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Abstract. The image processing and analysis based on the continuous or dis-
crete image transforms are the classic processing technique. The image trans-
forms are widely used in image filtering, data description, etc. The image
transform theory is a well known area, but in many cases some transforms have
particular properties which are not still investigated. This paper for the first
time presents graphic dependences between parts of Haar and wavelets images.
The extraction of image features immediately from spectral coefficients distri-
bution has been shown. In this paper it has been presented that two-dimensional
both, the Haar and wavelets functions products, can be treated as extractors of
particular image features.

1   Introduction

The computer and video-media applications have developed rapidly the field of mul-
timedia, which requires the high performance, speedy digital video and audio capa-
bilities. The digital signal processing is widely used in many areas of electronics,
communication and information techniques [1,2,3,6,12]. In the signals compression,
filtration, systems identification, the commonly used transforms are based on sinusoi-
dal basic functions such as: Discrete Fourier, Sine or Cosine Transform or rectangular
basic functions: Discrete Walsh and Wavelet Transform, (Haar, Daubechies, etc.)
[2,3,7]. All these functions are orthogonal, and their transforms require only additions
and subtractions. It makes that it is easy to implement them on the computer. It not
only simplifies computations but also permits to use different (linear and nonlinear)
filters [3,4,9] to get the spectrum. One should remember that researches in this topic
are still in progress and new improvements have been found [5,8,9].

Fourier methods are not always good tools to recapture the non-smooth signal [2];
too much information is needed to reconstruct the signal locally. In these cases the
wavelet analysis is often very effective because it provides a simple approach for
dealing with the local aspects of signal, therefore particular properties of the Haar or
wavelet transforms allow analyzing original image on spectral domain effectively.
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2   The Discrete Haar and Wavelet Transforms

Alfred Haar in [7] has defined a complete orthogonal system of functions in
([0,1])pL , [1, ]p ∈ ∞ . Nowadays, in the literature there are some other definitions of

the Haar functions [3,12]. Discrete Haar functions can be defined as functions deter-
mined by sampling the Haar functions at 2n  points. These functions can be conven-
iently represented by means of matrix form. Each row of the matrix ( )nH  includes

the discrete Haar sequence ( , )haar w t  (or otherwise the discrete Haar function).  In

this notation, index w identifies the number of the Haar function and index t discrete
point of the function determination interval. In this case, the Haar matrix of any di-
mension can be obtained by the following recurrence relation:
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where: ( )nH − matrix of the discrete Haar functions of degree 2n , ( )nI − identity

matrix of degree 2n ,  ⊗ −  the Kronecker (tensor) product.

Definition 1. Two-dimensional 2 2n nN N× = ×  forward and inverse Discrete Haar
Transform can be defined in matrix notation as:

( ) ( )Ta n a n= ⋅ ⋅ ⋅ ⋅S H F H ,     ( ) ( )Tb n b n= ⋅ ⋅ ⋅ ⋅F H S H ,                       (2)

where: F – the image in matrix form. The matrix has dimension N N×  pixels.
S – the spectrum matrix, and 1/a b N⋅ = . Hence a or b parameters can be defined as

values:  1/N , 1/ N  or  1, 2logn N= .

Fig. 1 presents some known transforms of a test image. The test image contains a
simple test impulse represented as 8 8×  matrix, which has 0 values everywhere, ex-
cept the upper left element, which has the value of 8. From Fig. 1 we can observe that

all 2N  elements of these transforms are nonzero except the Haar transform, which has
only 2N nonzero entries. These features are very important in image processing and
convenient from image compression point of view. The energy distribution informs us
where there are situated the important features of image [2,10,12].

It is easy to observe from Fig.1 that the Walsh transform gives the worst results
here: distribution of spectral energy is uniformable. In c) and d) cases distribution of
spectral energy has sharply outlined maximum, outside of which, one can observe the
decrease of energy. The distribution of the Haar spectrum is not proper too, but we
can treat this transform differently. Presented discrete transforms, enable us to observe
where energy concentrations occur but from this representation, it is not possible to
find more precisely information about real image. For example, it is difficult to point
places, which describe horizontal, vertical, etc. details of real image. These troubles
can be overcome by well known multiresolution analysis [3,5].
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 a)        b) Note: 1/a N=       c)          d)

Fig. 1. The S transform of image containing the test impulse:  a) Walsh-Hadamard; b) Haar; c)
DST (Discrete Sine Transform); d) DCT (Discrete Cosine Transform)

The motivation for usage of the wavelet transform is to obtain information that is
more discriminating by providing a different resolution at different parts of the time-
frequency plane. The wavelet transforms allow partitioning of the time-frequency
domain into non-uniform tiles in connection with the time-spectral contents of the
signal. The wavelet methods are connected with classical basis of the Haar functions –
scaling and dilation of a basic wavelet can generate the basis Haar functions.

Any Haar function basis (1) can be generated as: ( )j
i tψ = 2 (2 )j j t iψ − ,

0,1,..., 2 1ji = − , 20,1,..., log 1j N= − , or generally ( )j
i tψ = (2 , )jhaar i t+ . From this

example follows that functions ( )j
i tψ  are orthogonal to one another. Hence, we obtain

linear span of vector space 
0,...,2 1

{ } j
j j

i i
W spn ψ = −= . A collection of linearly independ-

ent functions 
0,...,2 1

{ ( )} j
j

i i
tψ = −  spanning jW  we called wavelets. The Haar scaling

function is defined by the formula: ( )j
i tφ = 2 (2 )j j t iφ − , 0,1,..., 2 1ji = − ,

20,1,..., log 1j N= − . The index j  refers to dilation and index i  refers to translation

[3,11]. Hence, we obtain linear span of vector space 
0,...,2 1

{ } j
j j

i i
V spn φ = −= . The basic

functions from the space jV are called scaling functions. In multiresolution analysis

the Haar basis has important property of orthogonality: 1 1j j jV V W− −= ⊕ . The space
jW can be treated as the orthogonal complement of jV in 1jV + . So, the basis functions

of jW  together with the basis functions of jV  form a basis for 1jV + .

3   The Haar and Wavelet Basic Images

Due to its low computing requirements, the Haar transform has been mainly used for
image processing and pattern recognition. From this reason two dimensional signal
processing is an area of efficient applications of Haar transforms due to their wavelet-

like structure. Because ( )nH and ( )TnH are the square matrices, their product is

commutative, therefore equations (2) can be rewritten and expressed as:
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1 1

0 0

( , ) ( , ) ( , ) ( , )
N N

x y

s k m f x y haar k x haar m y
− −

= =

= × ×∑∑                         (3)

where:   [ ]kms=S , [ ]
xy

f=F ,      , , , {0,1,..., 1}x y k m N∈ − .

Basing on equation of analysis (2) we can conclude that in 2D spectral domain the

values of coefficients 
ij

s  depend on appropriate product of the two Haar functions.

Fig. 2 presents an example of product of the arbitrary selected Haar functions.

Fig. 2. The example of product of two discrete Haar functions

Because this product is multiplied by image matrix, the result of such multiplication
can be treated as a particular extractor – it can be used to locate the specific edges
hidden in image. By looking for all coefficients in the spectral space, one can find all
important edge directions in the image. In this case, we must find decomposition ma-
trices of matrix ( )nH . For last decomposition level, it can be noticed that

( )n n=M H . If each orthogonal matrix , 1, 2,3i i =M  one multiplies by 1/ 2  factor,

then procedure of calculations will be according to the classical Mallat algorithm [11].
The product of the decomposition levels for all 2D Haar functions (for case 8N = ) is
shown in Fig. 3 – the pictures have been composed on the basis of iM  matrices and

the method shown in Fig. 2. From Fig. 3 we can conclude that the classical Haar trans-
form gives different spectral coefficients on different decomposition levels. The con-
struction of decomposition matrices can be as follows:

Step 1. According to the formula 1 1n n nV V W− −= ⊕ , the matrix 
1

M  has a form

1 1
1 1 1 1

1 0,...,2 1 0,...,2 1
[ , ]n n

n n n n T
j j

V Wφ ψ− −
− − − −
= − = −= ⊂ ⊂M .

Step 2.  Because 1 2 2 1n n n nV V W W− − − −= ⊕ ⊕ , the matrix 
2

M  can be constructed

as follows 2 2 1

2 2 2 2 1 1

2 0,...,2 1 0,...,2 1 0...,2 1
[ , , ]n n n

n n n n n n T

j j j
V W Wφ ψ ψ− − −

− − − − − −

= − = − = −
= ⊂ ⊂ ⊂M .

Step n . Finally, after n  steps of calculations, we can construct the formula
1 0 0 1 2 1... nV V W W W W −= ⊕ ⊕ ⊕ ⊕ ⊕ , hence the matrix nM  has a structure

1
0 0 0 0 1 1 2 2 1 1
0 0 0,1 0,...,3 0,...,2 1

[ , , , ,..., ]n
n n T

n j j j
V W W W Wφ ψ ψ ψ ψ −

− −
= = = −= ⊂ ⊂ ⊂ ⊂ ⊂M .



The New Graphic Description of the Haar Wavelet Transform         5

Example 1.  Let 3n =  then:
3 2 2 2 2 2 2 2 2 2 2

1 0 1 2 3 0 1 2 3        ,          [ , , , , , , , ]TV V W φ φ φ φ ψ ψ ψ ψ= ⊕ =M ,
2 1 1 2 1 1 1 1 2 2

2 0 1 0 1 0...,3,          [ , , , , ]TjV V W W Wφ φ ψ ψ ψ == ⊕ ⊕ = ⊂M ,
1 0 0 1 2 0 0 1 1 2 2

3 0 0 0,1 0,...3,          [ , , , ]Tj jV V W W W W Wφ ψ ψ ψ= == ⊕ ⊕ ⊕ = ⊂ ⊂M ,

1 2
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0 0 2 2 0 0 0 0 0 0 0 0 2 2 2 2
0 0 0 0 2 2 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 2 2 2 2
2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0 0 0 2 2 0 0 0 0
0 0 0 0 2 2 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 2
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         a)                                                   b)                                              c)

Fig. 3. The 2D Haar functions product treated as extractors.  Decomposition levels:  a) first, b)
second, c) third

One advantage of the method presented above is that often a large number of the
detail coefficients turn out to be very small in magnitude, as in the example of Fig. 1.
Truncating, or removing, these small coefficients introduce only small errors in the
reconstructed image. Additionally, we can control which coefficients will be removed,
because its distribution is known (Fig. 3).

Basing on the facts that 
0,...,2 1

{ } j

j j

i i
W spn ϕ

= −
= , 

0,...,2 1
{ } j

j j

i i
V spn φ

= −
=  we can ex-

press functions φ  and ψ as a linear combination of the basis functions from V  and

W spaces.  Let us denote F as an image in matrix form and define the operators:

( ) 1/ 2 (2 ) (2 1)],           ( ) 1/ 2 (2 ) (2 1)]i i i i i i= ⋅ + + = ⋅ − +A [F F D [F F ,       (4)

where: ( )iF  – vector of size N, containing row or column of matrix F,

{0,1,..., / 2 1}i N∈ − , ( )iA  – vector of size N/2, containing approximation coeffi-

cients, ( )iD  – vector of size N/2, containing detail coefficients.
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To get wavelet decomposition on the first level of an image F (the spectrum matrix
called S1) we first apply the operators (4) to all columns of the matrix and then to all
rows [3,8,11]. To get the second level of wavelet decomposition (matrix S2) one can

apply similar analysis to upper left sub-matrix of size 
2 2

N N
×  of matrix S1. And gener-

ally, to get k-th level – matrix Sk, one can apply this analysis to upper left sub-matrix

of size 1 12 2

N N
k k×− −  of matrix Sk-1, where

2
{1, ..., log }k N∈ .

Note, that applying filters (4) to an image, give the same results as multiplying ma-

trices 1
1 1 18

T= ⋅ ⋅S M F M , where matrix M1 is taken from Example 1. Therefore, S1 may

be treated as extractor of image features on the first level of wavelet decomposition,
similar as above in the Haar decomposition case. Because on the second and next
levels only the part of a matrix is transformed (opposite to Haar decomposition) these
extractors on these levels are different. For example, for N=8 the products of the non-
standard wavelet decomposition levels are shown in Fig. 4.

a)               b)         c)

Fig. 4. The 2D wavelet functions product treated as extractors. Decomposition levels:  a) first,
b) second, c) third

All considerations, which have been presented until now for the classical of Haar
functions, have applications in that case too, with the exception of extractors’ distri-
bution (Fig. 4). The Haar decomposition can be simply implemented as matrix multi-
plication. The wavelet algorithm is a little more efficient.

4   Experimental Results

To test our method the well known benchmarks have been used. Each of these images
was of size 8a a× ×  bits, where {32, 64,128, 256}a ∈ .  By analysing the Figs. 3-4 we

can divide areas of a figure into 4 equal pieces. Each piece has dimension
( / 2) ( / 2)N N×  and is called A, H, V and D. Location of these areas presents Fig. 5.

Each piece (A, H, V or D) for 8N =  includes sixteen appropriate sub-squares
from Fig. 3-4. According to presented arguments, mentioned areas possess different
features: A (Approximation), H (Horizontal), V (Vertical), D (Diagonal). Fig. 5 pres-
ents “Baboon” – one of the grey-level test images and its wavelet and Haar spectra.
The spectra images are different what directly follows from Figs. 3-4. Taking into
account mentioned features of areas some differences between spectres can be shown.
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Fig. 5. Principle of spectra partitioning; original image and its wavelet and Haar spectra re-
spectively

In Fig. 6 are shown differences between origin image and compressed one for
wavelet and Haar method of analysis, respectively after removing some coefficients.

The exact information about distribution of spectral coefficients allows us to match
easily up the compression ratio with the type of image. Obtained results for Haar ma-
trix-based method and wavelet method were compared by means of PSNR coeffi-
cients. These results of investigations are collected in Tab. 1. From this table one can
see that Haar reconstructed images have slightly better quality. From Tab. 1 (last col-
umn) follows, that after removing all horizontal and vertical details on the first level of
decomposition we get exactly the same PSNR of both methods reconstructed images
because of the proportionality of the diagonal detail coefficients.

The different cases of removing the spectral coefficients can be applied as well.
These entire processes are based on the fact, that appropriate selection and modifica-
tion of the spectral coefficients may preserve the contents of the image.

Between Haar matrix-based method and the wavelet one can be observed quantita-

tive and graphic relationship. Let Hd  and Wd  stand for diagonal coefficients from

Haar and wavelet spectrum matrix respectively, both of degree 2n. Then 2n

H Wd d= .

Table 1. The PSNR of reconstructed images after appropriate details elimination

             Details
Method

Hori-
zontal (H)

Vertical
(V)

Diago-
nal

(D)

Horizotal
+Vertical (H+V)

Wavelet decomposition 29,7254 27,3697 31,4822 25,3813

Haar decomposition 29,7269 27,3702 31,4827 25,3813

   a)    b)
Fig. 6. Horizontal – (a) and horizontal with vertical – (b) details elimination and loosed infor-
mation after applied wavelet and Haar matrix-based method, respectively
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5   Concluding Remarks

In the paper it has been shown the new graphic way of presentation of decomposition
levels for both the Haar matrix-based method and wavelets. As it has been shown both
methods can be modelled on the basis of the wavelets theorem.

The 2D Haar matrix method of calculations like the 2D Fast Fourier Transform has

complexity 2
2(4 log )O N N  [4], classical 2 1× D fast wavelet method of calculations

has complexity 2(16 / 3 )O N only [3,11,12]. This complexity can be decreased to
2(14 / 3 )O N  by suitable organization of calculations [10]. Described complexity fac-

tors are determined as number of additions and multiplications in computation proc-
ess. The graphic distribution of the Haar-wavelet spectral coefficients also has been
presented. Additionally, knowledge about spectra distribution allows us to point ap-
propriate selection or modification (reduction) of the Haar-wavelet coefficients.
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