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Abstract. New efficient numerical methods for hyperbolic and parabo-
lic partial differential equations with delay terms are investigated. These
equations model a development of cancer cells in human bodies. Our
goal is to study numerical methods which can be applied in a parallel
computing environment. We apply our new numerical method to the
delay partial differential equations and analyse the error of the method.
Numerical experiments confirm our theoretical results.
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1 Introduction

1.1 Delay Partial Differential Problems

In this paper investigate numerical solutions to the linear initial boundary value
problem with a delay term

∂

∂t
u(x, t)=ε

∂2

∂x2 u(x, t)+c
∂

∂x
u(x, t)−νu(x, t − τ0)+g(x, t), 0<t≤T,

(1.1)
u(x, t)=f0(x, t), −τ0 ≤ t ≤ 0, −L ≤ x ≤ L.

Here, ε > 0, c ∈ R, τ0 ≥ 0, L > 0 and T > 0 are given constants. The choice of
ε = 0 gives the hyperbolic equation, c = 0 gives the parabolic equation and the
choice of ε �= 0 and c �= 0 gives the parabolic advection-diffusion equation.

Different types of boundary conditions are required for the two cases ε �= 0
and ε = 0. For the parabolic case (ε �= 0) there are two boundary conditions

u(±L, T ) = f±(t),

while for the hyperbolic case (ε = 0, c �= 0) there is one boundary condition,
either

u(L, t) = f+(t) (if c > 0) or u(−L, t) = f−(t) (if c < 0).

Here, f0, f± and g are given continuous functions.
Delay problems like (1.1) are used to model cancer cells in human tumors,

see [1]. For other applications in population dynamics see [4].
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1.2 Purpose of the Paper

We study the Chebyshev pseudospectral (ChPS) spatial discretization of (1.1)
(see e.g. [3], [5]) with the Kosloff and Tal-Ezer (KTE) transformation [6], together
with Jacobi waveform relaxation methods for time integration (see e.g. [2], [8]).
The ChPS method is known from its high accuracy. Another advantage of ChPS
is that convergence of waveform relaxation (WR) is faster when it is applied to
ChPS semi-discrete systems than it is applied to finite difference semi-discrete
systems, see [8]. The advantage of WR methods is that they are efficient in
parallel computing environments and for linear equations like (1.1) they allow
direct application of implicit methods for integration in time (they allow the use
of much larger stepsizes for time integration which fulfill stability restrictions,
as compared with the explicit methods).

The goal of this paper is to show that since the KTE transformation makes
most of the entries of the differentiation matrices significantly smaller, the con-
vergence of WR is faster with the KTE transformation than without. Morever,
for every type of equation the rate of WR convergence increases with increasing
parameter α ∈ [0, 1]. We show this by using error bounds and actual errors which
occur in the process of computations. Using extensive numerical data we also
compare WR errors with their error bounds. Our results confirm the conclusions
derived in [7].

2 Numerical Solution to Delay Problem (1.1)

We apply the process of pseudospectral spatial discretization ([3], [5]) with KTE
transformation ([6]) and replace (1.1) by the following numerical scheme

d

dt
U(t)=QαU(t)−νU(t − τ0)+fα(t), 0 < t ≤ T,

(2.2)
U(t)=f̃α

0 (t), −τ0 ≤ t ≤ 0.

Here, Qα is a matrix which depends on the parameter α∈ [0, 1] of the KTE
transformation and the constants ε and c (see [3], [5] and [6]). The components
of the vector function U(t) provide us with approximations to the values u(x, t)
of the exact solution to problem (1.1), that is,

Ui(t) ≈ u(xα
i , t),

where xα
i , i=0, . . . , N , are the transformed Chebyshev grids (see [6]). Further,

the vector function fα(t) is related to g(x, t) and f±(t); the vector function f̃α
0 (t)

is related to the initial function f0(x, t).
We simplify the system (2.2) by splitting the matrix Qα into two matrices:

Ãα = diag(Qα), B̃α = Qα − diag(Qα).
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Fig. 1. Error bounds (2.5) as functions of the iteration index k and as functions of the
parameter α.

Then the solution U(t) to (2.2) can be approximated by successive iterates Uk(t)
computed according to the following Jacobi WR scheme

d

dt
Uk+1(t)=ÃαUk+1(t)+B̃αUk(t)−νUk(t − τ0)+f(t), 0 < t ≤ T,

(2.3)
Uk+1(t)=f̃α

0 (t), −τ0 ≤ t ≤ 0,

(see [2], [8] and [7]). Here, k=0, 1, . . . is an iteration index and U0 is an arbitrary
starting function. Since the matrix A

(l)
α is diagonal, each equation of the system

(2.3) can be solved independently by a different processor.
To study convergence of the waveform relaxation process (2.3) we consider

the error defined by
ek
α(t) = Uk(t) − U(t). (2.4)

To investigate an error estimation for (2.4) we denote by ‖ ·‖ an arbitrary vector
norm or the induced matrix norm. It is shown in [8] that error estimations for
(2.4) are more delicate if the following logarithmic norm
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µ(M) = lim
δ→0+

‖I + δM‖ − 1
δ

,

defined for an arbitrary matrix M , is used. Here, I is an identity matrix.
An error estimation for nonlinear delay differential equations (more general

than the linear equation in (1.1)) is derived in [7, Theorem 4.3]. The estimation
presented in [7, Theorem 4.3] is derived under the assumption that the right-
hand sides of the nonlinear delay differential equations are Lipschitz continuous
with respect to the delay terms. Since the delay equation (1.1) is linear, the
coefficient ν is the Lipschtiz constant, which we use to apply [7, Theorem 4.3].
This leads to the following error estimation

‖ek+1
α (t)‖≤ (‖B̃α‖+ν)k+1

k!

∫ t

0
skexp

(
sµ(Ãα)

)
ds max

0≤τ≤t
‖e0

α(τ)‖, (2.5)

for k=0, 1, . . ., t∈ [0, T ].
The estimation (2.5) has an advantage over the traditional estimation which,

when applied to (1.1), after some computations (different than these included in
the proof of [7, Theorem 4.3]) gives

‖ek+1
α (t)‖≤

(
t(‖B̃α‖+ν)

)k+1

(k + 1)!
exp

(
t‖Ãα‖

)
max
0≤τ≤t

‖e0
α(τ)‖. (2.6)

It is easily seen that estimation (2.5) is sharper than estimation (2.6). We use
the sharper estimation (2.5) and confirm the conclusion derived in [7] that the
error bound (2.5) decreases for increasing α.

Figure 1 presents the error bounds (2.5) with N = 32 as functions of k for
α=0, 0.9, 1 and as functions of α∈ [0, 1] for k =100, 120, 140. The error bounds
are plotted for problems posed for x∈ [−10, 10] and t∈ [0, 1].

The error bounds are shown for delay partial differential equations (DPDEs)
and for partial differential equations (PDEs) without delay terms. They are
plotted for the hyperbolic PDE with ε=0, c=1, ν =0 and the parabolic DPDE
with ε = 1, c = 0, ν = 5. The pictures for the mixed problems with ε = 1, c = 1
are similar to the pictures for the parabolic DPDE. We refer the reader to [7]
for the pictures with parabolic PDEs, hyperbolic DPDEs and mixed PDEs and
DPDEs.

We see significant improvement in convergence of WR when α = 0.9 and
α = 1. In the next section we present the errors ‖ek

α(t)‖ by means of extensive
numerical data. It is shown in Section 3 that the errors ‖ek

α(t)‖ behave like their
error bounds (i.e. they decrease as α increases).

3 Numerical Experiments

In this section we present results of numerical experiments for the test problem
(1.1). We choose L = 10 and T = 1 and consider six problems: the advective-
diffusive problem with ε = c = 1, the diffusive problem with ε = 1, c = 0 and
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Fig. 2. Errors (3.7) with N = 32 as functions of k and as functions of α.
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Fig. 3. Errors (3.7) for N = 40, 32, 24 as functions of k with α = 0 (left pictures) and
α=1 (right pictures).

the hyperbolic problem with ε = 0, c = 1; each problem with ν = 0 and τ0 = 0
for non-delay case and with ν =5 and τ0 =0.1 for delay case.
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To integrate the systems (2.3) in time we use the BDF3 method with the time
step ∆t = 10−2. Integration of the systems (2.3) results in the approximations
Uk

i,n ≈ Uk
i (n∆t), n = 1, 2, . . .. We study the errors

max
i=0,...,N

|Uk
i,n − u(yα

i , n∆t)| (3.7)

measured at n∆t = T = 1 which can be compared with the upper bounds (2.5)
plotted in Figures 1.

To compare the errors (3.7) with the error bounds from Figure 1 we present
the errors (3.7) with N = 32 in Figure 2. They are presented as functions of the
iteration index k for α = 0, α = 0.9, α = 1 and as functions of the parameter α
for fixed values of k. The fixed values of k are chosen to be the values where the
error curves as functions of k become horizontal.

Figure 2 shows that for a fixed k the error (3.7) decreases as α increases with
the smallest value at α = 1. Figure 3 presents the errors (3.7) as functions of k
for fixed values of α and for different values of N . The errors (3.7) are presented
for the extreme values of parameter choices α = 0 and α = 1. Pictures for delay
case are presented in [7].

4 Concluding Remarks

We applied the ChPS spatial discretization with the KTE transformation to
delay and non-delay partial differential equations. Jacobi WR was then applied
to the resulting semi-discrete systems. Our method is new for both kinds of
equations. We conclude that the method works equally well for delay and non-
delay equations.

Since Jacobi WR was used, our method can be efficiently used in parallel
computing environments. We studied the relation between the WR convergence
and the parameter α used for the spatial discretization. Using error bounds we
conclude that WR converges more quickly as α increases from 0 to 1. This conclu-
sion is confirmed by numerical experiments with delay and nondelay equations.

Since our method is successful for the test problem (1.1), our future work
will address the numerical solution of the delay differential problem from [1].
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