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Abstract. The work presented in this paper considers how Method Engineering 
(ME) helps in method changes that are required by Information Systems (IS) 
changes. In fact, ME provides different approaches allowing to construct situa-
tion-specific methods by adapting, extending, improving existing methods or by 
assembling method components. All these approaches use a set of operations to 
realize these method changes. Our objective in this paper is to provide a meta-
tool for change-centric ME which takes the form of a typology of generic ME 
operators. The operators for each specific ME approach are instantiated from 
the generic ones. The paper illustrates and discusses the instantiation of the ge-
neric typology for two assembly-based ME approaches.  

1   Introduction 

In order to survive in a more and more competitive environment, organizations un-
dergo frequent changes that imply to adapt, enhance, reform, evolve, merge, interop-
erate their supporting Information Systems (IS). There are many different kinds of IS 
change and many circumstances for change such as business change, technology 
progress, ERP installation, company merge/take-over, globalization, standardization 
of practices across branches of a company etc. Each of them requires specific meth-
ods to handle change. Thus, as a consequence of the need for IS change, engineering 
methods shall themselves adapt to new circumstances of IS evolution. In other words, 
IS change implies method change. 

The position taken in this paper is that Method Engineering (ME) can help to re-
spond to this need. ME is the ‘discipline to study engineering techniques for con-
structing, assessing, evaluating and managing methods and to study educational tech-
niques for teaching and training method users’ [27]. We see ME at two levels of 
abstraction: the method level and the method meta-level. The former refers to the 
construction of new change-centric methods using ME techniques. This leads to the 
development of methods supporting different kinds of evolution such as IS improve-
ment, expansion, transformation as well as methods tailored to emerging application 
domains such as e-commerce, web services, mobile IS, etc. The latter seeks to pro-
vide generic ME tools and techniques to support ME at the method level. Proc-
esses/Algorithms to support ‘on the fly’ construction of situation-specific methods is 
an example of such meta-technique. Typologies of ME approaches or techniques are 
another example. 
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Our concern in this paper is to provide a meta-tool for change-centric method en-
gineering which takes the form of a set of ME operators. Indeed, at the core of every 
ME process there is a set of operations to be carried out on the components of the 
method(s) involved in the ME activity. As these components are mainly Product and 
Process Models (PPMs), these operations can be formalized as operators applicable 
to the various elements of PPMs. These operators are generic in the sense that they 
are not dependent of a specific ME approach. On the contrary, they can be instanti-
ated in every specific ME approach.  

In order to ease the use of generic operators in a given ME approach, we provide in 
the paper a framework, the operator-driven ME framework, to deal with the meta and 
method levels and to generate operators for any specific ME approach from the ge-
neric ones. The usefulness of such a typology of operators is manifolds. It offers a 
means to easily generate a complete set of operators for a specific ME approach and 
to base the ME approach on a theoretically sound ground. Such a formalisation is 
especially required in the case of a corresponding CAME tool creation. Moreover, it 
offers a possibility to develop mixed ME approaches to deal with a combination of 
ME situations. This will be achieved by combining operators of different ME types. 

The remainder of this paper is as follows: section 2 proposes a typology of ME ap-
proaches, which is used for the definition of the generic ME operators presented in 
section 3. In section 4 we illustrate how the generic typology of ME operators can be 
instantiated in order to obtain operators for a specific ME approach. Finally, section 5 
draws some conclusions and discussions about our future work.  

2   Typology of Method Engineering Approaches 

A large number of Method Engineering approaches have been proposed in the litera-
ture. These approaches provide guidance for the creation of a new method [11, 20, 21] 
and for the adaptation of an existing method to some conditions of change [30] or to a 
specific project situation [6, 7, 10]. A literature survey [4, 5, 8, 25, 29] complemented 
by our own experience [18] leads us to classify these approaches according to four 
types of method engineering that we referred to as Ad-Hoc, Paradigm-Based, Exten-
sion-Based and Assembly-Based, respectively. 

Ad-Hoc approaches deal with the construction of a new method ‘from scratch’. 
There are different reasons that can initiate a decision to construct a new method. The 
appearance of a new application domain that is not yet supported by a specific method 
is one example, experience capitalisation serving as the start point for a new method 
construction is another example. 

Paradigm-Based ME [17] uses some initial paradigm model or meta-model as a 
baseline As-Is model which is instantiated [5], abstracted [18] or adapted [30] accord-
ing to the current ME objective to develop the new To-Be model.  

Extension-Based ME proposes different kinds of extension that can be realised on 
an existing method. Their objective is to enhance a method with new concepts and 
properties [3]. For example, a static method such the one for construction E/R sche-
mas can be extended to deal more systematically with the representation of time 
through a calendar of time points, intervals etc. and temporal aspects such as the his-
tories of entities. 
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Assembly-Based ME proposes to construct new methods or to enhance existing 
ones by reusing parts of other methods. The core concept in these approaches is one 
of reusable method component [28] also called method chunk [16, 22], method frag-
ment [2, 7, 14, 26] or method block [12]. An Assembly-Based method construction 
consists in defining method requirements for a current situation, selecting method 
components satisfying this situation and assembling them. Association and integration 
are two kinds of assembly that can be applied on the selected method components 
[15]. Association concerns assembly of method components with different purposes 
and objectives, whereas integration deals with overlapping method components hav-
ing the same or similar objective but providing different manners to satisfy it. 

3   Towards Generic Operators for Method Engineering  

3.1   Role of Operators in Method Engineering 

Each ME approach proposes a specific method engineering process which uses a 
specific set of method construction operators. The objective of this work is to propose 
a generic typology of ME operators which should ease the definition of a set of spe-
cific operators for every specific ME approach while guaranteeing their completeness 
and correctness. Fig. 1 presents our operator-driven ME framework where specific 
ME operators are generated from the generic ones.  
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Fig. 1. Operator-driven Method Engineering Framework  

The generic ME operators are applicable to generic elements that compose any 
model involved in a ME activity. To achieve this, it is necessary to abstract from the 
specificity of a given model and generalize model elements, their relationships as well 
as relationships between different models. Meta-modelling is known as a means to do 
so. Thus, in order to build the typology of generic ME operators, we first developed a 
meta-model for ME, i.e. a model of models. This meta-model is presented in the fol-
lowing section.  

Following our framework (Fig. 1), a set of specific operators is instantiated from 
the generic ones according to the selected ME approach. These operators are then 
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applied by the specific ME process to transform one or several As-Is model(s) into a 
To-Be model. In Paradigm-Based ME there is only one To-Be model whereas in 
Assembly-Based and Extension-Based ME two or more As-Is models are used to 
produce the resulting To-Be model. Ad-Hoc method construction starts with no As-Is 
model at all. To sum up, there are some advantages of using a generic typology of ME 
operators: 

 

1. The generic typology serves as a guide to define the specific typology: the latter is 
just an instance of the former; 

2. The completeness of the specific typology is subsumed by the completeness of the 
generic typology; 

3. Specific typologies are consistent with each other as they are generated from the 
same mould: this is important when several sub-typologies are used in the same 
ME approach or several different ME approaches are combined together [17]. 

3.2   The Meta-model for Defining Generic ME Operators 

In Fig. 2 we propose a meta-model which has been designed to highlight characteris-
tics of models involved in a ME activity and therefore to permit to identify the fun-
damental construction and transformation operations which can be executed on a 
model. As shown is this figure, every model is made of Elements. Every element has 
a Name and is characterised by a set of Properties. In the E/R model for example, 
Entity type, Attribute and Relationship type as well as the Is-A relationship are ele-
ments. Domain is a property of Attribute. Fig. 2 shows that an element is-a another 
element, i.e. might inherit some of its properties from another element.  

Elements are classified into Simple and Compound ones. Compound elements are 
composed from fine-grained ones whereas Simple Elements are not decomposable. 
For example, in the E/R model an Entity type is a compound element made of Attrib-
utes, which are simple elements.   

As the same element can be part of different models, the concept of ModelElement 
represents the link of an element and the model it belongs to. For example, the con-
cept of Scenario exists in the L’Ecritoire model [23] and the Use Case model [9]. In 
the integration process of these two models [19] we need to know the origin of the 
Scenario that we are manipulating. The concept of ModelElement is also necessary to 
model the relationships between elements of different models. These relationships are 
represented in Fig. 2: an element from one model can represent an Abstraction-of an 
element in another model; the link Instance-of represents the fact that an element can 
be obtained by instantiating an element of another model; moreover, elements from 
different models can be connected in order to assemble or extend models. Three con-
nection types are defined in the meta-model: Association, Composition and Is-a. Fi-
nally, any model is a compound element which can be reduced to the root element. 

3.3   The Typology of the Generic ME Operators 

The meta-model (Fig. 2) identifies elements (Element) in models and relationships 
between elements (ModelElement) belonging to different models. Both of them can 
be subject to change in a method engineering activity. This allowed us to identify a 
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set of ME operators, which are listed and briefly described in Table 1. In synthesis, 
we can say that ME operators cover three major types of change: naming changes, 
element changes and structural changes. 

 

• Naming changes are defined with the Rename operator. Naming is dealing with 
hyponyms, synonyms and the like.  

• Element changes affect elements and are circumscribed to the elements them-
selves: adding an attribute to an entity type is an example of such localised change. 
Table 1 proposes three operators to specify element changes, namely Modify, Give 
and Withdraw. 

• Structural changes are the most important as they correspond to a modification of 
the set of elements that compose the model. There are two types of structural 
changes:  
− Inner changes which affect elements of one single given model: there are eleven 

operators to specify structural changes (Table 1): Add, Remove, Merge, Split, 
Replace, Retype, Generalise, Specialise, AddComponent, MoveComponent and 
RemoveComponent. For example, merging two steps of an As-Is process model 
in the To-Be process model is an example of such inner structural change. 

− Inter-model changes which consists in establishing connections between ele-
ments of different models. Table 1 identify six of them: ConnectViaSpecialisa-
tion, ConnectViaGeneralisation, ConnectViaMerge, ConnectViaComposition, 
ConnectViaDecomposition and ConnectVia-Association. For example, defining 
a set of Ordered Requirements Chunks of the L’Ecritoire RE method [23] as a 
specialization of the Use Case Concept of the Use case Model [9] is an example 
of inter-model connection. 

4   Instantiation of the Generic ME Operators   
  for Assembly-Based ME 

This section illustrates the framework and the use of our generic operators to define 
the collection of operators relevant for a specific ME case. We consider two assem-
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Fig. 2. Meta-model for Method Engineering 
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bly-based ME approaches: (a) the assembly by association proposed by Brinkkemper 
et al. in [2] and (b) the assembly by integration proposed by Ralyté et al. in [19]. In 
both cases product and process models of the selected method chunks/fragments must 
be assembled. Therefore, we will first, define the corresponding meta-models and 
then, instantiate the generic typology of operators in line with the elements of these 
meta-models and illustrate them with examples.  

4.1   Operators for Product Models Assembly 

In both ME examples considered in this section, the product models of the method 
fragments/chunks to assemble are expressed by using class diagrams. Fig. 3 presents 
the meta-model of the Object Model as instance of the ME meta-model (Fig. 2). As 
shown in this figure, the Object Model is composed of Classes, which are compound 
elements composed of Attributes. A Class is connected with one or several other 
classes via Association, Composition or Is-a links. As an Association can have attrib-
utes, it is also a compound element whereas the Composition or Is-a links are simple 
ones. An Attribute has a property named Domain and an Association has two proper-
ties SourceMultiplicity and TargetMultiplicity.   

Table 1. Generic ME operators 

Object Operator Description 
Element Rename Change the name of an element.  
 Add Add a new element in the model. 
 Remove Remove an element from the model. 
 Merge Two separate elements become one element.  
 Split An element is decomposed into two elements.  
 Replace An element is replaced by a different one.  
 Generalize An element is created as a generalization of two elements.  
 Specialize Specialise an element into two sub-elements.  
Com- AddComponent Add a component into an element. 
pound RemoveComponent Remove a component from a compound element. 
 MoveComponent A component is repositioned in the structure of a compound.  
Property Give  Add a property to an element. 
 Withdraw  Remove a property from an element. 
 Modify Change a property in an element.  
 Retype Change the type of an element. 
Model        Instantiate  Instantiate an As-Is model element into To-Be model element.  
Element Abstract Create a To-Be model element as an abstraction of an As-Is model 

element. 
 ConnectVia 

Specialization 
Define an element from one model as a specialization of an element 
from another model. An is-a link is created between these two ele-
ments. 

 ConnectVia  
Generalization 

Generalize two elements from different As-Is models into a super-
element in the To-Be model. 

 ConnectVia  
Composition 

Create a compound element in the To-Be model containing as compo-
nents elements from two different As-Is models. 

 ConnectVia 
 Decomposition 

Define an element as a component of an element from another model.  

 ConnectVia  
Association 

Add an association link in the To-Be model between two elements 
from different As-Is models.  

 ConnectViaMerge Two similar elements from different As-Is models become one ele-
ment in the To-Be model.  
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Fig. 3. Meta-model of the Object Model 

Table 2 summarizes the operators that are relevant for each of the elements defined 
in the meta-model (Fig. 3). The name of a specific operator is obtained by concatena-
tion of the name of the generic operator and the name of the corresponding element. 
Due to space constraint, some names have been shortened. ‘N/A’ means not applica-
ble.  

Table 2. Operators for the Object Models Assembly 

Operators for object models assembly Generic Operator 
Class Attribute Association Composition Is-a  

Rename RenameClass RenameAttribute RenameAssoc N/A N/A 
Add AddClass N/A AddAssociation AddComp AddIsa 
Remove RemoveClass N/A RemoveAssoc RemoveComp ReIsa 
Merge MergeClass MergeAttribute N/A N/A N/A 
Split SplitClass SplitAttribute N/A N/A N/A 
Replace ReplaceClass ReplaceAttribute N/A N/A N/A 
Generalize GeneralClass N/A N/A N/A N/A 
Specialize SpecializeClass N/A N/A N/A N/A 
AddComponent N/A AddClassAttr, *  N/A N/A N/A 
RemoveComponent N/A RemoveClAtt, *  N/A N/A N/A 
MoveComponent N/A MoveClAttr,  * N/A N/A N/A 
Give  N/A GiveDomain GiveMultiplicity N/A N/A 
Withdraw  N/A With.Domain WithdrawMultipl N/A N/A 
Modify N/A ModifyDomain ModifyMultipl N/A N/A 
Retype RetypeClass RetypeAttribute RetypeAssociation RetypeComp RtIsa 
**CVSpecialization CVSpecClass N/A N/A N/A N/A 
CVGeneralization CVGenerClass N/A N/A N/A N/A 
CVComposition CVCompClass N/A N/A N/A N/A 
CVDecomposition CVDecompClass N/A N/A N/A N/A 
CVAssociation CVAssocClass N/A N/A N/A N/A 
CVMerge CVMergeClass N/A N/A N/A N/A 
*: AddAssociationAttribute, RemoveAssociationAttribute, MoveAssociationAttribute,  
**CV: ConnectVia, 

 
Let us briefly comment the table before entering in the detailed analysis of both 

ME approaches. According to [15, 19], the integration of two object models is based 
on establishing connections between similar classes. Two similar classes from differ-
ent As-Is models can be merged into a new one in the To-Be model. They can also be 
connected via is-a or composition link and finally, a new generalised class can be 
created in the To-Be model in order to relate them. Therefore, the operators which 
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serve for the integration of two object models are ConnectViaMerge, Connect-
ViaSpecialisation, ConnectViaGeneralisation, ConnectViaComposition, ConnectVia-
Decomposition. The simple association between similar classes is not applicable here. 
On the contrary, the operator ConnectViaAssociation is the core connection operator 
in the assembly by association [2]. The Instantiate and Abstract operators are not 
applicable in the assembly-based ME as the As-Is and To-Be models are at the same 
levels of abstraction. 

Product Models Assembly by Association. According to [2], the assembly by 
association of two product fragments is based on the three following operations: (1) 
Addition of new objects, (2) Addition of new associations, (3) Addition of new 
attributes. Besides, this approach provides a set of rules that should be satisfied during 
the assembly process. For instance, at least one concept and/or association should 
connect two method fragments to be assembled, is an example of a rule. There are no 
concepts which have the same name and which have different occurrences in a 
method description, is another example of a rule.  

It can be seen that the required operations can be realised by applying the operators 
AddClass, ConnectViaAssociationOfClasses, AddClassAttribute and AddAssociation-
Attribute. These operators are formalised as follows: 

ConnectViaAssociationOfClasses. This operator connects two classes from different 
As-Is models with a new association in the To-Be model.  

CnnectViaAssociationOfClasses: Class2 → Association 
CnnectViaAssociationOfClasses(C1, C2) = A.source (C1) ∧ A.target (C2) | A∈ As-
sociation,  C1 ⊂ OM1, C2 ⊂ OM2, (OM1, OM2) ∈ Object Model 

Let us exemplify the association of the two following method fragments Statechart 
and Object model as considered in [2]. The behaviour of each Class is specified by a 
set of States. An association Has is added between these two classes in order to con-
nect them:  
CnnectViaAssociationOfClasses(Class, State) = Has.source(Class) ∧ Has. tar-
get(State) | State ⊂ Statechart, Class ⊂ Object Model.       

AddClass. This operator can be applied to add a new class in the To-Be model to 
make possible the connection between As-Is models. 

AddClass: Object Model → Class 
AddClass(OM) = C | C ⊂ OM, C ∈ Class 

For example, the Transaction element in the Statechart fragment has a post condi-
tion that refers to an Attribute which is an element of the Object Model fragment. As a 
consequence, a new class PostCondition should be added in the To-Be model in order 
to connect the Transition and Attribute classes:  
AddClass(Objectchart) = PostCondition | PostCondition ⊂ Oojectchart.   

AddClassAttribute and AddAssociationAttribute allow to add attributes in the To-Be 
method fragment to the classes and associations created as connectors of the As-Is 
method fragments.  
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AddClassAttribute: Class → Class.Attribute 
AddClassAttribute(C) = C.At | At∈ Attribute 
AddAssociationAttribute: Association → Association.Attribute 
AddAssociationAttribute(A) = A.At | At∈ Attribute 

According to the example shown in [2], the attribute Is-hidden should be added to 
the association Is-annotated-with:  
AddAssociationAttribute(Is-annotated-with) = Is-annotated-with.Is-hidden 

As shown in Table 2, there are other operators that support methods assembly in 
addition to the four presented above. It seems to us that these operators are relevant, 
in particular to tailor some As-Is fragments to the special needs of the assembly proc-
ess and also to refine the obtained To-Be fragment if necessary. As an illustration let 
us consider again the previous Postcondition case:  we could directly associate these 
two classes using the ConnectviaAssociationofClasses and then, retype this associa-
tion into the class Postcondition by applying the operator RetypeAssociation.  

RetypeAssociation. This operator transforms an association A, connecting two classes 
C1 et C2, into a new class C. Besides, two new associations are added in order to con-
nect the class C with the classes C1 et C2.  

RetypeAssociation: Association, Class2 → Class, Association2  
RetypeAssociation(A, C1, C2) = C ∧ A1.source(C1) ∧ A1.target (C) ∧ A2.source(C) ∧ 
A2.target (C2) | (A1, A2) ∈ Association,  C ∈ Class 

In order to satisfy the assembly rules mentioned above, it might be necessary to 
modify the names of some classes before the assembly of the method fragments.  

RenameClass. The operator RenameClass allows to give a new name to a class: 

RenameClass: Class → String  
RenameClass(C) = C.name(N) | N∈ String 

For sake of space it is not possible to illustrate the use of each of the operators for 
method assembly proposed in Table 2, but a systematic study convinced us that they 
are useful in method assembly by association.  

Product Models Assembly by Integration.  To illustrate operators for the assembly 
by integration, we consider the approach proposed in [19]. According to this ap-
proach, the assembly process consists in identifying common elements in product and 
process models of some selected method chunks and in merging and/or connecting 
them. This might require some terminology adjustments of model elements before 
their integration. Elements of product and process models of the selected methods 
need to be unified based on their similarities, abstracting away their differences and 
eliminating ambiguities. The integration of two product models which we consider in 
this section requires to identify similar classes. For example, [15] illustrates the inte-
gration of the Use case model [9] and the L’Ecritoire model [23]. The class Actor in 
the Use case model and the class Agent in the L’Ecritoire model have the same se-
mantic. Therefore, one of these two classes must be renamed prior their merge. In our 
example Actor is renamed into Agent.  

RenameClass(Actor) = Name(Agent) 
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MergeClass. When two classes C1 and C2 from different As-is models are merged into 
a new class C in the To-Be model, the class C replaces C1 and C2 in any association 
having initially C1 or C2 as source class or target class. 

MergeClass: Class2, {Association}2 → Class 

MergeClass(C1, C2, {As

i, A
t

j}) = [  i, As

i.source(C)] ∧ [  j, At

j.target(C)] | C1 ⊂ 
OM1, C2 ⊂ OM2, C ⊂ OM, C ∈ Class, (OM, OM1, OM2) ∈ Object Model 

Therefore, the Actor (ActorUC) from the Use case model and Agent (renamed into 
Actor) (ActorE) from L’Ecritoire are merged into a new class Actor. Two associations, 
Executes and Supports, between the classes ActorUC and Use case are preserved by 
replacing ActorUC by Actor. Similarly, in the associations From and To between the 
classes Action and ActorE in the L’Ecritoire, the ActorE is replaced by Actor: 

MergeClass(ActorUC, ActorE, Executes.source(ActorUC), Supports.source(ActorUC), 
From.target(ActorE), To.target(ActorE)) = Actor ∧ Executes.source(Actor) ∧ Sup-
ports.source(Actor) ∧ From.target(Actor) ∧ To.target(Actor) 

The operators as ConnectViaSpecializationClass, ConnectViaGeneralizationClass, 
ConnectViaCompositionClass, ConnectViaDecompositionClass are also useful in the 
assembly by integration. They allow to connect classes that have a similar semantic 
but different structures and cannot be directly merged. For example, the Goal concept 
exists in both the Use Case and L’Ecritoire models, but it is defined as an attribute 
named Objective in the class Use Case of the first model and as a class in the second 
one. In order to connect these two concepts we need to transform first the attribute 
Objective into a class in the Use Case model. The original approach [19] uses the 
Objectify operator to do that. This operator is formalised here by the RetypeAttribute 
operator.  

RetypeAttribute. An attribute of a class C1 is transformed into a new class C2 which is 
associated to the class C1 with new association. 

RetypeAttribute: Class.Attribute → Class, Association 
RetypeAttribute(C1.At) = C2 ∧ A.source(C1) ∧ A.target(C2)  C2 ∈ Class, A ∈ As-
sociation 

RetypeAttribute(Use Case. Objective) = Goal ∧ Has.source(Use Case) ∧ 
Has.target(Goal). 

Even after retyping, the merge is not possible because the Goal of the L’Ecritoire 
has a specific structure whereas the goal of the Use Case model is an informal state-
ment. The solution is to rename (a) the Goal of the Use Case model into Informal 
Goal and (b) the Goal of the L’Ecritoire into Formal Goal and to connect them via 
generalisation into the class Goal.  

ConnectViaGeneralizationClass. Two classes from different As-Is models are gener-
alized into a generic class in the To-Be model. Two is-a links are created between the 
specific classes and the generic one. 
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ConnectViaGeneralisationClass: Class2 → Class, Is-a2 

ConnectViaGeneralisationClass(C1, C2) = C ∧ [Is-a.generic(C) ∧ Is-a.specific(C1)] 
∧ [Is-a.generic(C) ∧ Is-a.specific(C2)]  C ∈ Class 

ConnectViaGeneralisationClass(Informal Goal, Formal Goal) = Goal ∧ [Is-
a.generic(Goal) ∧ Is-a.specific(Informal Goal)] ∧ [Is-a.generic(Goal) ∧ Is-
a.specific(Formal)].  

4.2   Operators for Process Models Assembly 

In this section we use the generic typology of operators to generate specific ME op-
erators to assemble process models in (a) the case of assembly by association and (b) 
the case of assembly by integration. Different kinds of process models can be used to 
express the process dimension of a method fragment/chunk. It can be a simple or-
dered list of operations, a more structured activity diagram or a complex multi-
strategy model expressed through a directed graph structure. The definition of opera-
tors for process models assembly depends on the type of the process models used by 
the As-Is methods. For example, the approach for assembly by association [2] uses an 
activity diagram to model process fragments whereas the approach for assembly by 
integration proposes to integrate process maps [24] (directed graphs of intentions and 
strategies). In both cases, before generating operators we need to define first the cor-
responding meta-models. 

Process Models Assembly by Association. Fig. 4 presents the meta-model for the 
Activity diagram as instance of the ME meta-model (Fig. 2).  
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Fig. 4. Meta-model for an Activity Diagram 

As shown in this figure, an activity diagram is represented by set of Activities, 
which are simple elements. Transitions define in which order activities are realised by 
specifying for each transition the source activity and the target one. Each Activity has 
two Properties: a Verb, which represents the operation to realise, and a Target, which 
represents the resulting product elements. Condition is a property of a Transition. 
Table 3 shows the operators related to the core Activity diagram elements. 

In the example dealing with the assembly of Statechart and Object Model frag-
ments [2], the authors use two core operations: (1) addition of new transitions and (2) 
addition of new activities. A new transition can be added only to connect the activities 
from different fragments as well as a new activity can be added only if a new class 
was added during the corresponding product fragments assembly. These two opera-
tions can be formalised with the operators AddActivity, AddTransition and Connect-
ViaAssociationOfActivities. 
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Table 3. Operators for the Activity-driven Process Models Assembly 

Operators for activity-driven process models assembly Generic Operator 
Activity Transition 

Rename RenameActivity RenameTransition 
Add AddActivity AddTransition 
Remove RemoveActivity RemoveTransition 
Merge MergeActivity MergeTransition 
Split SplitActivity SplitTransition 
Replace ReplaceActivity ReplaceTransition 
Give  GiveVerb, GiveTarget GiveCondition 
Withdraw  WithdrawVerb, WithdrawTarget WithdrawCondition 
Modify ModifyVerb, ModifyTarget ModifyCondition 
ConnectViaAssociation ConnectViaAssociationOfActivities N/A 
ConnectViaMerge ConnectViaMergeOfActivities N/A 

 

ConnectViaAssociationOfActivities. A new transition connects two activities from 
form different As-Is models. The source activity must produce the product element(s) 
required as input product by the target activity.  

ConnectViaAssociationOfActivities: Activity2 → Transition 
ConnectViaAssociationOfActivities (A1, A2) = T.source(A1) ∧ T.target(A2) | T∈ 
Transition, A1 ⊂ AD1, A2 ⊂ AD2, (AD1, AD2) ∈ Activity Diagram 

For example, the list of classes obtained by executing the Object Model construc-
tion activity O1: Identify Objects and Classes provides an input for the Statechart 
construction activity S1: Identify States. Therefore, these two activities can be con-
nected with a new transition called Input: 

ConnectViaAssociationOfActivities (O1, S1) = Input.source(O1) ∧ Input.target(S1). 

Again, this example illustrates only partially the use of operators listed in Table 3. 
However, operators such as Merge, Split, Replace, Remove applied to both Activity 
and Transition are obviously useful. Similarly, the need for renaming an activity of 
the As-Is fragment in the To-Be fragment is meaningful. Finally, Give, Withdraw and 
Modify make sense to change the properties of an As-Is Activity or Transition in the 
corresponding To-Be fragment. For instance, a condition for the transition between 
two activities can be modified and the verb designating an activity can be different in 
the To-Be fragment compared to what it was in the As-Is model. 

Process Models Assembly by Integration. According to the assembly by integration 
proposed in [19, 15], the process models integration consists in integrating process 
maps [24]. Fig. 5 represents the map meta-model as instance of the ME meta-model 
(Fig. 2).  

As shown in Fig. 5, a Map is a collection of Sections. A section is a compound 
element aggregating two types of Intentions, the Source Intention and the Target In-
tention, and a Strategy.  

An Intention is a goal that can be achieved by the performance of an activity 
(automated/semi-automated or manual). For example, Elicit a goal is an intention in 
the L’Ecritoire requirements elicitation process; Write a scenario is another intention. 
There are two special intentions Start and Stop that allow to begin and to end the 



214      Jolita Ralyté, Colette Rolland, and Rébecca Deneckère 

progression in the map, respectively. An intention is a simple element expressed fol-
lowing a linguistic approach proposed by [13] as a clause with a verb and a target. It 
can also have several parameters, where each parameter plays a different role with 
respect to the verb.   
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Fig. 5. Map meta-model 

A Strategy is an approach, a manner to achieve an intention. For example, By using 
goal template is a strategy to achieve the intention Elicit a goal proposed in the 
L’Ecritoire approach. A strategy is a simple element.  

A Section is a triplet <Source Intention, Target Intention, Strategy>. The arrange-
ment of he sections in a map forms a labelled directed graph with Intentions as nodes 
and Strategies as edges. Pre- and Post-conditions of each section specify the progres-
sion flows in the map. Each section provides a Guideline indicating how to achieve 
the target intention following the strategy given the source intention has been 
achieved.  

Table 4 proposes the list of operators for maps integration. Only 11 operators have 
been instantiated from 20 potential ones (Table 5). In fact, some of generic operators 
do not make sense in the maps integration process. For example, the Generalize and 
Specialize operators cannot be instantiated as there are no is-a relationships between 
intentions, strategies or sections in the map. The three missing operators, namely 
AddComponent, RemoveComponent and MoveComponent have not been introduced, 
as it does not make sense to apply them to the Section element the structure of which 
is immutable. The integration of two maps can be done only by merging similar inten-
tions or sections. As a consequence, only the ConnectViaMerge operator was instanti-
ated. It is impossible to merge two strategies belonging to different maps.   

The example of integration [19] of the Use Case and L’Ecritoire maps starts with 
the identification of similar intentions and their merge. The intention IUC1: Elicit Use 
Case in the Use Case model and the intention IE1: Elicit Goal in L’Ecritoire have the 
same semantic: in both cases it means ‘to elicit a users goal’. Moreover, the Goal 
concept was defined in the Use Case model during the product models integration 
illustrated above and allows us to unify the terminology of the two maps. In [19] this 
was done intuitively by renaming the intention IUC1: Elicit Use Case into IUC1: Elicit 
Goal. The generic typology of ME operators allows us to formalise this kind of 
change in a more precise way: each property of an intention has a proper Modify op-
erator: ModifyVerb, ModifyTarget and ModifyParametter. In this example, we need to 
apply the ModifyTarget operator. 
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ModifyTarget. The value of the intention property Target is replaced by a new one. 
This new value must represent an element of the corresponding product model.  

ModifyTarget: Intention → String 
ModifyTarget(I) = I.target(N)  N∈ String  

ModifyTarget(IUC1:Elicit Use Case) = IUC1.target(Goal) 

Table 4. Operators for Maps Integration 

Operators for Maps integration Generic Opera-
tor Intention Strategy Section 
Rename RenameIntention RenameStrategy RenameSection 
Add AddIntention AddStrategy AddSection 
Remove RemoveIntention RemoveStrategy RemoveSection 
Merge MergeIntention MergeStrategy MergeSection 
Split SplitIntention SplitStrategy SplitSection 
Replace ReplaceIntention N/A N/A 
Give  GiveVerb, GiveTarget 

GiveParameters 
N/A GivePreCond, GivePostCond, 

GiveGuideline 
Withdraw WithdrawVerb, WdrTarget 

WithdrawParamerters 
N/A WithdrawPreCondition 

WdrPostCond, WdrGuideline 
Modify ModifyVerb, ModifyTarget  

ModifyParameters 
N/A ModifyPreCond, ModifPost-

Cond 
ModifyGuideline 

Retype RetypeIntention RetypeStrategy N/A 
ConnectViaMerge CVMergeIntentions N/A ConnectViaMergeSections 

 

ConnectViaMergeIntentions. This operator allows to integrate two maps by merging 
their similar intentions. When two intentions I1 and I2 are merged, the intention I re-
places I1 and I2 in any section having initially I1 or I2 as source intention or target in-
tention. 

ConnectViaMergeIntentions: Intention2, {Strategy}2 → Intention 

ConnectViaMergeIntentions(I1, I2, {Sts

i}, {Stt

j}) = [  i, Sts

i.has-for-source(Ir) ] ∧ 

[  j, Stt

j.has-for-target(Ir)] | Ir ∈ Intention, I1 ⊂ M1, I2 ⊂ M2, (M1, M2) ∈ Map 

In order to merge the intentions IUC1: Elicit a Goal and IE1: Elicit a Goal we must 
know in which sections of their corresponding maps they are involved. As shown in 
Fig. 6, there are three sections in the Use Case map containing the intention IUC1 
whereas the intention IE1 is involved in four sections in the L’Ecritoire map. The inten-
tion I1:Elicit a Goal replaces IUC1 and IE1 in all these sections.  

ConnectViaMergeIntentions(IUC1, IE1, StUC1, StUC2, StUC3, StE1, StE2, StE3, StE4) = 
StUC1.target(I1) ∧ StUC2.source(I1) ∧ StUC3.source(I1) ∧ StE1.target(I1) ∧ StE2.source(I1) ∧ 
StE2.target(I1) ∧ StE3.source(I1) ∧ StE4.source(I1). 

In the same manner the Start and Stop intentions of both maps are merged. Other 
operators such as AddStrategy and RemoveStrategy are needed in order to improve the 
final To-Be map. For example, the integration of the Use Case and L’Ecritoire maps 
allows to improve the scenario writing process which is rather poor in the first model 
by rich guidelines provided by second one. It appears that the original Use Case strat-
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egy supporting scenario writing became obsolete and should be removed from the 
final integrated map. 

To conclude on the assembly by integration, a systematic comparison of operators 
identified in [19] and those generated from the typology of generic ones shows that 
(a) we missed useful operators in the former and (b) the systematic definition pro-
vided by the latter avoid ‘ad-hoc’ and not fundamentally justified assembly types. The 
so-called Objectify operator mentioned above is an example of (b); Give, Withdraw 
and Modify applied to intention and section are examples of (a). 
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Fig. 6. Example of integration of L’Ecritoire and Use Case maps 

5   Conclusion 

In this paper we provided a formal ground for tool-supported ME in the form of a set 
of generic ME operators. The production of these operators is based on a ME meta-
model that was especially defined for this purpose and a classification of ME ap-
proaches issued from a literature survey. The set of operators allows to understand in 
a cohesive and consistent way which operations constitute the basis of method con-
struction and method transformation. The set of generic operators considerably eases 
the generation of the specific set of operators required in a given ME approach.  

Our future preoccupation is to facilitate even more the process of generating spe-
cific operators from the generic ones by introducing sub-typologies, each being rele-
vant for a ME class of approaches. Table 5 shows our first view on this. For sake of 
space the figure shows the operators which are different depending of the class of 
approaches.  It can be noticed that the differences relate to ModelElements. We indeed 
think that all operators related to Element are relevant irrespective of the ME class.  

The generic typology seems to capture all interesting types of method engineering 
operations. However, the problem to consider next is the validation of its complete-
ness and correctness.  According to Banerjee [1], a set of operators is considered to be 
complete if it subsumes every possible schema evolution; it is correct if the execution 
of any operator does not result in an incorrect schema. By analogy, in order to prove 
the completeness of the generic ME operators typology we need to identify a minimal 
set of operators whereas the correctness of a set of specific operators required to de-
fine a set of model invariants. For example, to ensure the correctness of the operators 
for maps integration, we need to define what a correct map is. This is achieved by 
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adding a set of conditions called invariants to the structural definition of a map.  An 
invariant must hold in any quiescent state of a map, that is, before and after any exe-
cution of an operator to one or several As-Is map(s) resulting in a new state of the To-
Be map. 

Finally, the generic ME operators will serve to the development of a CAME tool 
supporting different ME approaches.  
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