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Abstract. The paper presents the discussion on extension of potential applica-
tion of the Choleski-Banachiewicz algorithm to the system of linear equations
with non-positive definite matrices. It is shown that the method is also stable in
case of systems with negative definite matrices and sometimes may be also suc-
cessful if the matrix is neither positive nor negative definite. The algorithm han-
dles systems with complex symmetric (not Hermitian) matrices, too. This fact has
deep physical sense and engineering applications since systems with negative def-
inite matrices are common in tasks of dynamics and post buckling analysis in civil
and mechanical engineering. Possibility of utilization of Choleski-Banachiewicz
algorithm to such problems can be very practical. The entire analysis has been
carried out within MATHEMATICA' environment.

1 Introduction

A linear system of equations with a symmetrical matrix can be efficiently solved using
the so-called Cholesky decomposition, Weisstein [11]. This routine was not invented
by Cholesky (Cholewski, Choleski [8]). The method was presented for the first time
by Dolittle [5]. His work was forgotten and the algorithm was reinvented by several
mathematicians including Cholesky whose contribution was published by Benoit [2]
and by Banachiewicz [1]. Due to many inventors the algorithm has a lot of names:
Cholewski m., Cholesky-Croot m., Croot m., Dolittle-Choleski m. and so on. In my
country — Poland the routine is called Choleski-Banachiewicz method. However, the
procedure can be called “a square root m.” to avoid problems with personal names. A
brief discussion on the method including its historical context has been presented by
Janczura [6].

It is believed that the Choleski-Banachiewicz method is limited to the positive definite
matrices, Hermitian in case of complex matrix and symmetrical in case of real matrix,
Weisstein [11]. The aim of the paper is to show that this opinion is true as far as it refers
to symmetry.

MATHEMATICA version 5, which is an advanced computer algebra system, has a built-in
procedure called CholeskyDecomposition[], Wolfram [12, 14]. This routine is
limited to Hermitian and positive definite matrices. In other cases it fails.
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I built my own procedure called CholeskiBanachiewicz [] within MATHEMATICA
environment. This routine not only decomposes the matrix, but also solves the system
of linear equations. Due to its unique features it is used to solve linear systems of equa-
tions within Refined Least Squares Method, [10]. Testing the Choleski-Banachiewicz
procedure I found that it is not limited to the system with positive definite matrices. It
was already mentioned in [9]. Using symbolic computation tools I will try to explain the
problem a bit wider in this contribution. It can be shown that the presented procedure
works well not only with systems with symmetric non-positive real matrices but also
with symmetric complex matrices (symmetric complex matrix is not Hermitian).

The described feature of the Choleski-Banachiewicz method can have important appli-
cation in computational mechanics and probably in other branches of physics. Therefore
a physical sense of the problem and its engineering utilization are discussed.

2 Algorithm and Its Implementation

The algorithm is described in many books and therefore will not be repeated here. The
routine has been built according to the recipe given by Burden and Faires [4]. Imple-
mentation of the algorithm is straightforward within MATHEMATICA'. The code is as long
as a procedure. This is one of the advantages of this symbolic computation system.

In[l1]:= CholeskiBanachiewicz[aa_List, bb_List, prec_] :=
Module[{a=aa,b=Dbb, i, j, n=Length[bb]},

i-1
po[{ali, i] = ,|N[a[i, i], prec] - ) a[i, k]?,
k=1

b[i] - £i3ali, 31 bI3]
af[i, i]
afj,i] - o1 ald, k] a[i, k]
afi, i] !

b[i] =

r

po[a[i,i] =

{i,i+1,n}],
Do(a[j, 4] =0, {3, 1-1}1}, {i,n}];
” b[[i]] — .E!jl=i+1a[[jl iIl b[[j]I

Do [b[[i] = ali, il » {lom, 1,23 ]

{a, b} ]

The arguments of the procedure are: matrix A, vector b and desired working precision. If
two first arguments are exact numbers, symbolic or have precision higher than machine
precision — the computations can be done with precision up to the infinity. It is important
for ill-conditioned tasks. The output of the routine are decomposed matrix L and the
vector x.
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3 Dealing with Non-positive Matrices

As it was mentioned in the introduction, we will show that the algorithm successfully
deals with not positive definite matrices. We will discuss two examples of the systems
with real and complex matrices.

3.1 Real Matrix

The presented example, for the sake of conciseness, is limited to system of matrices
4 x 4. One can evaluate it with bigger dimensions of matrices.

In[2]:= dim=4;

Let us build an arbitrary matrix m with random elements.

Tn[3] := m= Table[Random[Integer, {-100, 100}], {i, dim}, {j, dim}];
On this basis we can produce a symmetrical matrix m,.

In[4]:= MatrixForm[ml = m+ Transpose[m]]
96 -2 -80 58
-2 -142 -40 66
-80 -40 162 29
58 66 29 22

Out[4]=

If we try to decompose the matrix m, with the built-in procedure:
In(5] := CholeskyDecomposition[ml]

the attempt finishes with a message announcing: The matrix is not sufficiently positive
definite to complete the Cholesky decomposition to reasonable accuracy. It is espe-
cially odd and conservative behavior since the matrix is exact (integer). This behavior
is probably caused by the fact that the matrix is non-positive definite since some of its
eigenvalues are negative numbers. Nevertheless the pitfall should be not connected with
accuracy.

In{6]:= eig = Sort[Eigenvalues[N[ml]]]
out[6]= {-176.436, -4.60622, 99.5497, 219.493}

Let us build a new matrix function m, of the parameter A.
In[7]:= m2[A_] :=ml - IdentityMatrix[dim] A

The parameter A modifies elements of the matrix diagonal. It is easy to check that the
matrix m, is positive definite for any A smaller than minimal eigenvalue of the original
matrix m,:

In[8]:= Sort[Eigenvalues [N[m2[-400]]1]]
Out[8]= {223.564,395.394, 499.55, 619.493}

and negative definite for any value of the parameter A grater than maximal eigenvalue
of the matrix m,.
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In[9] := Sort[Eigenvalues[N[m2[400]]]]
Out[9])= {-576.436, -404.606, -300.45, -180.507}

Let us create a vector b, which will be a vector of free elements of the system of linear
equations.

b = Table [Random[Integer, {-100, 100}], {i, dim}]
{16, -59, -62, 5}

In[10]:
out[10]=

The L,-norm of this vector |||, is equal to:

In[11]:= normb2 = Norm[b, 2]

out[11]= V7606

Since both matrix m, and vector b are exact numbers we can solve the system exactly,
to enforce it the third argument that represents working precision is set to co. This
command returns the decomposed matrix L, only. Solution of the system is omitted by
setting the argument [1] in the command.

In[12]:= MatrixForm[CholeskiBanachiewicz[ml, b, o] [1]]

46 0 0 0
1 1 3409
— T i 0 0
2+/6 2 6
Out[l2]= . , 2 366658
~10_[2 2501 0
3 10227 3409
29 1613 1 196421 ;| 4439473
26 2+/20454 /1249937122 366658

The decomposed matrix is complex. It is not a problem for contemporary computer
algebra systems and numerical systems like MATLAB since all of them can handle
complex numbers.

In spite of the fact that the input matrix is non-positive definite one we can check that
L-L"=m,.

In[13]:= %.Transpose([%] ===ml

Out[13]= True

We can also test if really the matrix is not sufficiently positive definite to complete the
Cholesky decomposition to reasonable accuracy. Let us decompose the matrix m, with
PC machine precision that is equal to 16.

In[14]:= MatrixForm[CholeskiBanachiewicz[ml, b, 16][1]]

9.79796 0 0 0

-0.204124 11.9181 1 0 0

apetlal= -8.16497 3.496081i 10.3709 0
5.9196 -5.639171i 5.55576 3.479651i

This test shows that the round-off error is not very big.

In[15] := MatrixForm[%.Transpose([%] -ml]
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Cutfl5]=

The actual aim of my Choleski-Banachiewicz procedure is not the decomposition of the
matrix itself but solution of the system.

The function () finds a normalized relative error of the system solution with Choleski-
Banachiewicz method of the system m, (1) - x == b:

[|m,(A) - x — b”z

H 1
R e

e(d) =

what is implemented with:

In[16]:= normchol[x_] :=

Norm[m2 [x] .Chop [CholeskiBanachiewicz [m2[x], b, 16] [2]] - b]
normb2

e()

5x1078 |
41078 |

3x107%®8 |
2x107%8 |

1x107%8

-200 0 200 400

Fig. 1. The relative error of the solution with Choleski-Banachiewicz method e(1) with regard to
the parameter A — description in text

Figure 1 shows the diagram of the function e(A) in a lot of points from the interval
A € (=374, 417). Four big points in the bottom of the diagram represents position of
the m, matrix eigenvalues. It can be found that the precision of the solution becomes
poor near these points. The matrix m,(A) for A equal to eigenvalues of m, becomes
singular and in their neighborhoods badly conditioned.
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3.2 Complex Matrix

Let us consider a symmetric complex matrix A:

1 -2+i-1
A=|-2+1 19 -=-3]. (2)
- -3 3

Attempt of use of built-in function CholeskyDecomposition[] fails with a mes-
sage: The matrix is not Hermitian or real and symmetric.

Let us attempt to solve a system with this matrix with CholeskiBanachiewicz([]
procedure.

Inf17]:= MatrixForm[

1 -2+1 -1
(sol = CholaskiBanachiewicz[ -2+1 19 -3 |,
-3 -3 3

{1,1, 1},:0]) [21]

The result is saved in variable sol and the output presents the decomposed matrix L:

I 0 0
-2+1 2V4+1 0
outfli7]=
i 2+ 1 52 131
V4 +1 17 17

It can be checked that L - LT = A.

In[18] := MatrixForm[%.Transpose[%]]

1. -2+1 -1
Qut[18]= -2+1 19 -3
-1 -3 3

The solution with CholeskiBanachiewicz [] procedure is exact since both matrix
A and free vector are exact numbers and working precision has been set to co.

In[19]:= sol[2]
15 41 7 i 1 111
out(19]= { =+ —, =+ =, =+ —|
13 13 26 26 2 26
Let us check if numerical computations with machine precision will finish with satis-
factory precision. The result of Choleski-Banachiewicz procedure:

1 -2+1 -1
Inf20] = CholeskiBanachiewicz[ -2+1 19 -3 |,{(1,1,1}, 15] [21
-1 -3 3

Qut[20]= {1.15385+0.3076921, 0.269231+0.03846151,0.5+0.4230771}

One can easily check that a built-in function LinearSolve [] returns the same result.
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4 Physical Sense and Engineering Applications

Let us consider a mechanical, dynamical, discrete system described with the following
equation of motion, Langer [7].

B-j+C-g+K-q=P, (3)

where B is a matrix of inertia, C is a matrix of viscotic dumping, K is a stiffness matrix,
P is a vector of external load and g is a vector of generalized Lagrangian displacements.

If the system is loaded with stationary periodic load P := P_sin(27 pt), where p is a
frequency of the load, [p] = Hz, and dumping is negligible and we can set C := 0 in the
equation of motion (3) we can derive the following system of linear algebraic equations.

(K- 47> p*B)g, =P, . )
The matrix K is positive definite but the matrix (K — 472 p? B) becomes non-positive
definite if frequency p becomes bigger than the first frequency of free vibration of the
system.

There are two rational engineering approach to design of the dynamical systems, both
of them assume that the frequency of external load to be far from the resonance (eigen-
values) zone. The first approach consists in such design of the dynamical system that
the free vibration frequencies become higher than frequency of excitations. It results in
very stiff and heavy (expensive) structures. Another approach consists in design of very
flexible structure with frequencies of free vibrations much smaller than the frequency
of excitation. The disadvantage of such approach is that the dynamical system has to
go through “resonance zone” during acceleration. Such phenomenon can be observed
in many facilities like domestic washing machines, computer processor fans and turbo-
generators in power stations. This problem may be overcome by decreasing the time of
acceleration during turning on and off. On the other hand the mathematical model of
the dynamical system excited with frequencies close to free vibrations has to consider
dumping. In this case equation (4) is not valid. Some more complicated formulas have
to be used, Langer [7]. A shape of upper envelope of the diagram of the normalized
error in Figure 1 has some analogy to the diagram of the dynamical coefficient used in
engineering dynamical analysis.

Systems with negative definite matrices can be stable not only in tasks of civil engi-
neering; example is Bulatovi¢ [3]. It seems to be good news that such systems can be
effectively solved with Choleski-Banachiewicz method.

5 Conclusions

Choleski-Banachiewicz procedure can be applied not only to positive definite matrices
but also to negative definite ones and sometimes to matrices which are neither positive
nor positive definite. It has been also shown that the procedure can be successfully
employed to systems with symmetrical complex matrices.
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Possible application of the method to negative definite matrices can be very useful in
analysis of dynamical systems in civil and mechanical engineering. Another field can
be post-buckling behavior of structures.

The analysis was carried out thanks to the computer algebra system MATHEMATICA".
Despite of conservative behavior of the built-in procedure, the system enabled me to
challenge the problem and extend the potential of the procedure.
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