
A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 202–218, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Towards a Meta-tool for Change-Centric Method
Engineering: A Typology of Generic Operators

Jolita Ralyté1, Colette Rolland2, and Rébecca Deneckère2

1 CUI, University of Geneva, Rue de Général Dufour, 24, CH-1211 Genève 4, Switzerland
ralyte@cui.unige.ch

2 CRI, University of Paris 1 – Sorbonne, 90 Rue de Tolbiac, 75013 Paris, France
{rolland,denecker}@univ-paris1.fr

Abstract. The work presented in this paper considers how Method Engineering
(ME) helps in method changes that are required by Information Systems (IS)
changes. In fact, ME provides different approaches allowing to construct situa-
tion-specific methods by adapting, extending, improving existing methods or by
assembling method components. All these approaches use a set of operations to
realize these method changes. Our objective in this paper is to provide a meta-
tool for change-centric ME which takes the form of a typology of generic ME
operators. The operators for each specific ME approach are instantiated from
the generic ones. The paper illustrates and discusses the instantiation of the ge-
neric typology for two assembly-based ME approaches.

1 Introduction

In order to survive in a more and more competitive environment, organizations un-
dergo frequent changes that imply to adapt, enhance, reform, evolve, merge, interop-
erate their supporting Information Systems (IS). There are many different kinds of IS
change and many circumstances for change such as business change, technology
progress, ERP installation, company merge/take-over, globalization, standardization
of practices across branches of a company etc. Each of them requires specific meth-
ods to handle change. Thus, as a consequence of the need for IS change, engineering
methods shall themselves adapt to new circumstances of IS evolution. In other words,
IS change implies method change.

The position taken in this paper is that Method Engineering (ME) can help to re-
spond to this need. ME is the ‘discipline to study engineering techniques for con-
structing, assessing, evaluating and managing methods and to study educational tech-
niques for teaching and training method users’ [27]. We see ME at two levels of
abstraction: the method level and the method meta-level. The former refers to the
construction of new change-centric methods using ME techniques. This leads to the
development of methods supporting different kinds of evolution such as IS improve-
ment, expansion, transformation as well as methods tailored to emerging application
domains such as e-commerce, web services, mobile IS, etc. The latter seeks to pro-
vide generic ME tools and techniques to support ME at the method level. Proc-
esses/Algorithms to support ‘on the fly’ construction of situation-specific methods is
an example of such meta-technique. Typologies of ME approaches or techniques are
another example.

Towards a Meta-tool for Change-Centric Method Engineering 203

Our concern in this paper is to provide a meta-tool for change-centric method en-
gineering which takes the form of a set of ME operators. Indeed, at the core of every
ME process there is a set of operations to be carried out on the components of the
method(s) involved in the ME activity. As these components are mainly Product and
Process Models (PPMs), these operations can be formalized as operators applicable
to the various elements of PPMs. These operators are generic in the sense that they
are not dependent of a specific ME approach. On the contrary, they can be instanti-
ated in every specific ME approach.

In order to ease the use of generic operators in a given ME approach, we provide in
the paper a framework, the operator-driven ME framework, to deal with the meta and
method levels and to generate operators for any specific ME approach from the ge-
neric ones. The usefulness of such a typology of operators is manifolds. It offers a
means to easily generate a complete set of operators for a specific ME approach and
to base the ME approach on a theoretically sound ground. Such a formalisation is
especially required in the case of a corresponding CAME tool creation. Moreover, it
offers a possibility to develop mixed ME approaches to deal with a combination of
ME situations. This will be achieved by combining operators of different ME types.

The remainder of this paper is as follows: section 2 proposes a typology of ME ap-
proaches, which is used for the definition of the generic ME operators presented in
section 3. In section 4 we illustrate how the generic typology of ME operators can be
instantiated in order to obtain operators for a specific ME approach. Finally, section 5
draws some conclusions and discussions about our future work.

2 Typology of Method Engineering Approaches

A large number of Method Engineering approaches have been proposed in the litera-
ture. These approaches provide guidance for the creation of a new method [11, 20, 21]
and for the adaptation of an existing method to some conditions of change [30] or to a
specific project situation [6, 7, 10]. A literature survey [4, 5, 8, 25, 29] complemented
by our own experience [18] leads us to classify these approaches according to four
types of method engineering that we referred to as Ad-Hoc, Paradigm-Based, Exten-
sion-Based and Assembly-Based, respectively.

Ad-Hoc approaches deal with the construction of a new method ‘from scratch’.
There are different reasons that can initiate a decision to construct a new method. The
appearance of a new application domain that is not yet supported by a specific method
is one example, experience capitalisation serving as the start point for a new method
construction is another example.

Paradigm-Based ME [17] uses some initial paradigm model or meta-model as a
baseline As-Is model which is instantiated [5], abstracted [18] or adapted [30] accord-
ing to the current ME objective to develop the new To-Be model.

Extension-Based ME proposes different kinds of extension that can be realised on
an existing method. Their objective is to enhance a method with new concepts and
properties [3]. For example, a static method such the one for construction E/R sche-
mas can be extended to deal more systematically with the representation of time
through a calendar of time points, intervals etc. and temporal aspects such as the his-
tories of entities.

204 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

Assembly-Based ME proposes to construct new methods or to enhance existing
ones by reusing parts of other methods. The core concept in these approaches is one
of reusable method component [28] also called method chunk [16, 22], method frag-
ment [2, 7, 14, 26] or method block [12]. An Assembly-Based method construction
consists in defining method requirements for a current situation, selecting method
components satisfying this situation and assembling them. Association and integration
are two kinds of assembly that can be applied on the selected method components
[15]. Association concerns assembly of method components with different purposes
and objectives, whereas integration deals with overlapping method components hav-
ing the same or similar objective but providing different manners to satisfy it.

3 Towards Generic Operators for Method Engineering

3.1 Role of Operators in Method Engineering

Each ME approach proposes a specific method engineering process which uses a
specific set of method construction operators. The objective of this work is to propose
a generic typology of ME operators which should ease the definition of a set of spe-
cific operators for every specific ME approach while guaranteeing their completeness
and correctness. Fig. 1 presents our operator-driven ME framework where specific
ME operators are generated from the generic ones.

Method Engineering
Meta-model

As-is Method
Metamodel

As-is Method
Metamodel

As-is Method
Model

To-be Method
Model

Generic Method
Engineering Operators

Specific Method
Engineering Operators

Instance of

Instance of

Instance of

Applicable on

Applied on Result

Method Engineering
Meta-model Level

Method Model Level

Specific Method
Engineering Process

Uses

0..N

According to the
Method Engineering

Approach

Fig. 1. Operator-driven Method Engineering Framework

The generic ME operators are applicable to generic elements that compose any
model involved in a ME activity. To achieve this, it is necessary to abstract from the
specificity of a given model and generalize model elements, their relationships as well
as relationships between different models. Meta-modelling is known as a means to do
so. Thus, in order to build the typology of generic ME operators, we first developed a
meta-model for ME, i.e. a model of models. This meta-model is presented in the fol-
lowing section.

Following our framework (Fig. 1), a set of specific operators is instantiated from
the generic ones according to the selected ME approach. These operators are then

Towards a Meta-tool for Change-Centric Method Engineering 205

applied by the specific ME process to transform one or several As-Is model(s) into a
To-Be model. In Paradigm-Based ME there is only one To-Be model whereas in
Assembly-Based and Extension-Based ME two or more As-Is models are used to
produce the resulting To-Be model. Ad-Hoc method construction starts with no As-Is
model at all. To sum up, there are some advantages of using a generic typology of ME
operators:

1. The generic typology serves as a guide to define the specific typology: the latter is
just an instance of the former;

2. The completeness of the specific typology is subsumed by the completeness of the
generic typology;

3. Specific typologies are consistent with each other as they are generated from the
same mould: this is important when several sub-typologies are used in the same
ME approach or several different ME approaches are combined together [17].

3.2 The Meta-model for Defining Generic ME Operators

In Fig. 2 we propose a meta-model which has been designed to highlight characteris-
tics of models involved in a ME activity and therefore to permit to identify the fun-
damental construction and transformation operations which can be executed on a
model. As shown is this figure, every model is made of Elements. Every element has
a Name and is characterised by a set of Properties. In the E/R model for example,
Entity type, Attribute and Relationship type as well as the Is-A relationship are ele-
ments. Domain is a property of Attribute. Fig. 2 shows that an element is-a another
element, i.e. might inherit some of its properties from another element.

Elements are classified into Simple and Compound ones. Compound elements are
composed from fine-grained ones whereas Simple Elements are not decomposable.
For example, in the E/R model an Entity type is a compound element made of Attrib-
utes, which are simple elements.

As the same element can be part of different models, the concept of ModelElement
represents the link of an element and the model it belongs to. For example, the con-
cept of Scenario exists in the L’Ecritoire model [23] and the Use Case model [9]. In
the integration process of these two models [19] we need to know the origin of the
Scenario that we are manipulating. The concept of ModelElement is also necessary to
model the relationships between elements of different models. These relationships are
represented in Fig. 2: an element from one model can represent an Abstraction-of an
element in another model; the link Instance-of represents the fact that an element can
be obtained by instantiating an element of another model; moreover, elements from
different models can be connected in order to assemble or extend models. Three con-
nection types are defined in the meta-model: Association, Composition and Is-a. Fi-
nally, any model is a compound element which can be reduced to the root element.

3.3 The Typology of the Generic ME Operators

The meta-model (Fig. 2) identifies elements (Element) in models and relationships
between elements (ModelElement) belonging to different models. Both of them can
be subject to change in a method engineering activity. This allowed us to identify a

206 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

set of ME operators, which are listed and briefly described in Table 1. In synthesis,
we can say that ME operators cover three major types of change: naming changes,
element changes and structural changes.

• Naming changes are defined with the Rename operator. Naming is dealing with
hyponyms, synonyms and the like.

• Element changes affect elements and are circumscribed to the elements them-
selves: adding an attribute to an entity type is an example of such localised change.
Table 1 proposes three operators to specify element changes, namely Modify, Give
and Withdraw.

• Structural changes are the most important as they correspond to a modification of
the set of elements that compose the model. There are two types of structural
changes:
− Inner changes which affect elements of one single given model: there are eleven

operators to specify structural changes (Table 1): Add, Remove, Merge, Split,
Replace, Retype, Generalise, Specialise, AddComponent, MoveComponent and
RemoveComponent. For example, merging two steps of an As-Is process model
in the To-Be process model is an example of such inner structural change.

− Inter-model changes which consists in establishing connections between ele-
ments of different models. Table 1 identify six of them: ConnectViaSpecialisa-
tion, ConnectViaGeneralisation, ConnectViaMerge, ConnectViaComposition,
ConnectViaDecomposition and ConnectVia-Association. For example, defining
a set of Ordered Requirements Chunks of the L’Ecritoire RE method [23] as a
specialization of the Use Case Concept of the Use case Model [9] is an example
of inter-model connection.

4 Instantiation of the Generic ME Operators
 for Assembly-Based ME

This section illustrates the framework and the use of our generic operators to define
the collection of operators relevant for a specific ME case. We consider two assem-

Property

Compound

Simple

Root

Is-a

Has a *

1 2..*

Model

Connection Composition

{≠ models}

Instance of
{≠ models}

Abstraction of

{ ≠ models}

* ModelElement

Element

Name

Is-a

Association

1..*
1..*

0..1

*

*
*

1

1 *

0..1

0..1

Fig. 2. Meta-model for Method Engineering

Towards a Meta-tool for Change-Centric Method Engineering 207

bly-based ME approaches: (a) the assembly by association proposed by Brinkkemper
et al. in [2] and (b) the assembly by integration proposed by Ralyté et al. in [19]. In
both cases product and process models of the selected method chunks/fragments must
be assembled. Therefore, we will first, define the corresponding meta-models and
then, instantiate the generic typology of operators in line with the elements of these
meta-models and illustrate them with examples.

4.1 Operators for Product Models Assembly

In both ME examples considered in this section, the product models of the method
fragments/chunks to assemble are expressed by using class diagrams. Fig. 3 presents
the meta-model of the Object Model as instance of the ME meta-model (Fig. 2). As
shown in this figure, the Object Model is composed of Classes, which are compound
elements composed of Attributes. A Class is connected with one or several other
classes via Association, Composition or Is-a links. As an Association can have attrib-
utes, it is also a compound element whereas the Composition or Is-a links are simple
ones. An Attribute has a property named Domain and an Association has two proper-
ties SourceMultiplicity and TargetMultiplicity.

Table 1. Generic ME operators

Object Operator Description
Element Rename Change the name of an element.
 Add Add a new element in the model.
 Remove Remove an element from the model.
 Merge Two separate elements become one element.
 Split An element is decomposed into two elements.
 Replace An element is replaced by a different one.
 Generalize An element is created as a generalization of two elements.
 Specialize Specialise an element into two sub-elements.
Com- AddComponent Add a component into an element.
pound RemoveComponent Remove a component from a compound element.
 MoveComponent A component is repositioned in the structure of a compound.
Property Give Add a property to an element.
 Withdraw Remove a property from an element.
 Modify Change a property in an element.
 Retype Change the type of an element.
Model Instantiate Instantiate an As-Is model element into To-Be model element.
Element Abstract Create a To-Be model element as an abstraction of an As-Is model

element.
 ConnectVia

Specialization
Define an element from one model as a specialization of an element
from another model. An is-a link is created between these two ele-
ments.

 ConnectVia
Generalization

Generalize two elements from different As-Is models into a super-
element in the To-Be model.

 ConnectVia
Composition

Create a compound element in the To-Be model containing as compo-
nents elements from two different As-Is models.

 ConnectVia
 Decomposition

Define an element as a component of an element from another model.

 ConnectVia
Association

Add an association link in the To-Be model between two elements
from different As-Is models.

 ConnectViaMerge Two similar elements from different As-Is models become one ele-
ment in the To-Be model.

208 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

1..*

Attribute

Name

Attribute

Name

Domain

Is-a Link

generic

specific

Class

Name

Class

Name

Composition Link

compound

component

1

1
c

*

*

1

1

*

*

Association

Name

Association

Name

source

target
*

*

1

1

SourceMultiplicity

TargetMultiplicity

1

1

1

Compound element
Simple element
Property

Compound element
Simple element
Property

0..1 0..1

*

Fig. 3. Meta-model of the Object Model

Table 2 summarizes the operators that are relevant for each of the elements defined
in the meta-model (Fig. 3). The name of a specific operator is obtained by concatena-
tion of the name of the generic operator and the name of the corresponding element.
Due to space constraint, some names have been shortened. ‘N/A’ means not applica-
ble.

Table 2. Operators for the Object Models Assembly

Operators for object models assembly Generic Operator
Class Attribute Association Composition Is-a

Rename RenameClass RenameAttribute RenameAssoc N/A N/A
Add AddClass N/A AddAssociation AddComp AddIsa
Remove RemoveClass N/A RemoveAssoc RemoveComp ReIsa
Merge MergeClass MergeAttribute N/A N/A N/A
Split SplitClass SplitAttribute N/A N/A N/A
Replace ReplaceClass ReplaceAttribute N/A N/A N/A
Generalize GeneralClass N/A N/A N/A N/A
Specialize SpecializeClass N/A N/A N/A N/A
AddComponent N/A AddClassAttr, * N/A N/A N/A
RemoveComponent N/A RemoveClAtt, * N/A N/A N/A
MoveComponent N/A MoveClAttr, * N/A N/A N/A
Give N/A GiveDomain GiveMultiplicity N/A N/A
Withdraw N/A With.Domain WithdrawMultipl N/A N/A
Modify N/A ModifyDomain ModifyMultipl N/A N/A
Retype RetypeClass RetypeAttribute RetypeAssociation RetypeComp RtIsa
**CVSpecialization CVSpecClass N/A N/A N/A N/A
CVGeneralization CVGenerClass N/A N/A N/A N/A
CVComposition CVCompClass N/A N/A N/A N/A
CVDecomposition CVDecompClass N/A N/A N/A N/A
CVAssociation CVAssocClass N/A N/A N/A N/A
CVMerge CVMergeClass N/A N/A N/A N/A
*: AddAssociationAttribute, RemoveAssociationAttribute, MoveAssociationAttribute,
**CV: ConnectVia,

Let us briefly comment the table before entering in the detailed analysis of both

ME approaches. According to [15, 19], the integration of two object models is based
on establishing connections between similar classes. Two similar classes from differ-
ent As-Is models can be merged into a new one in the To-Be model. They can also be
connected via is-a or composition link and finally, a new generalised class can be
created in the To-Be model in order to relate them. Therefore, the operators which

Towards a Meta-tool for Change-Centric Method Engineering 209

serve for the integration of two object models are ConnectViaMerge, Connect-
ViaSpecialisation, ConnectViaGeneralisation, ConnectViaComposition, ConnectVia-
Decomposition. The simple association between similar classes is not applicable here.
On the contrary, the operator ConnectViaAssociation is the core connection operator
in the assembly by association [2]. The Instantiate and Abstract operators are not
applicable in the assembly-based ME as the As-Is and To-Be models are at the same
levels of abstraction.

Product Models Assembly by Association. According to [2], the assembly by
association of two product fragments is based on the three following operations: (1)
Addition of new objects, (2) Addition of new associations, (3) Addition of new
attributes. Besides, this approach provides a set of rules that should be satisfied during
the assembly process. For instance, at least one concept and/or association should
connect two method fragments to be assembled, is an example of a rule. There are no
concepts which have the same name and which have different occurrences in a
method description, is another example of a rule.

It can be seen that the required operations can be realised by applying the operators
AddClass, ConnectViaAssociationOfClasses, AddClassAttribute and AddAssociation-
Attribute. These operators are formalised as follows:

ConnectViaAssociationOfClasses. This operator connects two classes from different
As-Is models with a new association in the To-Be model.

CnnectViaAssociationOfClasses: Class2 → Association
CnnectViaAssociationOfClasses(C1, C2) = A.source (C1) ∧ A.target (C2) | A∈ As-
sociation, C1 ⊂ OM1, C2 ⊂ OM2, (OM1, OM2) ∈ Object Model

Let us exemplify the association of the two following method fragments Statechart
and Object model as considered in [2]. The behaviour of each Class is specified by a
set of States. An association Has is added between these two classes in order to con-
nect them:
CnnectViaAssociationOfClasses(Class, State) = Has.source(Class) ∧ Has. tar-
get(State) | State ⊂ Statechart, Class ⊂ Object Model.

AddClass. This operator can be applied to add a new class in the To-Be model to
make possible the connection between As-Is models.

AddClass: Object Model → Class
AddClass(OM) = C | C ⊂ OM, C ∈ Class

For example, the Transaction element in the Statechart fragment has a post condi-
tion that refers to an Attribute which is an element of the Object Model fragment. As a
consequence, a new class PostCondition should be added in the To-Be model in order
to connect the Transition and Attribute classes:
AddClass(Objectchart) = PostCondition | PostCondition ⊂ Oojectchart.

AddClassAttribute and AddAssociationAttribute allow to add attributes in the To-Be
method fragment to the classes and associations created as connectors of the As-Is
method fragments.

210 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

AddClassAttribute: Class → Class.Attribute
AddClassAttribute(C) = C.At | At∈ Attribute
AddAssociationAttribute: Association → Association.Attribute
AddAssociationAttribute(A) = A.At | At∈ Attribute

According to the example shown in [2], the attribute Is-hidden should be added to
the association Is-annotated-with:
AddAssociationAttribute(Is-annotated-with) = Is-annotated-with.Is-hidden

As shown in Table 2, there are other operators that support methods assembly in
addition to the four presented above. It seems to us that these operators are relevant,
in particular to tailor some As-Is fragments to the special needs of the assembly proc-
ess and also to refine the obtained To-Be fragment if necessary. As an illustration let
us consider again the previous Postcondition case: we could directly associate these
two classes using the ConnectviaAssociationofClasses and then, retype this associa-
tion into the class Postcondition by applying the operator RetypeAssociation.

RetypeAssociation. This operator transforms an association A, connecting two classes
C1 et C2, into a new class C. Besides, two new associations are added in order to con-
nect the class C with the classes C1 et C2.

RetypeAssociation: Association, Class2 → Class, Association2
RetypeAssociation(A, C1, C2) = C ∧ A1.source(C1) ∧ A1.target (C) ∧ A2.source(C) ∧
A2.target (C2) | (A1, A2) ∈ Association, C ∈ Class

In order to satisfy the assembly rules mentioned above, it might be necessary to
modify the names of some classes before the assembly of the method fragments.

RenameClass. The operator RenameClass allows to give a new name to a class:

RenameClass: Class → String
RenameClass(C) = C.name(N) | N∈ String

For sake of space it is not possible to illustrate the use of each of the operators for
method assembly proposed in Table 2, but a systematic study convinced us that they
are useful in method assembly by association.

Product Models Assembly by Integration. To illustrate operators for the assembly
by integration, we consider the approach proposed in [19]. According to this ap-
proach, the assembly process consists in identifying common elements in product and
process models of some selected method chunks and in merging and/or connecting
them. This might require some terminology adjustments of model elements before
their integration. Elements of product and process models of the selected methods
need to be unified based on their similarities, abstracting away their differences and
eliminating ambiguities. The integration of two product models which we consider in
this section requires to identify similar classes. For example, [15] illustrates the inte-
gration of the Use case model [9] and the L’Ecritoire model [23]. The class Actor in
the Use case model and the class Agent in the L’Ecritoire model have the same se-
mantic. Therefore, one of these two classes must be renamed prior their merge. In our
example Actor is renamed into Agent.

RenameClass(Actor) = Name(Agent)

Towards a Meta-tool for Change-Centric Method Engineering 211

MergeClass. When two classes C1 and C2 from different As-is models are merged into
a new class C in the To-Be model, the class C replaces C1 and C2 in any association
having initially C1 or C2 as source class or target class.

MergeClass: Class2, {Association}2 → Class

MergeClass(C1, C2, {As

i, A
t

j}) = [i, As

i.source(C)] ∧ [j, At

j.target(C)] | C1 ⊂
OM1, C2 ⊂ OM2, C ⊂ OM, C ∈ Class, (OM, OM1, OM2) ∈ Object Model

Therefore, the Actor (ActorUC) from the Use case model and Agent (renamed into
Actor) (ActorE) from L’Ecritoire are merged into a new class Actor. Two associations,
Executes and Supports, between the classes ActorUC and Use case are preserved by
replacing ActorUC by Actor. Similarly, in the associations From and To between the
classes Action and ActorE in the L’Ecritoire, the ActorE is replaced by Actor:

MergeClass(ActorUC, ActorE, Executes.source(ActorUC), Supports.source(ActorUC),
From.target(ActorE), To.target(ActorE)) = Actor ∧ Executes.source(Actor) ∧ Sup-
ports.source(Actor) ∧ From.target(Actor) ∧ To.target(Actor)

The operators as ConnectViaSpecializationClass, ConnectViaGeneralizationClass,
ConnectViaCompositionClass, ConnectViaDecompositionClass are also useful in the
assembly by integration. They allow to connect classes that have a similar semantic
but different structures and cannot be directly merged. For example, the Goal concept
exists in both the Use Case and L’Ecritoire models, but it is defined as an attribute
named Objective in the class Use Case of the first model and as a class in the second
one. In order to connect these two concepts we need to transform first the attribute
Objective into a class in the Use Case model. The original approach [19] uses the
Objectify operator to do that. This operator is formalised here by the RetypeAttribute
operator.

RetypeAttribute. An attribute of a class C1 is transformed into a new class C2 which is
associated to the class C1 with new association.

RetypeAttribute: Class.Attribute → Class, Association
RetypeAttribute(C1.At) = C2 ∧ A.source(C1) ∧ A.target(C2)  C2 ∈ Class, A ∈ As-
sociation

RetypeAttribute(Use Case. Objective) = Goal ∧ Has.source(Use Case) ∧
Has.target(Goal).

Even after retyping, the merge is not possible because the Goal of the L’Ecritoire
has a specific structure whereas the goal of the Use Case model is an informal state-
ment. The solution is to rename (a) the Goal of the Use Case model into Informal
Goal and (b) the Goal of the L’Ecritoire into Formal Goal and to connect them via
generalisation into the class Goal.

ConnectViaGeneralizationClass. Two classes from different As-Is models are gener-
alized into a generic class in the To-Be model. Two is-a links are created between the
specific classes and the generic one.

212 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

ConnectViaGeneralisationClass: Class2 → Class, Is-a2

ConnectViaGeneralisationClass(C1, C2) = C ∧ [Is-a.generic(C) ∧ Is-a.specific(C1)]
∧ [Is-a.generic(C) ∧ Is-a.specific(C2)]  C ∈ Class

ConnectViaGeneralisationClass(Informal Goal, Formal Goal) = Goal ∧ [Is-
a.generic(Goal) ∧ Is-a.specific(Informal Goal)] ∧ [Is-a.generic(Goal) ∧ Is-
a.specific(Formal)].

4.2 Operators for Process Models Assembly

In this section we use the generic typology of operators to generate specific ME op-
erators to assemble process models in (a) the case of assembly by association and (b)
the case of assembly by integration. Different kinds of process models can be used to
express the process dimension of a method fragment/chunk. It can be a simple or-
dered list of operations, a more structured activity diagram or a complex multi-
strategy model expressed through a directed graph structure. The definition of opera-
tors for process models assembly depends on the type of the process models used by
the As-Is methods. For example, the approach for assembly by association [2] uses an
activity diagram to model process fragments whereas the approach for assembly by
integration proposes to integrate process maps [24] (directed graphs of intentions and
strategies). In both cases, before generating operators we need to define first the cor-
responding meta-models.

Process Models Assembly by Association. Fig. 4 presents the meta-model for the
Activity diagram as instance of the ME meta-model (Fig. 2).

Activity

Name

target

source

Condition

Verb

Target

has

1..N

1

Transition

Name

has

0..1

1

1

0..*

0..*

Activity

Name

Activity

Name

target

source

Condition

Verb

Target

has

1..N

1

Transition

Name

has

0..1

1

1

0..*

0..*
Compound element
Simple element
Property

Compound element
Simple element
Property

Fig. 4. Meta-model for an Activity Diagram

As shown in this figure, an activity diagram is represented by set of Activities,
which are simple elements. Transitions define in which order activities are realised by
specifying for each transition the source activity and the target one. Each Activity has
two Properties: a Verb, which represents the operation to realise, and a Target, which
represents the resulting product elements. Condition is a property of a Transition.
Table 3 shows the operators related to the core Activity diagram elements.

In the example dealing with the assembly of Statechart and Object Model frag-
ments [2], the authors use two core operations: (1) addition of new transitions and (2)
addition of new activities. A new transition can be added only to connect the activities
from different fragments as well as a new activity can be added only if a new class
was added during the corresponding product fragments assembly. These two opera-
tions can be formalised with the operators AddActivity, AddTransition and Connect-
ViaAssociationOfActivities.

Towards a Meta-tool for Change-Centric Method Engineering 213

Table 3. Operators for the Activity-driven Process Models Assembly

Operators for activity-driven process models assembly Generic Operator
Activity Transition

Rename RenameActivity RenameTransition
Add AddActivity AddTransition
Remove RemoveActivity RemoveTransition
Merge MergeActivity MergeTransition
Split SplitActivity SplitTransition
Replace ReplaceActivity ReplaceTransition
Give GiveVerb, GiveTarget GiveCondition
Withdraw WithdrawVerb, WithdrawTarget WithdrawCondition
Modify ModifyVerb, ModifyTarget ModifyCondition
ConnectViaAssociation ConnectViaAssociationOfActivities N/A
ConnectViaMerge ConnectViaMergeOfActivities N/A

ConnectViaAssociationOfActivities. A new transition connects two activities from
form different As-Is models. The source activity must produce the product element(s)
required as input product by the target activity.

ConnectViaAssociationOfActivities: Activity2 → Transition
ConnectViaAssociationOfActivities (A1, A2) = T.source(A1) ∧ T.target(A2) | T∈
Transition, A1 ⊂ AD1, A2 ⊂ AD2, (AD1, AD2) ∈ Activity Diagram

For example, the list of classes obtained by executing the Object Model construc-
tion activity O1: Identify Objects and Classes provides an input for the Statechart
construction activity S1: Identify States. Therefore, these two activities can be con-
nected with a new transition called Input:

ConnectViaAssociationOfActivities (O1, S1) = Input.source(O1) ∧ Input.target(S1).

Again, this example illustrates only partially the use of operators listed in Table 3.
However, operators such as Merge, Split, Replace, Remove applied to both Activity
and Transition are obviously useful. Similarly, the need for renaming an activity of
the As-Is fragment in the To-Be fragment is meaningful. Finally, Give, Withdraw and
Modify make sense to change the properties of an As-Is Activity or Transition in the
corresponding To-Be fragment. For instance, a condition for the transition between
two activities can be modified and the verb designating an activity can be different in
the To-Be fragment compared to what it was in the As-Is model.

Process Models Assembly by Integration. According to the assembly by integration
proposed in [19, 15], the process models integration consists in integrating process
maps [24]. Fig. 5 represents the map meta-model as instance of the ME meta-model
(Fig. 2).

As shown in Fig. 5, a Map is a collection of Sections. A section is a compound
element aggregating two types of Intentions, the Source Intention and the Target In-
tention, and a Strategy.

An Intention is a goal that can be achieved by the performance of an activity
(automated/semi-automated or manual). For example, Elicit a goal is an intention in
the L’Ecritoire requirements elicitation process; Write a scenario is another intention.
There are two special intentions Start and Stop that allow to begin and to end the

214 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

progression in the map, respectively. An intention is a simple element expressed fol-
lowing a linguistic approach proposed by [13] as a clause with a verb and a target. It
can also have several parameters, where each parameter plays a different role with
respect to the verb.

Section
Source Intention

Target Intention

Intention

Name
Name

Start

Stophas-for-target

has-for-source

1

1

1..*
1

1

1

1..*

1..*

Strategy

Name

Guideline

Pre-condition

Post -condition

Verb

Target

Parameter

has
has

*
1

1

1

1

1

Section
Source Intention

Target Intention

Intention

Name

Intention

Name
Name

Start

Stophas-for-target

has-for-source

1

1

1..*
1

1

1

1..*

1..*

Strategy

Name

Strategy

Name

Guideline

Pre-condition

Post -condition

Verb

Target

Parameter

has
has

*
1

1

1

1

1

Fig. 5. Map meta-model

A Strategy is an approach, a manner to achieve an intention. For example, By using
goal template is a strategy to achieve the intention Elicit a goal proposed in the
L’Ecritoire approach. A strategy is a simple element.

A Section is a triplet <Source Intention, Target Intention, Strategy>. The arrange-
ment of he sections in a map forms a labelled directed graph with Intentions as nodes
and Strategies as edges. Pre- and Post-conditions of each section specify the progres-
sion flows in the map. Each section provides a Guideline indicating how to achieve
the target intention following the strategy given the source intention has been
achieved.

Table 4 proposes the list of operators for maps integration. Only 11 operators have
been instantiated from 20 potential ones (Table 5). In fact, some of generic operators
do not make sense in the maps integration process. For example, the Generalize and
Specialize operators cannot be instantiated as there are no is-a relationships between
intentions, strategies or sections in the map. The three missing operators, namely
AddComponent, RemoveComponent and MoveComponent have not been introduced,
as it does not make sense to apply them to the Section element the structure of which
is immutable. The integration of two maps can be done only by merging similar inten-
tions or sections. As a consequence, only the ConnectViaMerge operator was instanti-
ated. It is impossible to merge two strategies belonging to different maps.

The example of integration [19] of the Use Case and L’Ecritoire maps starts with
the identification of similar intentions and their merge. The intention IUC1: Elicit Use
Case in the Use Case model and the intention IE1: Elicit Goal in L’Ecritoire have the
same semantic: in both cases it means ‘to elicit a users goal’. Moreover, the Goal
concept was defined in the Use Case model during the product models integration
illustrated above and allows us to unify the terminology of the two maps. In [19] this
was done intuitively by renaming the intention IUC1: Elicit Use Case into IUC1: Elicit
Goal. The generic typology of ME operators allows us to formalise this kind of
change in a more precise way: each property of an intention has a proper Modify op-
erator: ModifyVerb, ModifyTarget and ModifyParametter. In this example, we need to
apply the ModifyTarget operator.

Towards a Meta-tool for Change-Centric Method Engineering 215

ModifyTarget. The value of the intention property Target is replaced by a new one.
This new value must represent an element of the corresponding product model.

ModifyTarget: Intention → String
ModifyTarget(I) = I.target(N)  N∈ String

ModifyTarget(IUC1:Elicit Use Case) = IUC1.target(Goal)

Table 4. Operators for Maps Integration

Operators for Maps integration Generic Opera-
tor Intention Strategy Section
Rename RenameIntention RenameStrategy RenameSection
Add AddIntention AddStrategy AddSection
Remove RemoveIntention RemoveStrategy RemoveSection
Merge MergeIntention MergeStrategy MergeSection
Split SplitIntention SplitStrategy SplitSection
Replace ReplaceIntention N/A N/A
Give GiveVerb, GiveTarget

GiveParameters
N/A GivePreCond, GivePostCond,

GiveGuideline
Withdraw WithdrawVerb, WdrTarget

WithdrawParamerters
N/A WithdrawPreCondition

WdrPostCond, WdrGuideline
Modify ModifyVerb, ModifyTarget

ModifyParameters
N/A ModifyPreCond, ModifPost-

Cond
ModifyGuideline

Retype RetypeIntention RetypeStrategy N/A
ConnectViaMerge CVMergeIntentions N/A ConnectViaMergeSections

ConnectViaMergeIntentions. This operator allows to integrate two maps by merging
their similar intentions. When two intentions I1 and I2 are merged, the intention I re-
places I1 and I2 in any section having initially I1 or I2 as source intention or target in-
tention.

ConnectViaMergeIntentions: Intention2, {Strategy}2 → Intention

ConnectViaMergeIntentions(I1, I2, {Sts

i}, {Stt

j}) = [i, Sts

i.has-for-source(Ir)] ∧

[j, Stt

j.has-for-target(Ir)] | Ir ∈ Intention, I1 ⊂ M1, I2 ⊂ M2, (M1, M2) ∈ Map

In order to merge the intentions IUC1: Elicit a Goal and IE1: Elicit a Goal we must
know in which sections of their corresponding maps they are involved. As shown in
Fig. 6, there are three sections in the Use Case map containing the intention IUC1
whereas the intention IE1 is involved in four sections in the L’Ecritoire map. The inten-
tion I1:Elicit a Goal replaces IUC1 and IE1 in all these sections.

ConnectViaMergeIntentions(IUC1, IE1, StUC1, StUC2, StUC3, StE1, StE2, StE3, StE4) =
StUC1.target(I1) ∧ StUC2.source(I1) ∧ StUC3.source(I1) ∧ StE1.target(I1) ∧ StE2.source(I1) ∧
StE2.target(I1) ∧ StE3.source(I1) ∧ StE4.source(I1).

In the same manner the Start and Stop intentions of both maps are merged. Other
operators such as AddStrategy and RemoveStrategy are needed in order to improve the
final To-Be map. For example, the integration of the Use Case and L’Ecritoire maps
allows to improve the scenario writing process which is rather poor in the first model
by rich guidelines provided by second one. It appears that the original Use Case strat-

216 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

egy supporting scenario writing became obsolete and should be removed from the
final integrated map.

To conclude on the assembly by integration, a systematic comparison of operators
identified in [19] and those generated from the typology of generic ones shows that
(a) we missed useful operators in the former and (b) the systematic definition pro-
vided by the latter avoid ‘ad-hoc’ and not fundamentally justified assembly types. The
so-called Objectify operator mentioned above is an example of (b); Give, Withdraw
and Modify applied to intention and section are examples of (a).

IE2: Write
a scenario

StE4:Template

StE3:Free prose

IE0:Start StE1:Goal template

StE2:Case based

IE1: Elicit
a goal

IE2: Write
a scenario

StE4:Template

StE3:Free prose

IE0:Start StE1:Goal template

StE2:Case based

IE1: Elicit
a goal

IUC0:Start

StUC2:Normal
case first

StUC1:Actor-driven
discovery

StUC3:Reuse IUC1: Elicit
a goal

IUC2:
Conceptualise

use cases

IUC0:Start

StUC2:Normal
case first

StUC1:Actor-driven
discovery

StUC3:Reuse IUC1: Elicit
a goal

IUC2:
Conceptualise

use cases

(a) L’Ecritoire (b) Use Casse model

ConnectViaMergeIntention

Fig. 6. Example of integration of L’Ecritoire and Use Case maps

5 Conclusion

In this paper we provided a formal ground for tool-supported ME in the form of a set
of generic ME operators. The production of these operators is based on a ME meta-
model that was especially defined for this purpose and a classification of ME ap-
proaches issued from a literature survey. The set of operators allows to understand in
a cohesive and consistent way which operations constitute the basis of method con-
struction and method transformation. The set of generic operators considerably eases
the generation of the specific set of operators required in a given ME approach.

Our future preoccupation is to facilitate even more the process of generating spe-
cific operators from the generic ones by introducing sub-typologies, each being rele-
vant for a ME class of approaches. Table 5 shows our first view on this. For sake of
space the figure shows the operators which are different depending of the class of
approaches. It can be noticed that the differences relate to ModelElements. We indeed
think that all operators related to Element are relevant irrespective of the ME class.

The generic typology seems to capture all interesting types of method engineering
operations. However, the problem to consider next is the validation of its complete-
ness and correctness. According to Banerjee [1], a set of operators is considered to be
complete if it subsumes every possible schema evolution; it is correct if the execution
of any operator does not result in an incorrect schema. By analogy, in order to prove
the completeness of the generic ME operators typology we need to identify a minimal
set of operators whereas the correctness of a set of specific operators required to de-
fine a set of model invariants. For example, to ensure the correctness of the operators
for maps integration, we need to define what a correct map is. This is achieved by

Towards a Meta-tool for Change-Centric Method Engineering 217

adding a set of conditions called invariants to the structural definition of a map. An
invariant must hold in any quiescent state of a map, that is, before and after any exe-
cution of an operator to one or several As-Is map(s) resulting in a new state of the To-
Be map.

Finally, the generic ME operators will serve to the development of a CAME tool
supporting different ME approaches.

References

1. Banerjee, J., Kim, W., Kim, H.-J., Korth, H. F. Semantics and Implementation of Schema
Evolution in Object Oriented Databases. Proceedings. of the ACM-SIGMOD Annual Con-
ference, pp. 311--322, San Francisco, CA, 1987.

2. Brinkkemper S., Saeki, M., Harmsen, F. Assembly Techniques for Method Engineering.
Proceedings of the 10th International Conference CAiSE’98. Pisa, Italy, 1998.

3. Deneckere, R. Using Meta-patterns to Construct Patterns. Proc. of the Conference on Ob-
ject-Oriented Information Systems, OOIS'2002, Springer, France, 2002.

4. Grundy, J.C., Venable, J.R. Towards an Integrated Environment for Method Engineering.
In Challenges and Strategies for Research in Systems Development. W.W. Cotterman and
J.A. Senn (Eds.). John Wiley & Sons. Chichester. pp. 45-62, 1996.

5. Gupta, D., Prakash, N. Engineering Methods from Method Requirements Specifications.
Requirements Engineering Journal, Vol.6, pp.135-160, 2001.

6. Harmsen A.F., Brinkkemper, S., Oei, H. Situational Method Engineering for Information
System Projects. In Olle T.W. and A.A. Verrijn Stuart (Eds.), Mathods and Associated
Tools for the Information Systems Life Cycle, Proceedings of the IFIP WG8.1 Working
Conference CRIS’94, pp. 169-194, North-Holland, Amsterdam, 1994.

7. Harmsen, A.F. Situational Method Engineering. Moret Ernst & Young, 1997.
8. Heym, M., Osterle, H. Computer-aided methodology engineering. Information and Soft-

ware Technology, Vol. 35 (6/7), June/July, pp. 345-354, 1993.
9. Jacobson I., Christenson, M., Jonsson, P., Oevergaard, G. Object Oriented Software Engi-

neering: a Use Case Driven Approach. Addison-Wesley, 1992.
10. Kumar, K., Welke, R.J. Method Engineering, A Proposal for Situation-specific Methodol-

ogy Construction. In Systems Analysis and Design: A Research Agenda, Cotterman and
Senn (eds), Wiley, pp257-268, 1992.

11. Prakash, N., Bhatia, M. P. S. Generic Models for Engineering Methods of Diverse Do-
mains. Proceedings of CAISE’02, Toronto, Canada, LNCS 2348, pp. 612., 2002.

12. Prakash, N. Towards a formal definition of methods. RE Journal, 2 (1), 1997.

Table 5. Sub-typologies of ME operators

Paradigm-Based Assembly Object Operator From
Scr. Instan. Abstr. Adapt.

Exten-
sion Assoc. Integr.

Model Instantiate +
Ele- Abstract +
ment ConnectViaSpecialisation + +
 ConnectViaGeneralisation. + +
 ConnectViaComposition. + +
 ConnectViaDecomositionp + +
 ConnectViaAssociation + +
 ConnectViaMerge +

218 Jolita Ralyté, Colette Rolland, and Rébecca Deneckère

13. Prat, N. Goal formalisation and classification for requirements engineering. In: Proceedings
of the REFSQ’97, Barcelona, 1997.

14. Punter H.T., Lemmen, K. The MEMA model : Towards a new approach for Method Engi-
neering. Information and Software Technology, 38(4), pp.295-305, 1996.

15. Ralyté, J., Rolland, C. An Assembly Process Model for Method Engineering. Proceedings
of the 13th CAISE’01, Interlaken, Switzerland, 2001.

16. Ralyté, J., Rolland, C. An approach for method reengineering. Proceedings of the 20th
ER2001, Yokohama, Japan, LNCS 2224, Springer, pp.471-484, 2001.

17. Ralyté, J., Deneckère, R., Rolland, C. Towards a Generic Model for Situational Method
Engineering. Proceedings of the 15th International Conference CAISE’03, Klagen-
furt/Velden, Austria, LNCS 2681, Springer, pp. 95-110, 2003.

18. Ralyté, J., Rolland, C., Ben Ayed, M. An Approach for Evolution Driven Method Engi-
neering. To be published in Information Modeling Methods and Methodologies. J. Krog-
stie, T. Halpin, K. Siau (Eds.), Idea Group, Inc., USA, 2003.

19. Ralyté J., Rolland, C., Plihon, V. Method Enhancement by Scenario Based Techniques.
Proc. of the 11th Conference CAISE’99, Heidelberg, Germany, 1999.

20. Rolland, C., Plihon, V. Using generic chunks to generate process models fragments. Pro-
ceedings of 2nd IEEE International Conference on Requirements Engineering, ICRE’96,
Colorado Spring, 1996.

21. Rolland, C., Prakash, N. A proposal for context-specific method engineering. Proceedings
of the IFIP WG 8.1 Conference on Method Engineering, Chapman and Hall, pp 191-208,
Atlanta, Gerorgie, USA, 1996.

22. Rolland, C., Plihon, V., Ralyté, J. Specifying the reuse context of Scenario Method
Chunks. Proceedings of the 10th International Conference CAISE’98, Pisa, Italy, 1998.

23. Rolland, C., Souveyet, C., Salinesi, C. Guiding Goal Modelling using Scenarios, IEEE
Transactions on Software Engineering, 24(12): 1055-1071, 1998.

24. Rolland, C., Prakash, N., Benjamen, A. A Multi-Model View of Process Modelling. Re-
quirements Engineering Journal, Vol. 4 (4), pp169-187, 1999.

25. Rossi, M., Tolvanen, J-P., Ramesh, B., Lyytinen, K., Kaipala, J. Method Rationale in
Method Engineering. Proceedings of the 33rd Hawaii International Conference on Systems
Sciences, 2000.

26. Saeki, M. Embeding metrics into Information Systems Development methods: An Applica-
tion of method Engineering Technique. Proceedings of the 15th International Conference
CAISE’03, Velden, Austria, LNCS 2681, Springer, pp. 374-389, 2003.

27. Saeki, M. Toward Automated Method Engineering: Supporting Method Assembly in
CAME. Invited talk in the Int. Workshop on Engineering Methods to Support Information
Systems Evolution (EMSISE’03), http://cui.unige.ch/db-research/EMSISE03/ , 2003.

28. Song, X. Systematic Integration of Design Methods. IEEE Software, 1997.
29. Tolvanen, J-P., Rossi, M. & Liu H., Method Engineering : Current research directions and

implications for future research. In Method Engineering: Principles of method construction
and tool support. S. Brinkkemper, K. Lyytinen, R.J. Welke (Eds.), Proceedings of the IFIP
TC8 WG8.1/8.2. Atlanta, USA, pp. 296-317, 1996.

30. Tolvanen, J.-P. Incremental Mehtod Engineering with Modeling Tools: Theoretical Princi-
ples and Empirical Evidence. PhD Dissertation. University of Jyväskylä, Finland, 1998.

	1 Introduction
	2 Typology of Method Engineering Approaches
	3 Towards Generic Operators for Method Engineering
	3.1 Role of Operators in Method Engineering
	3.2 The Meta-model for Defining Generic ME Operators
	3.3 The Typology of the Generic ME Operators

	4 Instantiation of the Generic ME Operators for Assembly-Based ME
	4.1 Operators for Product Models Assembly
	4.2 Operators for Process Models Assembly

	5 Conclusion
	References

