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Abstract. 2D thermo-mechanical waves in SMA (Shape Memory
Alloys) patches are simulated with a model derived for a special case
of material transformations. The mathematical model includes the
coupling effect between thermal and mechanical fields. It is shown that
the classical 1D Falk dynamical model of SMA is a special case of the
formulated 2D model. The differential algebraic approach is adopted for
the numerical analysis. Computational experiments are carried out with
small distributed mechanical loadings to analyze thermo-mechanical
waves and coupling effects. Numerical results from 2D structures are
compared with its 1D analog which is already been verified.
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1 Introduction

A better understanding of the dynamics of SMA is an important task in many
areas of applications. However, even for the one dimensional case, the analysis
of this dynamics is quite involved due to martensitic phase transformation and a
strongly nonlinear pattern of interaction between mechanical and thermal fields
([13,2] and references therein). It is not trivial either to analyze numerically
the thermo-mechanical interaction even when the phase transformation is not
included, because the strong nonlinearity and thermo-mechanical coupling are
still there. For a number of practical applications, the understanding of the
dynamics of SMA structures with dimensions higher than one is required, which
makes the nonlinear thermo-mechanical waves in higher dimensions essential for
the applications.

Many instructive investigations have been carried out to understand dyna-
mics during the process of martensitic phase transition. They provided a firm
background for the application development, in particular inthe one-dimensional
cases where the model for shape memory alloysis usually based on the Landau-
Ginzburg free energy function ([12,3,5] and references therein). Although various
approximations to the free energy function have been proposed in both one di-
mensional and three dimensional cases ([5,16] and references therein), results of
two or three-dimensional cases are rarely available in the literature in the context
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of modelling the thermo-mechanical waves and phase transformations in SMA.
Recently,for the simulation of 2D microstructures in ferro-elastic materials, se-
veral free energy functions were proposed [6,7]. Although the authors proposed
an interesting approach, no thermo-mechanical coupling was discussed and only
static simulation of microstructures with a fixed temperature were presented in
[6,7].

In this paper, we propose a two-dimensional dynamical model for modelling
the thermo-mechanical coupling behavior. The model has been originally formu-
lated to describe square-to-rectangular phase transformations in materials with
shape memory effects. However, the phase transformations will not be discussed
in this contribution. Our major emphasis here will be given to the first step in
validation of the model: we will investigate the thermomechanical behavior of
2D SMA structures in the case of small mechanical loadings (not large enough
to induce phase transformations). In this model, a similar free energy function
as that used in [10,1,9] is employed to construct the 2D dynamical models.

2 The 2D Model for SMA Dynamics

Based on conservation laws for linear momentum and energy, the system de-
scribing coupled thermo-mechanical wave interactions for the first order phase
transitions in a two dimensional SMA structure can be written as follows [16,14]

ρ
∂2ui

∂t2
= ∇x · σ + fi, i, j = 1, 2,

ρ
∂e

∂t
− σT : (∇v) + ∇ · q = g,

(1)

where ρ is the density of the material, u = {ui}|i=1,2 is the displacement vector,
v = ∂u/∂t is the velocity vector, σ = {σij} is the stress tensor, q is the heat
flux, e is the internal energy, f = (f1, f2)T and g are mechanical and thermal
loadings, respectively. Let φ be the free energy function of a thermo-mechanical
system described by (1). Then, the stress and the internal energy are connected
with the free energy function φ by the following relationships:

σ = ρ
∂φ

∂η
, e = φ − θ

∂φ

∂θ
, (2)

where θ is the temperature, and the Cauchy-Lagrangian strain tensor η is
given by its components as follows(with the repeated-index convention used):

ηij (x, t) =
(

∂ui (x, t)
∂xj

+
∂uj (x, t)

∂xi

)
/2, (3)

where x is the coordinates of a material point in the domain of interest.
In the two-dimensional case, the square-to-rectangular transformations could

be regarded as a 2D analog of the cubic-to-tetragonal and tetragonal-to-
orthorhombic transformations observed in general three-dimensional cases [6,
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7]. It was established earlier for this kind of transformations that the free energy
function φ can be constructed by taking advantage of a Landau free energy
function FL [6,7]. Here, a simple free energy function is chosen for our purpose
following the proposal in ([10,6,7,17,8] and references therein):

φ = −cvθ ln θ+
1
2
a1e

2
1+

1
2
a3e

2
3+FL, FL =

1
2
a2 (θ − θ0) e2

2−
1
4
a4e

4
2+

1
6
a6e

6
2, (4)

where cv is the specific heat constant, θ0 is the reference temperature for trans-
formation, ai, i = 1, 2, 3, 4, 6 are the material-specific coefficients, and e1, e2, e3
are dilatational, deviatoric, and shear components of strain, respectively. The
later are defined as follows:

e1 = (η11 + η22) /
√

2, e2 = (η11 − η22) /
√

2, e3 = (η12 + η21) /2. (5)

By substituting the free energy function defined by Eq.(4) into the model (1)–
(3), the following coupled system of equations are obtained. For the numerical
analysis, the displacement are replaced by the strains in the governing equations:

∂2u1

∂t2
=

√
2

2
∂

∂x
(a1e1 + a2(θ − θ0)e2 − a4e

3
2 + a6e

5
2) +

1
2

∂

∂y
(a3e3) + f1,

∂2u2

∂t2
=

1
2

∂

∂x
(a3e3) +

√
2

2
∂

∂x
(a1e1 − a2(θ − θ0)e2 + a4e

3
2 − a6e

5
2) + f2,

cv
∂θ

∂t
= k(

∂2θ

∂x2 +
∂2θ

∂y2 ) +
√

2
2

a2θe2
∂e2

∂t
+ g.

(6)

The above mathematical model is expected be able to capture the thermo-
mechanical interactions and phase transformations in the 2D SMA structures.
However, as we have mentioned before, the phase transformations are excluded
from our analysis here. We aim only at initial validation of the model with relati-
vely simple model examples. For this purpose, only a small constant mechanical
loading, which is not strong enough to induce phase transformations, is applied
to the above model. Then, we compare our results to the results obtained with
the corresponding 1D model. This 1D mathematical model is the well known
Falk model [4,14]. As we pointed out in [18], this model can be obtained directly
by a reduction of the above 2D model:

ρ
∂2u

∂t2
=

∂

∂x

(
k1 (θ − θ1)

∂u

∂x
− k2(

∂u

∂x
)3 + k3(

∂u

∂x
)5

)
+ F,

cv
∂θ

∂t
= k

∂2θ

∂x2 + k1θ
∂u

∂x

∂v

∂t
+ G,

(7)

where k1, k2, k3, cv and k are re-normalized material-specific constants, θ1 is
the reference temperature for 1D martensitic transformations, and F and G are
distributed mechanical and thermal loadings.

3 Numerical Methodology

For the convenience of numerical simulation, the 2D model is re-written in the
following form in terms of the dilatational and deviatoric strains introduced
above:
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∂e1

∂t
= (

∂v1

∂x
+

∂v2

∂y
)/

√
2,

∂e2

∂t
= (

∂v1

∂x
− ∂v2

∂y
)/

√
2,

∂v1

∂t
=

∂σ11

∂x
+

∂σ12

∂y
+ f1,

∂v2

∂t
=

∂σ12

∂x
+

∂σ22

∂y
+ f2,

cv
∂θ

∂t
= k(

∂2θ

∂x2 +
∂2θ

∂y2 ) +
√

2
2

a2θe2
∂e2

∂t
+ g,

σ11 =
√

2
2

(a1e1 + a2(θ − θ0)e2 − a4e
3
2 + a6e

5
2),

σ12 = σ21 =
1
2
(a3e3),

σ22 =
√

2
2

(a1e1 − a2(θ − θ0)e2 + a4e
3
2 − a6e

5
2).

(8)

The above formulated model should be simulated together with the compa-
tibility relations in terms of the strains [7]:

∂2e1

∂x2
1

+
∂2e1

∂x2
2

−
√

8
∂2e3

∂x1∂x2
− ∂2e2

∂x2
1

+
∂2e2

∂x2
2

= 0. (9)

The 2D model given by Eq.(8) is a differential-algebraic system, it is obtained
by keeping the constitutive relations as algebraic equations while the stress com-
ponents are kept as independent variables to be solved for. The idea of simulating
the thermo-mechanical waves by the differential-algebraic approach is stimula-
ted by the idea of [12] where the same approach was adopted for the simulation
of phase transformations in SMA. We note that to deal with a strong (cubic and
quintic) nonlinearities, a smoothing procedure similar to that proposed in [15]
has been employed. In particular, we have used the following expansions:

ε3 =
1
4

3∑
i=0

εi
nε3−i

n−1; ε5 =
1
6

5∑
i=0

εi
nε6−i

n−1, (10)

where εn is the strain on the current time layer n while εn−1 is the strain on
the previous time layer n − 1 (For 1D case, ε = ∂u/∂x, while for 2D problem,
ε = e2). We summarise this smoothing procedure as follows: Nonlinear terms
are averaged here in the Steklov sense, so that for nonlinear function f(ε) (in
particular, ε3 and ε5), averaged in the interval [εn−1, εn], we have

g(εn−1, εn) =
1

εn − εn−1

∫ εn

εn−1

f(η)dη, εn−1 = ε(tn−1), εn = ε(tn). (11)

System (8) is discretized on a staggered grid. There are totally eight variables
need to be solved for the two dimensional problems. The variables e1, e2, θ, σ11,
σ12, σ22 are discretized at the same nodes, while velocity components v1 and
v2 are computed at the flux points. For the time integration, the backward
differentiation formula methodology is applied to obtain the numerical solution
of the problem.
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Fig. 1. Thermo-mechanical waves in SMA caused by small mechanical loadings. Left
and right columns present the results obtained with the 1D and 2D models, respectively.
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Fig. 2. Thermo-mechanical waves in SMA patch caused by varying mechanical loa-
dings.

4 Numerical Results

Here, we demonstrate first the similarity of the response of 1D and 2D SMA
structures under a small constant mechanical loadings, based on the numerical
simulation. All simulations are carried out here on the same material, which is
Au23Cu30Zn47. For this specific material, all necessary physical parameters are
taken the same as in [12].

The first simulation is performed in a long thin Au23Cu30Zn47 strip of length
L = 1cm based on the 1D model given by Eq.(7). The initial conditions for
this simulation are taken as: θ0 = 250oK, ε0 = v0 = s0 = 0 where ε = ∂u/∂x,
s = k1(θ − θ1)ε − k2ε

3 + k3ε
5, v = ∂u/∂t. Boundary conditions are taken as

pinned-end mechanically and insulated thermally. The distributed mechanical
loading is assumed constant as F = 100g/(ms3cm), and there are no distributed
thermal loadings. There are 17 nodes used for ε, s and θ in the computational
domain and 16 nodes are used for v approximated at flux points. Time span of
the simulation is [0, 12] and time stepsize is set to 0.00025. Displacement, strain,
and temperature distributions in the SMA strip are presented in Fig.1, from
top to bottom on the left side. The MATLAB program for this case is already
validated in [18,12], where the phase transformations are also investigated using
the same model and algorithm.

The second simulation is performed in a Au23Cu30Zn47 patch with an area
of 1 × 0.4cm2. For this simulation, the coefficients in the 2D model are taken as
follows: a2 = k1, a3 = k2, a4 = k3, a1 = k1, a3 = 2k1, and all other coefficients
are taken the same value as those in the 1D case. The initial temperature is also
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250o while all other variables are initially zero. Boundary conditions are taken
as follows:

∂θ

∂x
= 0,

∂u2

∂x
= 0, u1 = 0, on left and right boundaries,

∂θ

∂y
= 0,

∂u1

∂y
= 0, u2 = 0, on top and bottom boundaries.

(12)

Because the displacement components are already replaced by the strains in
Eq.(8), the above boundary conditions are enforced in terms of velocities when
the mechanical boundary conditions are concerned.

There are 17 nodes used in the x-direction and 7 in the y-direction in the
computational domain. As before, v1 and v2 are computed at the flux points. The
same time span and stepsize are used as those in the 1D case. The distributed
mechanical loading is enforced only in the x-direction as: f1 = 100g/(ms3cm).
Displacement, and strain, and temperature distributions on the line y = 0.2cm
(the central horizontal line) in the SMA patch are presented in Fig.1, from top to
bottom on the right side. It is shown clearly from the comparison of strain and
temperature evolutions that, when the oscillations in the other direction can be
neglected, the 2D SMA structure respond to the mechanical loadings in the same
way as its 1D analog. It is also seen from the computation that the oscillations
in 1D case are dissipated much faster than those in the 2D case. This implies
that there might be a numerical instability problem in 2D simulations when the
phase transformations take place due to the slow dissipation of oscillations. This
comparison can be used as an initial validation of the 2D model.

The third numerical experiment is to investigate the dynamical thermo-
mechanical response of the SMA patch under varying distributed mechanical
loadings, but still small enough not to induce phase transformations. The SMA
patch is now covers an area of 1×1cm2, and there are 12 nodes in each direction.
The loadings employed for this simulation are: f1 = 200 sin(20πt/40)g/(ms3cm)
in the x-direction, and f2 = f1 in the y-direction. The time span for this simu-
lation is [0, 40] (one period of loading) and the time stepsize is set at 4 × 10−5.
All other simulation conditions and parameters are the same as those in the se-
cond case. The deviatoric strain and temperature distributions are presented in
Fig.2. The simulation shows clearly that both temperature and strain field are
driven periodically by the distributed mechanical loading because of the thermo-
mechanical coupling. Under such a small loading, the SMA patch behaves just
like a classical thermoelastic material.

Based on these three numerical experiments, we conclude that the formulated
2D model is able to capture the thermo-mechanical coupling in SMA. It gives
the same prediction about the dynamical behavior of the SMA structure as that
of the 1D model, when oscillations in one of the directions are negligible.
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