences between approaches are analyzed
from the point of view of model transformations, ”the heart and the soul” of model
driven approaches [5]. Formal (automatic transformations) between models at differ-
ent levels of abstraction are denoted by continuous line arrows, but mental and man-
ual transformations by dotted line arrows.

�����������	
�

���	
�

����	���	
�
�
��	��
������	�

��
����
�
��	�
������	�

� � � � �

��� ��� ��� ���� ����

�����������	
�

���	
�

����	���	
�
�
��	��
������	�

��
����
�
��	�
������	�

� � � � �

��� ��� ��� ���� ����

Fig. 1. Level of exploration in model driven approaches

2.1 Traditional Object Oriented (TOO) Approach

The TOO approaches [10-16] the problem domain is considered as a black box by
describing a number of aspects of the system [17]. Primarily, designers’ tacit knowl-
edge acquired during application domain analysis drives the traditional object-
oriented approach (Fig. 1. a). Thus it is an approach, which is based on art rather than
engineering, despite sophisticated modeling techniques used in lower levels of ab-
straction.

Modeling efforts in TOO usually start with the identification of use-cases (Fig.2.)
for the software to be developed. A use-case reflects interactions between the system
to be built and the actor (an outside object in a particular role) that has a particular
purpose of using the system. Each interaction starts with an event directed from the
actor to the system and proceeds through a series of events between the actor, the
system, and possibly other actors, until the interaction initiated by the original event
reaches its logical conclusion. The sequence of interactions can be specified in words
or by one or more prototypical scenarios, which then are to be translated into the
elements of an interaction diagram. The interaction diagrams are created for each

222 Oksana Nikiforova and Marite Kirikova

use-case and show the sequence of message passing during certain use-case realiza-
tion. The class diagram shows an overall structure of the software system and encap-
sulates the responsibility of each class. The component diagram represents the reali-
zation of classes into a particular programming language. Therefore during the design
stage the target software system is organized into components, based on the knowl-
edge gained in the analysis stage. As a result the design model is developed that fur-
ther may be automatically translated into a particular programming language, and
thus serve as a basis for software system’s implementation [17].

Fig. 2. UML diagrams to be built during traditional object-oriented software development

The TOO approach is usually based on a quite rigid requirements specification,
which is developed on the basis of use-cases and problem domain analysis. Knowl-
edge in higher levels of abstraction is documented, however, the form of documenta-
tion – use-cases, does not permit one to check consistency of requirements and does
not show their relationship to the problem domain explicitly. This leads to major
problems in change management of traditional object oriented projects.

2.2 Generative Model Driven (GMD) Approach

The GMD approach (Fig. 1. b) “is based on the idea that people will use very sophis-
ticated modeling tools to create very sophisticated models that they can automatically
transform with the tools to reflect the realities of various deployment platforms” [7].
One of such approaches is Object Management Group’s Model Driven Architecture
[8]. Formal transformation here starts from platform independent application domain
model represented in UML. This model is transformed into platform specific design
models, and further the code is generated from the platform specific model [18]. The

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 223

main gain here is higher flexibility that can be obtained by shorter time needed for
software design and implementation, because automatic transformation is possible
not only from the design level models into the implementation, but already from
application domain models into the design level models. Therefore the GMD ap-
proach indirectly addresses business agility better than the TOO approach [4].

Opponents of the Model Driven Architecture call GMD “a great theory - as was
the idea that the world is flat” [7]. And, indeed, the application domain class model
[5], [19], which should conform to all problem domain requirements and incorporate
all details necessary for platform specific design model generation, is extremely com-
plicated and may be understood only by experts in object oriented software develop-
ment. This is a weakness of the approach, because there is no possibility to prove the
application domain level model’s conformance to user requirements neither formally
nor mentally.

2.3 Agile Model Driven (AMD) Approach

The AMD approach [20] uses formal model transformation from design level into
implementation level, like the TOO approach, but it relies on simpler formalized
models and highly elaborated tacit models in upper levels of abstraction. Some argu-
ments as to why the AMD approach is viewed as more effective than the generative
model driven approach are as follows [7]: (1) every software system has both a user
interface on the front end and the database on the back end, yet UML still does not
address these issues; (2) in many cases people do not have the modeling skills in
UML and (3) the tool support is still not sufficient for proper handling of UML mod-
els, i.e., vendors claim support for a standard, but then implement their own version
of it for competitive reasons.

The main claim of users of the AMD approach against the TOO approach is that it
is more reasonable to spend time for acquiring proper tacit knowledge about user
requirements than spend time for developing specifications and models that are for-
mal but hard to understand and change. The AMD approach is based on the art (tacit
knowledge) of highly qualified systems developers in upper, problem and application,
domains and may utilize engineering for translation of design level models into im-
plementation (Fig. 1. c).

2.4 Business Process Model Driven (BPMD) Approach

Engineering can be applied already at the problem domain level. One way how this
can be achieved is through the use of appropriate business process modeling methods
and tools. If a detailed enough business process model is developed, it automatically
may be translated into application level UML model [21]. We call such approach a
business process model driven approach (Fig. 1. d). Theoretically, such an approach
directly supports business agility, because the only thing that is to be changed to ob-
tain new software code is the business model. However the approach requires high
business process modeling skills with respect to both problem and application domain

224 Oksana Nikiforova and Marite Kirikova

levels, because the problem domain business process model should include the details
necessary for application domain model generation. Thus business process model
becomes a complicated multilevel system where automated processes are clearly
identified and their expected behavior represented. The BPMD approach has high
potential feasibility because business process redesign and improvement is one of the
methods used by many organizations to achieve or preserve their competitive advan-
tages [18], [22], [23].

2.5 Two-Hemisphere Model Driven (2HMD) Approach

The 2HMD approach [9] may be considered as a version of business process model
driven approach. The approach addresses the following issues currently relevant in
software development:

• Business process models usually are developed in a comparatively high level of
abstraction and rarely pin down all details needed for software development

• Diagrams preferred by business team differs from those preferred by software
developers

Therefore the 2HMD approach utilizes the problem domain conceptual model and
the application level use-case diagram in addition to the business process diagram for
driving the software development process. It is based on sophisticated models, but it
enables the generation of simpler models from the sophisticated ones in order to sup-
port development of stakeholders’ tacit knowledge. Hypothetically, the transforma-
tion from two-hemisphere model (or just from one of its constituents – the business
process model) into platform independent application level model is possible
(Fig. 1e). However, this paper describes a softer version of 2HMD approach where
stakeholders’ tacit knowledge, if needed, may be added down to the design level. The
approach is applicable for software development teams that possess conventional
business process modeling and UML tools. The 2HMD approach is described in de-
tail in Section 3.

3 The 2HMD Approach in Detail

Cognitive psychology [24] proposes that the human brain consists of two hemi-
spheres, one of which is responsible for logic and another one for concepts. Harmonic
interrelated functioning of both hemispheres is a precondition of an adequate human
behavior. A metaphor of two hemispheres may be applied to software development
process because this process is based on investigation of two fundamental things:
business and application domain logic (processes) and business and application do-
main concepts.

Some recent surveys show that about 83% of companies are engaged in business
process improvement and redesign [18]. This implies that many companies are com-
mon with business process modeling techniques [18] or at least they employ particu-
lar business process description frameworks [22]. On the other hand practice of soft-

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 225

ware development shows that functional requirements can be derived from problem
domain task descriptions even about 7 times faster than if trying to elicit them di-
rectly from users [25]. Both facts mentioned above and existence of many commer-
cial business modeling tools (such as GRADE [26], ARIS [27], etc.) are a strong
motivation to base software development on the business process model rather than
on any other soft or hard models.

However, business process diagrams developed by business analysts rarely show
all details necessary for software development, as well as in many cases, do not re-
flect the “to be” business situation. Therefore formal transformation of business proc-
ess model into the application model, design model, and implementation is not possi-
ble, and software developers shall step in and try to acquire software requirements.
They usually interview business managers and then create UML diagrams, typically
beginning with use-case and class diagrams. Business managers may be forced to
review those diagrams, that can be frustrating for them, because use-case and class
diagrams do not reflect the business perspective very well [18].

The 2HMD approach (Fig. 3) addresses this problem by use of two interrelated
models at problem domain level, namely, the business process model and the concep-
tual model, which are related to the use-case model at the application domain level.

Fig. 3. Framework of the 2HMD approach

A notation of the business process model, which reflects functional perspectives of
the problem and application domains, is optional, however, it must reflect the follow-
ing components of business processes [28]: external entities (processes); sub-
processes (the number of levels of decomposition is not restricted); performers; in-

226 Oksana Nikiforova and Marite Kirikova

formation flows; triggering conditions, and information (data) stores. Use-cases are
tied to the business process model and can be derived from it. The conceptual model
is used in parallel with business process model to cross-examine software developers
understanding of problem and application domain models. Use-cases are always ei-
ther generated from the business process model or reflected in the business process
models, i.e., they “depart” from the business process model for discussions with re-
spect to software development details, prototyping, etc., and, when details are known,
manually return back to the business process model together with the details [29].
Current functional requirements always are present in the business process model,
that helps to maintain their consistency [29]. As a result sophisticated models are
used without disturbing software developers’ and business managers’ natural ways of
thinking [9].

Relevance of particular models of 2HMD framework with respect to business
modeling, object oriented software development, and model transformation is shown
in Table 1.

Table 1. Use of problem domain and application domain models in 2HMD approach

Perspective Business process model Conceptual model Use case model
Business
modeling

Knowledge organized in
business oriented terms
Requirements can be de-
rived faster from task
descriptions than if asked
directly from users
Appropriate business mod-
eling tools exist

May be used for checking
adequacy of developers
knowledge

Convenient for
discussing re-
quirements in
detail

Object ori-
ented software
development

Enables consistency check
of use cases

Developers usually build
tacit and explicit concep-
tual models that reflect
their current knowledge

Main tool for
requirements
gathering and
understanding

Model trans-
formation

At a particular stage the
process model may be
automatically transformed
into implementation (see
Section 2.4)

May be (at least partly)
derived from business
process model
If organized as class dia-
gram may (hypothetically)
mirror business process
model

May be automati-
cally generated
from business
process model

Initial version of the 2HMD approach was proposed in [17], where the general

framework for object oriented software development had been discussed and it’s
application for driving school’s software development had been demonstrated. The
current version of the approach supports semi-formal model transformation from
problem and application domain into design and implementation. By semi-formal, we
mean a transformation of part of elements of one model into the subset of elements of

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 227

another model. Transformation is fully formal if all elements of the target model can
be obtained from the source model. The 2HMD approach utilizes two formal (auto-
matic) transformations: (1) from a business process model into an use-case diagram,
and (2) from a design level model into implementation. All semiformal and formal
transformations are illustrated in Fig.4.

Fig. 4. Formal and semi-formal transformations in 2HMD approach

Semiformal transformation from the business process model into the problem do-
main conceptual model. As mentioned above, the conceptual model reflects tacit
knowledge of software developers in an explicit diagram, i.e., software developers
build it. However, part of a conceptual model can be generated automatically. Real-
world classes relevant to the problem domain and their relationships are presented in
the conceptual model. The conceptual model shows the things that exist in the prob-
lem domain and their relations to other things. The notational conventions of the
business process diagram give a possibility to identify concepts by analyzing all the
data stores in the diagram [17]. Data stores from the business process model can be
transformed into the concepts of the conceptual model. The same refers to the units of
data stores as well as information flows. Automatic transformation possibilities of
other business process model elements into conceptual model are under the investiga-
tion. The automatically generated part of conceptual model may be compared to the
manually constructed model to ensure consistency between the business process
model and developers knowledge.

228 Oksana Nikiforova and Marite Kirikova

Formal transformation from the business process model into use-cases is possible,
if processes to be performed by software system are identified in the business process
model [29]. Processes to be performed by software system become use-cases in the
use-case model, performers of related processes become actors in the use-case model,
and scenarios for realization of use-cases may be defined by decompositions of busi-
ness processes (sub-processes) corresponding to the use-cases [17].

The interaction diagram is developed by semiformal transformation from the use-
case model and the conceptual model. Interaction diagram for each use-case is based
on its realization scenario (or sequence of sub-processes). Appropriate interacting
objects are extracted from the conceptual model. Alternatively, the transformation
directly from the business process model could be provided, because the use-case
model and part of the conceptual model are generated from the business process dia-
gram. However, in the case where semi-formal transformations dominate over formal
ones and human intelligence is involved at different levels of abstraction, simpler
transparent transformations are more preferable than sophisticated ones.

The class diagram is based on the conceptual model and is formed according to in-
formation in the interaction diagram. It is obtained by semiformal transformations
from the interaction diagram and the conceptual model. The class diagram here is
already a structure of a software application and contains only those classes, whose
objects interact during the use-case realization [17]. Formal transformation from
Class diagram into software code may be utilized.

In overall, the 2HMD approach is engineering based, because only those use cases,
which are automatically generated from the business process model are used for fur-
ther transformations. This allows maintaining consistency between the requirements.
On the other hand possibility to generate use cases automatically fastens software
development process and support business agility. In the next section some of trans-
formations mentioned in this section are described in more detail.

4 Application Case: An Administration of Driving School

Administration of the driving school [17] is used as a problem domain to illustrate
how the 2HMD approach may be applied. This section shows main steps, which were
made during software development for administration of the driving school.

Problem domain analysis: The simplified version of the business process for the
driving school is reflected in Fig. 4. The driving school has several classrooms in
several locations. The director of driving school assigns learning sessions for new
groups based on a predefined schedule. The driving school already has a teaching
staff, which consists of instructors having a car and teachers. When the applicant
comes to driving school, the administrator of the school offers him a list of available
groups for learning and helps to select the most appropriate group location and time
schedule. After at least three applicants were assigned for learning in a particular
group the start date of learning is defined, the teacher for the group is assigned and
the instructor for every pupil in the group is attached. Each group is registered at the
Road Traffic Safety Directorate (RTSD).

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 229

Fig. 5. A simplified business process diagram of the driving school

The diagram in Fig. 4 is a result of business process modelling done by the devel-
oper in straight collaboration with the user, and using a particular business-modelling
tool – GRADE [26]. Identification of real-world classes relevant to the software sys-
tem and their relationships is done during conceptual modelling. The conceptual
model shows the things that exist in the driving school problem domain and their
relations to other things. It is expressed in terms of classes. The notational conven-
tions of the business process diagram give a possibility to identify concepts also by
analysing all data stores in this diagram. Data stores are represented as concepts in the
conceptual model Fig. 6.

230 Oksana Nikiforova and Marite Kirikova

Fig. 6. Construction of a conceptual model for the driving school

Concepts coming from the business process diagram at the highest level of abstrac-
tion are indicated as parallelograms. Concepts identified by analysis of sub-process
defined during business process modelling – as rectangles. The hierarchical structure
of data stores in the business process model gives a possibility to detect potential
relationships between system concepts. Data stores are characterized by a set of at-
tributes, which are useful for definition of class structure.

Application Domain Analysis: Looking for processes in business process model
(Fig. 5) that can be automated, and potential actors to implement use-cases is a basis
for building the use-case diagram (Fig. 7). Analysis of the business process identifies
the boundary of the software system and helps to decide, which processes refer to the
software system. Those processes are presented as use-cases of software system re-
quired and their performers are presented as external actors that perform defined use-
cases. The use-case diagram shows how driving school’s actors use the software
system.

Design and Implementation: The business process model developed, the use-case
diagram generated, and the conceptual model built are used for the further system
model refinement during the steps of design and implementation according to the
framework described in the previous section.

The interaction diagram may be partly generated from the use-cases and the con-
ceptual model, or, alternatively, obtained directly from the business process diagram

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 231

as shown in Fig. 8 where generation of an interaction diagram for the use-case “Form
group” is shown. As far as scenarios for realization of use-cases may be defined by
decompositions of business processes (sub-processes) corresponding to the use-cases,
sub-process diagrams serve for construction of object interaction. Information flows
in sub-process diagrams help to find objects in message passing, and sub-processes
are redefined as a messages passed between objects. The class diagram is constructed
based on the information about object interaction and refines the structure of the con-
ceptual model. Further implementation of the design model by components is based
on traditional object-oriented approach.

Fig. 7. Generation of an use-case diagram from business processes

232 Oksana Nikiforova and Marite Kirikova

Fig. 8. Generation of a sequence diagram from a sub-process model

5 Conclusion

Today software systems should be built in a way they can support business agility.
Therefore software development projects must deal with more complex and massive
problem domain knowledge than years ago. This, in turn, requires processing prob-
lem domain knowledge more in the style of engineering than in the style of art. We
analyzed several approaches of object oriented software development to identify the
main differences in handling problem domain knowledge. Only the BPMD approach
and the 2HMD approach use engineering at the problem domain level. The BPMD
approach requires complete and consistent business process knowledge in the very
beginning of the project. The 2HMD approach illustrates how sophisticated models
and engineering based software development may be applied even in situations when
complete business process knowledge is not provided at the beginning of the project
and the most advanced experimental software development tools are not applied.

References

1. Sherrat M. Aligning costs with revenues, Financial Executive, October 2003, pp.59-62.
2. C.K. Prahalad, M.S. Krishnan, & Venkat Ramaswamy, The Essence Of Business Agility:

Available at http://www.optimizemag.com/issue/011/leadership.htm
3. Meeting the agility challenge: Increasing business agility through adaptive IT infrastruc-

ture, Hewlett-Packard, 2002.
4. Witkop St. Driving business agility with Model Driven Architecture, EDS, 2003.
5. Sendall Sh. And Kozaczunski W. Model transformation: The heart and soul of Model

Driven Software development, IEEE Software, September/October 2003, pp. 42-45.
6. “UML Specification. Ver.1.3”, available at http://www.rational.com
7. Ambler Sc. W. Agile Model Driven development is good enough, IEEE Software, Sep-

tember/October 2003, pp.71-73.

Two-Hemisphere Model Driven Approach: Engineering Based Software Development 233

8. MDA Guide Version 1.0.1, June 2003, available at http://www.omg.org/docs/omg/03-06-
01.pdf

9. Nikiforova O., Kirikova M. “Enabling Problem Domain Knowledge Transformation dur-
ing Object Oriented Software Development”, Conference of Information System Devel-
opment, ISD’2003, Melbourne, Australia, 25-27 August 2003

10. Jacobson I., Booch G., Rumbaugh J. The Unified Software Development Process, Addi-
son-Wesley, 1999.

11. Larman Cr. Applying UML and Patterns: An Introduction to Object-oriented Analysis and
Design, Prentice Hall PTR, 1998

12. Leffingwell D. & Widrig D. Managing Software Requirements: A Unified approach, Ad-
dison-Wesley, 2000

13. Martin J. & Odell J. Object-oriented Methods: A Foundation, Prentice Hall, 1995
14. Mathiassen L., Munk-Madsen A., Nielsen P. A. & Stage J. Object-oriented Analysis &

Design, Marko Publishing House, 2000
15. Quatrany T. Visual Modeling with Rational Rose 2000 and UML (2nd ed.) Addison-

Wesley, 2000
16. Rumbaugh J. Models Through the Development Process, Journal of Object-oriented

Programming, May 1997, Vol. 10, No 2, pp. 5-8, 14.
17. Nikiforova O. “General Framework for Object-Oriented Software Development Process”,

Scientific Proceedings of Riga Technical University, Series – Computer Science. Applied
Computer Systems, 13 vol., 2002.

18. Harmon P. Business Process Change: A Manager’s Guide to Improving, Redesigning, and
Automating Processes, Morgan Kaufmann Publishers, 2003

19. Atkinson C. and Kuhne Th. Model Driven Development: A Metamodelling foundation, in
IEEE Software, September/October 2003.

20. The Impact of Agile Processes on Requirements Engineering, Advanced Development
Methods, Inc. 2000, available at: http://www.agilealliance.com/

21. ArcStyler MDA-Business Transformer Modeling Style Guide for ARIS, Interactive Ob-
jects, 2002.

22. Bruce A. and Kutnick D. Building Operational Excellence: IT People and Process Best
Practices, Intell Press, 2002.

23. Organizing Business Knowledge: The MIT Process Handbook (Th. W. Malone, K. Crow-
ston, and G.A. Herman Eds.), MIT Press, 2003

24. Anderson, J.R.: Cognitive Psychology and Its Implications, W.H. Freeman and Company,
New York, 1995.

25. Lausen S. Task descriptions as functional requirements, IEEE Software, March/April,
2003.

26. GRADE tools, GRADE Development Group, web-site -http://www.gradetools.com/
27. ARIS Toolset Available at: http://www.ids-scheer.com/
28. Kirikova M. “Modelling the boundaries of workspace: A business process perspective”,

Information Modelling and Knowledge Bases XIII, H.Kangassalo, H.Jaakkola, E. Kawa-
guchi, T. Welzer (eds.), IOS Press, Ohmsha, Amsterdam, Berlin, Oxford, Tokyo, Wash-
ington, DC, 2002, pp. 266-278.

29. Kirikova M. “Business Modelling and Use Cases in Requirements Engineering”, Informa-
tion Modelling and Knowledge Bases XII, H.Jaakkola, H.Kangassalo E. Kawaguchi (eds.),
IOS Press, Ohmsha, Amsterdam, Berlin, Oxford, Tokyo, Washington, DC, 2001, pp. 410-
420.

	1 Introduction
	2 Software Development Driven by Particular Models
	2.1 Traditional Object Oriented (TOO) Approach
	2.2 Generative Model Driven (GMD) Approach
	2.3 Agile Model Driven (AMD) Approach
	2.4 Business Process Model Driven (BPMD) Approach
	2.5 Two-Hemisphere Model Driven (2HMD) Approach

	3 The 2HMD Approach in Detail
	4 Application Case: An Administration of Driving School
	5 Conclusion
	References

