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Abstract. We consider a general family of two step nonlinear methods
for the numerical integration of Ordinary Differential Equations of type
y′′ = f(x, y). By applying a collocation technique, linear systems with a
Vandermonde–type matrix arise during the construction of the methods.
The computation of its determinant reduces to the computation of a
recurrence formula depending on the collocation abscissas.

1 Introduction

We are concerned with the derivation of a general family of two–step colloca-
tion methods for the numerical integration of second order Ordinary Differential
Equations (ODEs), in which the first derivative does not appear explicitly,

y′′(t) = f(t, y(t)), y(t0) = y0, y′(t0) = y′
0, y(t), f(t, y) ∈ Rs. (1)

The idea behind polynomial collocation is well known and old [1,3]. After
fixing a set of collocation abscissas, the numerical solutions is given by a po-
lynomial which satisfies the differential equation at the given set of collocation
points, and which reproduces the values already obtained in the previous step
point. One–step collocation methods for ODEs (1) form a subset of implicit
Runge–Kutta (RK) methods [3] and have been exstensively studied. Multistep
collocation methods were first investigated by Guillon and Soulé [2]. Then Lie
and Norsett [5] considered multistep RK of Gauss type, and Hairer and Wanner
[4] those of Radau type. The parameters of the k–step s–stage multistep RK
method of Radau type are listed in [6].

We extend the procedure indicated in [4], to obtain a general family of two
step collocation methods for (1) within the family of two step Runge–Kutta–
Nyström (TSRKN) methods, introduced in [8,9], providing numerical approxi-
metions not only for the solution, but also to its first derivative at the step
point.
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2 Construction of the Method

The following definition generalizes the Definition 3.2 of [4], to obtain a general
family of two step collocation methods for the ODEs (1):

Definition 1. Let m real numbers c1, . . . , cm ∈ [0, 1], the solution values
yn, yn−1 and the derivative values y′

n, y
′
n−1. The collocation polynomial P (x)

of degree 2m+ 3 is then defined by:

P (xn−1) = yn−1, P (xn) = yn, P ′(xn−1) = y′
n−1, P ′(xn) = y′

n, (2)

P ′′(xn−1 + cih) = f(xn−1 + cih, P (xn−1 + cih)), (3)

P ′′(xn + cih) = f(xn + cih, P (xn + cih)). (4)

Then the numerical solution of (1) is given by

yn+1 = P (xn+1), y′
n+1 = P ′(xn+1) (5)

(2)–(4) constitute a Hermite interpolation problem with incomplete data,
because the function values at xn + cih are missing. Following [4,6], to compute
the collocation polynomial P (x) for k = 2, we introduce the dimensionless coor-
dinate t = (x− xn)/h, x = xn + th, with nodes t1 = −1, t2 = 0, and define the
following polynomials, which constitute a generalized Lagrange basis:

– φi(t), i = 1, 2, of degree 2m+ 3, defined by

φi(tj) = δij , φ′
i(tj) = 0, i, j = 1, 2, (6)

φ′′
i (cj − 1) = 0, φ′′

i (cj) = 0, i = 1, 2, j = 1, . . . ,m. (7)

– ψi(t), i = 1, 2, of degree 2m+ 3, defined by

ψi(tj) = 0, ψ′(tj) = δij , i, j = 1, 2, (8)

ψ′′
i (cj − 1) = 0, ψ′′

i (cj) = 0, i = 1, 2, j = 1, . . . ,m. (9)

– χi,n−1(t) and χi,n(t), i = 1, . . . ,m , of degree 2m+ 3, defined by

χi,n−1(tj) = 0, χi,n(tj) = 0, i = 1, . . . ,m, j = 1, 2, (10)

χ′
i,n−1(tj) = 0, χ′

i,n(tj) = 0, i = 1, . . . ,m, j = 1, 2, (11)

χ′′
i,n−1(cj − 1) = δij , χ′′

i,n−1(cj) = 0, i, j = 1, . . . ,m, (12)

χ′′
i,n(cj − 1) = 0, χ′′

i,n(cj) = δij , i, j = 1, . . . ,m. (13)
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δij denotes the Kronecker tensor. Then the expression of the collocation poly-
nomial P (x) in terms of these polynomials is given by:

P (xn + th) = φ1(t) yn−1 + φ2(t) yn + h( ψ1(t) y′
n−1 + ψ2(t) y′

n) +

h2
m∑

j=1

(χj,n−1(t) P ′′(xn−1 + cjh) + χj,n(t) P ′′(xn + cjh)).

After constructing φi(t), ψi(t), χi,n−1(t) and χi,n(t), by putting t = ci,
writing P (xn + cih) = Y i

n and inserting the collocation conditions (2)–(4) for
k = 2, we obtain the expression of the TSRKN collocation method, as the
following theorem states:

Theorem 1. The collocation method defined by (2)–(3)–(4) is equivalent to the
TSRKN method:

Y j
n = uj,1yn−1 + uj,2yn + h(uj,1y

′
n−1 + uj,2y

′
n) +

h2
m∑

s=1

(ajsf(xn−1 + csh, Y
s
n−1) + bjsf(xn + csh, Y

j
n )),

yn+1 = θ1yn−1 + θ2yn + h(η1y′
n−1 + η2y

′
n) +

h2
m∑

j=1

(vjf(xn−1 + cjh, Y
j
n−1) + wjf(xn + cjh, Y

j
n )),

hy′
n+1 = θ′

1yn−1 + θ′
2yn + h(η′

1y
′
n−1 + η′

2y
′
n) +

h2
m∑

j=1

(v′
jf(xn−1 + cjh, Y

j
n−1) + w′

jf(xn + cjh, Y
j
n )),

where
θi = φi(1), uj,i = φi(cj), i = 1, 2, j = 1, . . . ,m (14)

ηi = ψi(1), uj,i = ψi(cj), i = 1, 2, j = 1, . . . ,m (15)

vj = χj,n−1(1), ajs = χj,n−1(cs), j, s,= 1, . . . ,m, (16)

wj = χj,n(1), bjs = χj,n(cs), j, s,= 1, . . . ,m (17)

θ′
i = φ′

i(1), η′
i = ψ′

i(1), i = 1, 2, (18)
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v′
j = χ′

j,n−1(1), w′
j = χ′

j,n(1), j,= 1, . . . ,m (19)

and φi(t), ψi(t), χi,n−1(t) and χi,n(t) are the polynomials defined by the condi-
tions (6)–(13).

Let us note that the order of approximation of P (xn + cih), that is the so
called stage order of the TSRKN method, is 2m+ 3.

Let us now show how to construct the polynomials φi(t), ψi(t), χi,n−1(t) and
χi,n(t). We will follow the procedure indicate in [6]. We expand the polynomials:

φi(t) =
∑2m+3

k=0 d
(i)
k tk, ψi(t) =

∑2m+3
k=0 e

(i)
k tk, i = 1, 2,

χi,n−1(t) =
∑2m+3

k=0 p
(i)
k tk, χi,n(t) =

∑2m+3
k=0 q

(i)
k tk, i = 1, . . .m.

The following linear systems arise: Hd(i) = N
(i)
0 , He(i) = N

(i)
1 , Hp(i) = N

(i)
2,n−1

and Hq(i) = N
(i)
2,n, of order 2m+ 4 with

H =





1 t1 t21 t31 . . . t2m+3
1

1 t2 t22 t32 . . . t2m+3
2

0 1 2t1 3t21 . . . (2m+ 3)t2m+2
1

0 1 2t2 3t22 . . . (2m+ 3)t2m+2
2

0 0 2 2 · 3(c1 − 1) . . . (2m+ 2)(2m+ 3)(c1 − 1)2m+1

...
...

...
...

0 0 2 2 · 3(cm − 1) . . . (2m+ 2)(2m+ 3)(cm − 1)2m+1

0 0 2 2 · 3c1 . . . (2m+ 2)(2m+ 3)c2m+1
1

...
...

...
...

0 0 2 2 · 3cm . . . (2m+ 2)(2m+ 3)c2m+1
m





(20)

d(i) =





d
(i)
0

d
(i)
1

d
(i)
2

d
(i)
3

d
(i)
4
...
...

d
(i)
2m+3





, e(i) =





e
(i)
0

e
(i)
1

e
(i)
2

e
(i)
3

e
(i)
4
...
...

e
(i)
2m+3





, p(i) =





p
(i)
0

p
(i)
1

p
(i)
2

p
(i)
3

p
(i)
4
...
...

p
(i)
2m+3





, q(i) =





q
(i)
0

q
(i)
1

q
(i)
2

q
(i)
3

q
(i)
4
...
...

q
(i)
2m+3





,
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N
(i)
0 =





δi1
δi2
0
0
0
...
0
0
...
0





N
(i)
1 =





0
0
δi1
δi2
0
...
0
0
...
0





N
(i)
2,n−1 =





0
0
0
0
δi1
...
δim
0
...
0





N
(i)
2,n =





0
0
0
0
0
...
0
δi1
...
δim





.

To compute the coefficients of the collocation method defined in Theorem 1,
we must now evaluate the polynomials φi(t), ψi(t), χi,n−1(t) and χi,n(t) accor-
ding to (14)–(19). When H is not singular, the computation yields

φi(t) = [1 t . . . t2m+3]H−1N
(i)
0 , i = 1, 2

θi = φi(1) = [1 . . . 1]H−1N
(i)
0 ,

uji = φi(cj) = [1 cj . . . c2m+3
j ]H−1N

(i)
0 , i = 1, 2, j = 1, . . . ,m

ψi(t) = [1 t . . . t2m+3]H−1N
(i)
1 , i = 1, 2

ηi = ψi(1) = [1 . . . 1]H−1N
(i)
1 ,

uji = ψi(cj) = [1 cj . . . c2m+3
j ]H−1N

(i)
1 , i = 1, 2, j = 1, . . . ,m

χi,n−1(t) = [1 t . . . t2m+3]H−1N
(i)
2,n−1, i = 1, . . . ,m

vi = χi,n−1(1) = [1 . . . 1]H−1N
(i)
2,n−1, i = 1, . . . ,m

ais = χi,n−1(cs) = [1 cs . . . c2m+3
s ]H−1N

(i)
2,n−1, i, s = 1, . . . ,m

χi,n(t) = [1 t . . . t2m+3]H−1N
(i)
2,n, i = 1, . . . ,m

vi = χi,n(1) = [1 . . . 1]H−1N
(i)
2,n, i = 1, . . . ,m

bis = χi,n(cs) = [1 cs . . . c2m+3
s ]H−1N

(i)
2,n, i, s = 1, . . . ,m.

For m ≥ 2, from the initial and collocation conditions (2)–(4), a linear system
of 2m + 4 equations in 2m + 4 unknowns arises, having H in (20) as matrix of
coefficients, where t1 = −1 and t2 = 0.

The computation of the determinant of H allows us to determine the excep-
tional values of the collocation abscissas ci for which the two step collocation
method cannot be constructed.

3 Computation of the Determinant of H

The determinant of H is computed through the tecnique which is usually applied
to the Vandermonde matrices; in this way the computation of the determinant
of H reduces to the computation of a 2 × 2 matrix, whose elements are defined
through a recurrence formula, as described in the following.

Let us reduce the determinant of H to the determinant of the (2m + 2) ×
(2m+ 2) matrix H ′, that is det(H) = −det(H ′), where
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H ′ =





1 −1 . . . (−1)2m+3

−2 3 . . . (2m+ 3)(−1)2m+2

2 2 · 3(c1 − 1) . . . (2m+ 2)(2m+ 3)(c1 − 1)2m+1

...
...

...
...

2 2 · 3(cm − 1) . . . (2m+ 2)(2m+ 3)(cm − 1)2m+1

2 2 · 3c1 . . . (2m+ 2)(2m+ 3)c2m+1
1

...
...

...
...

2 2 · 3cm . . . (2m+ 2)(2m+ 3)c2m+1
m





Then det(H) = −(2m+ 2)! (2m+ 3)! detH ′′,

H ′′ =





1
2 (−1) 1

2·3 . . . 1
(2m+2)(2m+3) (−1)2m+1

−1 1
2 . . . −1

2m+3 (−1)2m+1

1 (c1 − 1) . . . (c1 − 1)2m+1

...
...

...
...

1 (cm − 1) . . . (cm − 1)2m+1

1 c1 . . . c2m+1
1

...
...

...
...

1 cm . . . c2m+1
m





.

By setting

x1 = c1 − 1, . . . , xm = cm − 1, xm+1 = c1, . . . , x2m = cm,

r(0)(n) =
1

n(n+ 1)
(−1)n+1, q(0)(n) =

−1
n

(−1)n+1,

the matrix H ′′ can be written as

H ′′ =





r(0)(1) r(0)(2) . . . r(0)(n)
q(0)(1) q(0)(2) . . . q(0)(n)

1 x1 . . . x2m+1
1

...
...

...
...

1 xm . . . x2m+1
m

1 xm+1 . . . x2m+1
m+1

...
...

...
...

1 x2m . . . x2m+1
2m





.

Then H ′′ is a Vandermonde matrix except the firt two rows. Its determinant
is now computed by using the tecnique which is usually applied to the Vander-
monde determinant. In details, we multiply each column by x1 and subtract it
from the following column, starting from the penultimate column. At the end a
block matrix is obtained:
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H ′′ =
2m∏

i<j,i=1

(xi − xj)
(
A B
V 0

)

where A is a 2×m matrix, 0 is the zero matrix of dimension 2m×2, V is a lower
triangular matrix with 1 on the diagonal, and B is a 2×2 matrix containing the
elements of H ′′ in the upper right corner, which result after the transformations
performed on H ′′ to compute its determinant. In particular B takes the following
form:

B =
(
r(2m)(2m+ 1) r(2m)(2m+ 2)
q(2m)(2m+ 1) q(2m)(2m+ 2)

)
, (21)

where the r and q elements in B are derived through the following recurrence
formulas, which keep track of the trasformation on H ′′:

r(0)(n) =
1

n(n+ 1)
(−1)n+1, r(i)(n) = r(i−1)(n) − r(i−1)(n− 1)xi,

q(0)(n) =
−1
n

(−1)n+1, q(i)(n) = q(i−1)(n) − q(i−1)(n− 1)xi,

i = 1, . . . , 2m, n = 1, . . . , 2m.
By considering the elementary symmetric polynomials in x1, . . . , x2m,

p1 =
∑

xi, p2 =
∑

i<j

xixj , ps =
∑

i1<i2<is

xi1xi2 . . . xis ,

it is possible to prove by induction that

r(j)(n+ 1) =
j∑

k=0

(−1)kr(0)(n− k) pk, q(j)(n+ 1) =
j∑

k=0

(−1)kq(0)(n− k) pk.

In conclusion

det(H) = − (2m+ 2)! (2m+ 3)!
2m∏

i<j,i=1

(xj − xi) det(B)

where

det(B) = r(2m)(2m+ 1) q(2m)(2m+ 2) − q(2m)(2m+ 1) r(2m)(2m+ 2)

In this way also the computation of the exceptional values of the collocation
abscissas for the method defined in theorem 1 reduces to the computation of the
c–values which annihilate the 2 × 2 determinant of B in (21).
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For instance, the computation of det(H) for m = 1 allows us to state that

the collocation–based TSRKN is defined only if c �= ±

√√√√ 3
10

±
√

11
6

5
.

The resulting expressions for a higher number of stages can be easily derived
through the illustrated technique and the usage of symbolic computation.

4 Concluding Remark

In this paper the coefficients of the new two step collocation methods for ODEs
(1) are defined through the computation of the inverse of matrixH in (20), which
is of Vandermonde type. Different approaches for the derivation of collocation–
based TSRKN methods are under consideration, following [4,5,7], that avoid the
numerical treatment of Vandermonde–type matrices, involving on the contrary
the integrals of polynomials in the generalized Lagrange basis. The analysis of the
properties of the TSRKN methods, such as the obtainable order of convergence,
stability properties, efficiency and so on, will be subject of a forthcoming paper.
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