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56070 KOBLENZ – Germany, {hong,paulus}@uni-koblenz.de

2 Institute of Automatic Control, Silesian University of Technology, Akademicka 16,
44-100 GLIWICE – Poland, hpalus@polsl.gliwice.pl

Abstract. In this contribution we present experiments on color image
enhancement for several different non-linear filters which originally were
defined for gray-level images. We disturb sample images by different
types of noise and measure performance of the filters. We provide
signal-to-noise measurements as well as perceived color difference in ∆E
as defined by the CIE. All images and test programs are provided online
on the internet so that experiments can be validated by arbitrary users
on any image data.
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1 Introduction

Color images as processed in various applications are recorded by different ac-
quisition devices. Cameras as well as scanners have their specific noise charac-
teristics. Image transmission may as well introduce noise into the image data.
Typical models for noise are either Gaussian or salt-and-pepper noise; Gaussian
noise is used as a model for sensor errors, drop-outs during transmission and
errors on the CCD chip can be modelled by salt-and-pepper noise.

In our contribution we use images from a data base [3] and disturb them by ar-
tificial noise of varying degree and type. In Sect. 2.1 we describe some non-linear
smoothing filters, such as edge preserving smoothing algorithm [8], and extend
them to color images where they were defined for gray-level images originally.
We apply these filters to the disturbed input images and compare each result
with its corresponding original image to compute difference measures. Standard
measures are the signal-to-noise ratio (SNR) and maximum differences for color
vectors. As all disturbances are modelled in RGB, we compute these measures in
RGB as well. More important for human perception than SNR is the so-called
∆E difference [12] which describes the perceived color difference (Sect. 3). In
Sect. 4 we conclude our contribution with a summary of the evaluation and the
prospective work.
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2 Color Image Processing

Color image processing has become a central part of automatic image analysis
as color can provide valuable cues for identification and localization of objects
[11].

2.1 Color Filters

In research and literature there exist several filters that can be classified into
linear and non-linear filters. Filters can either operate in the spatial or in the
frequency domain [5]. In the following we compare non-linear filters in the spatial
domain and additionally use an AMF (arithmetic mean filter).

Linear Filters. A huge number of filters for single band images has been pro-
posed in the long history of image processing. As color images became affordable
with respect to sensors, memory and processor speed, some of these filters have
been extended to color.

If a linear filter, such as a Gaussian or mean filter, is applied to each channel of
an RGB image separately, the resulting image will contain usually color triplets
which are not present in the input image. Such artifacts yield perceptional differ-
ences which can be avoided by non-linear filtering. On the other hand, additive
noise, such as additive Gaussian noise, can be removed by a low-pass filter which
averages color vectors.

Non-linear Filters. Filters which are quoted to smooth homogeneous areas
while preserving edges are the

– EPS (Edge preserving smoothing), presented for gray-level images in [8],
– SNN (Symmetric Nearest Neighbour Filter) described in [9,6],
– K-N (Kuwahara-Nagao Filter) proposed in [7,8] for gray-level images,
– VMF (Vector Median Filter, also known as CVF (Color Vector Median)),

presented in [10,1].

EPS Filter. In the so-called edge preserving smoothing algorithm introduced in
[8], the selection of gray-level pixels for averaging is done based on statistical
principles. The algorithm uses nine different 5 × 5 masks for each pixel; three of
them are shown in Fig. 1. The pixels marked in the neighborhood are used for
the following computations. The symmetrical use of 1 (a) and (b) results in eight
different masks. Each of these masks includes seven points for the calculation of
the new gray-level. The contrast mask (c) includes nine elements for the following
computations. For each mask we compute the variance. The mask with the lowest
variance is selected. The central pixel gets the mean value of all points marked
in this mask.

To extend this algorithm to color, we compute the color covariance matrix
inside each mask. We decide for that mask for which the Frobenius norm of
the covariance matrix is minimal and compute the mean color vector for the
resulting pixel. This may, of course, introduce artifacts.
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Fig. 1. Masks for edge preserving smoothing

SNN Filter. The SNN is a filter related to the mean and median filters but
with better edge-preserving properties. The neighbours of the central pixel in a
window are considered as four pairs of symmetric pixels (N-S, W-E, NW-SE and
NE-SW). For each pair the pixel closest in color to the central pixel is selected.
The colors of these four selected pixels are averaged and the mean color value is
a new color for central pixel. The mask for the SNN filter is shown in Fig. 2.
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Fig. 2. Mask for SNN filter
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Fig. 3. Mask for Kuwahara-Nagao fil-
ter

K-N Filter. The 3 × 3 mask shown in Fig. 3 is split into four 2 × 2 slightly
overlapping windows with the mask’s central pixel as a common part. For each
window in a gray-level image, the variance is calculated. The mean value of the
window with minimal variance (maximal homogeneous region) is used as the
output value of the central pixel.

As in the case of the edge-preserving smoothing, we extend this filter to color
as we compute the color covariance matrix and use the Frobenius norm.

Recently the gray-level version of K-N filter has been generalized for round
windows [2] and it has been shown that the filter is composition of linear diffusion
and morphological sharpening [14].

Vector Median Filter. The definition of the vector median of a set of color vectors
fi in a window W is given in [10] as

fv = argminfi∈W
∑

fj∈W
||fi − fj || . (1)



Edge Preserving Filters on Color Images 37

In our experiments we use f1, . . . ,f9 in a square 3 × 3 window and apply the
Euclidean norm on the difference color vector in (1). As this filter does not
include averaging, it is the only filter described here which does not introduce
color artifacts.

3 Experiments

Signal-to-noise ratio A measure for the accuracy of a filter is given by the signal-
to-noise ratio (SNR). For color images pairs we define the SNR by a quotient of
means:

SNR = 10 log10
E[fi

Tfi]
E[ni

Tni]
, (2)

where fi is the color vector and ni is the noise vector computed by the vector
difference of the two pixels.

Color Metric To measure perceptual color distances between two color stimuli
several metrics such in color spaces such as CIELUV, CIELAB, CIE94, etc. can
be used [13,15]. In this paper we will prefer the CIE-recommended color metric
CIE94 (see equation (6) below). That is a modification of the CIELAB color
difference formula (3):

∆E∗
ab =

√
(∆L∗

ab)2 + (∆a∗
ab)2 + (∆b∗

ab)2 . (3)

A value of ∆E∗
ab = 1 resp. ∆E∗

CH = 1 corresponds to the human’s eye minimal
perceivable difference between two colors. The greater the color difference be-
tween two stimuli is, the greater is its ∆E∗ value [4]. The CIELAB color metric
from the CIE (International Commission on Illumination) describes the color
difference between two color points in the uniform L∗a∗b∗ space. The axes of
this color space compound of the lightness-axis L∗, the red-green-axis a∗ and
the yellow-blue-axis b∗ [13]. In this color space the Euclidean distance between
two points corresponds to perceived difference[16]. The symbols ∆L∗

ab, ∆a∗
ab and

∆b∗
ab represent the componentwise differences (lightness, the red-green and the

yellow-blue) between the two colors.
The color difference (3): has several drawbacks in practice [16]. So the CIE

introduced an improved color metric called CIE94 which computes the weighted
Euclidian distance between two points in the uniform L∗C∗H∗ space. This color
space uses the polar coordinates chroma C∗ and hue H∗ rather than the cartesian
coordinates a∗ and b∗ of the L∗a∗b∗ space. In comparison to the L∗a∗b∗ space
the L∗C∗H∗ space is a more intuitive representation of color, because for example
hue can be uniquely computed [16]. Chroma can be computed by

C∗
ab =

√
(a∗)2 + (b∗)2 , (4)

and hue can be caculated from

H∗
ab = arctan

b∗

a∗ . (5)
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CIE94 computes the color difference between two colors in the L∗C∗H∗ space
by

∆E∗
CH =

√(
∆L∗

ab

kLSL

)2

+
(

∆C∗
ab

kCSC

)2

+
(

∆H∗
ab

kHSH

)2

. (6)

The symbols ∆L∗
ab, ∆C∗

ab and ∆H∗
ab represent the differences between the two

given colors corresponding to those lightness, chroma and hue attributes. SL, SC

and SH represent parameters calculated from the chroma coordinates of the two
color stimuli. kL, kS and kH are parameters those take specific experimental
conditions into account[16]

We use the following parameter configuration [16]:

kL = kS = kH = SL = 1 (7)
SC = 1 + 0.045µC∗

ab (8)
SH = 1 + 0.015µC∗

ab (9)

The values SC and SH are computed from the mean chroma value µC∗
ab of

the two given color stimuli.

Noise model An ideal color image f consisting of color vectors fi is disturbed
by additive noise βi and multiplicative noise γi

gi = γi · fi + βi (10)

to yield the observed image g. We added zero-mean Gaussian noise β with vary-
ing σ to images in a test data base where the noise was statistically independent
for the color channels. In another experiment we introduced impulsive noise
which can be considered as a multiplicative noise γ with γi = 0 for drop-outs,
γi = 1 for undisturbed image information, and γi = 255 to introduce white
spots; with a given probability p white and black spots are created, each with
probability 0.5. All test images can be found in a public image data base.1 For
each corrupted image we applied the filters described in Sect. 2.1. An example
is shown in Fig. 4.

We then compared original and filtered image and computed SNR and mean
∆E∗

CH . Of course, if little noise is added to the image, the values for filtered
images are worse than for the unfiltered noisy image, as can be seen from Fig. 5
and Fig. 6. The higher the corruption is, the higher the improvement can be by
filtering.

4 Conclusion. Prospective Work

The vector median filter outperforms the other filter methods for impulsive noise,
if we use ∆E∗

CH as a measure. This is as expected, as a measure for perceived
color differences should be sensitive to color artifacts. The vector median filter
1 http://www.uni-koblenz.de/˜puma

http://www.uni-koblenz.de/~puma
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Fig. 4. Example image “peppers” (left), corrupted image (center), filtered image
(right)

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2  0.25  0.3

un-filtered image
EPS
K-N

VMF
SNN
AMF

p

∆
E

∗ C
H

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2  0.25  0.3

un-filtered image
EPS
K-N

VMF
SNN
AMF

p

SN
R

Fig. 5. Example image “peppers” corrupted by impulsive noise

also outperforms the other filters in the case of the SNR-measure, if the SNR of
the input image is low.

Naturally, linear filtering reduces Gaussian noise better than rank-order fil-
ters. The Arithmetic Mean filter returns the best ∆E∗

CH for Gaussian noise. In
general, the Vector Median filter outperforms the other filters for both distance
measures.

Both measures SNR and ∆E∗
CH are consistent for extreme cases, i.e. very

little or very large noise as they mostly have the same ordering for a qualitative
judgement of the filters. Details in the medium range noise reveal differences of

Fig. 6. Example image “peppers” corrupted by additive Gaussian noise
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the measurements. For example, the arithmetic mean filter is judged differently
for impulsive noise as it yields similar SNR but considerably different ∆E∗

CH .
As a conclusion we realize that better looking images (as quantitatively

judged by ∆E∗
CH) will not always be best suited for further processing, as they

may contain less information (as quantitatively judged by SNR) than images
appearing worse visually.
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