Low-Latency Cryptographic Protection
for SCADA Communications

Andrew K. Wright!, John A. Kinast?, and Joe McCarty?

1 Cisco Systems, 12515 Research Blvd., Austin, TX USA 78759
akwrightQacm.org
2 Gas Technology Institute, 1700 S. Mount Prospect Rd.,
Des Plaines, IL USA 60018
{john.kinast, joe.mccarty}@gastechnology.org

Abstract. Supervisory Control And Data Acquisition (SCADA) sys-
tems are real-time process control systems that are widely deployed
throughout critical infrastructure sectors including power, gas, oil, and
water. However, SCADA networks generally have little protection from
the rising danger of cyber attack. A retrofit solution to protect existing
SCADA communications links must assure the integrity of commands
and responses that are typically transmitted over serial lines at speeds
from 300 to 19200 bits per second, while introducing minimal additional
latency into the real-time SCADA traffic.

This paper describes the key aspects of a cryptographic protocol for
retrofit SCADA link protection that leverages the Cyclic Redundancy
Checks (CRC) transmitted by existing SCADA equipment to achieve
strong integrity while introducing minimal latency. The protocol is based
on a new position embedding encryption mode which, for a b-bit block
cipher, ensures that any unauthentic message an adversary can construct
(7) includes at least b randomly chosen bits, and therefore, by a new
result proved for error detection by systematic shortened cyclic codes,
(#t) contains a correct h-bit CRC with probability 27" The low speed
of the communications channel limits the rate at which an adversary
can make trials, enabling detection of potential attacks before enough
trials can be made to achieve any significant likelihood of success. The
protocol avoids the need for a decrypting link protection module to buffer
decrypted data until an end-of-message integrity check is verified, which
would otherwise add significant latency.

1 Introduction

Supervisory Control And Data Acquisition (SCADA) systems are real-time pro-
cess control systems that monitor and control local or geographically remote
devices. They are in wide use throughout a variety of critical infrastructure
sectors, including power, gas, oil, and water, and are a critical component of
operations. As illustrated in Fig. [a typical SCADA system consists of an op-
erations console, a SCADA master, and one or more remote units that share a
communications link. The SCADA master runs a program that polls the remote

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 263-E77, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

264 A.K. Wright, J.A. Kinast, and J. McCarty

units, receives and interprets responses, reports system status on the operations
console, and issues commands automatically or in response to operator actions.
The communications link is commonly a dedicated serial line, a dialup serial line,
or a radio link, and operates at low speeds such as 300 to 19200 bits per second.
Remote units read temperatures, pressures, flows, voltages, currents, frequen-
cies, or other physical quantities, and control valves, circuit breakers, or other
devices that influence physical processes. SCADA devices are environmentally
hardened to withstand extremes in temperature, humidity, electromagnetic in-
terference, etc. and typically have service lifetimes measured in decades. They
are considerably more expensive than comparable commodity devices, and util-
ities throughout the world have extensive investments in serial-based SCADA
hardware.

e
o~ S~

4 ~
-~
s ®,

[EeEEeg

Operations

console Modem —

SCADA Host

Fig. 1. Typical SCADA System

Due to the nature of the physical processes that SCADA systems control,
malicious attacks directed against SCADA systems have the potential to cause
significant disruption and damage to critical infrastructures and the markets they
supply. SCADA masters and operations consoles are generally well-protected by
physical security measures such as perimeter fences and armed guards. Oper-
ations consoles generally require at least password authentication. Historically,
SCADA masters have not been connected to other computer networks that may
have a path to the Internet[] SCADA remotes have some physical security, be-
ing located at such sites as the tops of telephone poles and transmission tow-
ers, and in unmanned stations secured by barbed wire and padlocks. However,
SCADA communications links are particularly vulnerable to cyber attack. An
adversary with no physical access to any part of a SCADA system can easily
compromise dialup links. Compromising radio links requires only proximity and
an appropriate transmitter. Leased lines are easily tapped from various points
in the telephone network. While most of the over 150 widely deployed SCADA

! This is beginning to change with the introduction of SCADA systems that commu-
nicate using IP (Internet Protocol), and is a very serious but different problem.

Low-Latency Cryptographic Protection for SCADA Communications 265

protocols use a Cyclic Redundancy Code (CRC) to detect communications er-
rors caused by noise, CRCs provide no protection against a malicious adversary.
Some SCADA protocols require device passwords be transmitted along with
commands, but these passwords are usually transmitted in the clear where they
are easily snooped. We are aware of no SCADA protocols that include strong
provisions to assure the integrity of SCADA traffic against a malicious adversary.

Recognizing the vulnerability of SCADA communications, the American Gas
Association (AGA) is preparing a series of recommendations for protecting those
communications [1]. The extensive investments utilities have made in existing
equipment necessitate a retrofit solution to protect these systems. The diversity
of deployed equipment, the ages of deployed hardware, and the limited com-
putational power of deployed devices preclude building protection directly into
existing systems. Thus one of AGA’s key recommendations will be a standard
for cryptographically protecting existing serial-based SCADA communications.
This standard will be implemented in the form of a SCADA Cryptographic Mod-
ule (SCM) with two serial ports. A SCADA message received from a SCADA
master or remote on a SCM’s plaintext port will be protected and sent out the
SCM’s ciphertext port, and vice versa. SCMs will be deployed between SCADA
devices and the modems for the communications links, as shown in Fig. 2l The
key property these devices must assure is data integrity: that commands and
responses are not forged or altered during transmission.

SCADA Link
sacE=cEscoom

P LAl I BECEECEEEEC
~

Al

Operations

console RTU

SCADA Host

Fig. 2. SCADA System with SCMs Deployed

The constraints imposed by retrofit requirements make designing a proto-
col to assure integrity more complex than it might first appear. The protocol
must introduce minimal additional latency between the SCADA master and re-
mote to avoid impacting the real-time nature of the traffic carried over this low
speed channel. The obvious solution of appending to each message some form
of integrity check value such as a Message Authentication Code (MAC) would
require the receiving SCM to buffer the entire message and check its MAC before
forwarding the message out the SCM’s plaintext port. Forwarding the buffered
message would take as long as receiving it, since both SCM ports will generally

266 A.K. Wright, J.A. Kinast, and J. McCarty

operate at the same baud rate, and would thus double the communications la-
tency. Many SCADA environments are unable to tolerate this much additional
latency.

The solution we propose leverages the CRC check performed by the receiving
SCADA device. Both sending and receiving SCMs buffer only enough data to
fill one block of a block cipher, and forward the encrypted or decrypted block as
soon as the block is complete. Thus for a 128-bit block cipher such as AES [2],
our protocol introduces 16 characters of latency at each of the sender and the
receiver, regardless of message length. Our protocol encrypts a SCADA message
using a new encryption mode we call position embedding (PE) mode. PE-mode
encryption ensures that an any attempt to modify ciphertext blocks or to splice
together a new message from ciphertext blocks taken from older messages will
result in at least one ciphertext block decrypting to random bits. By a new
result we prove for error detection by systematic shortened cyclic codes, this
in turn ensures that the unauthentic message contains a valid h-bit CRC with
probability 27", The low speed of the communications channel limits the rate
at which the adversary can make trials, and a MAC checked after the message
has been forwarded permits SCMs to detect potential attacks before enough
trials can be made to achieve any significant likelihood of success. Our protocol
avoids the need for the decrypting SCM to buffer decrypted data until an end-
of-message integrity check is verified.

The remainder of the paper is organized as follows. Section [2 discusses re-
quirements for a satisfactory solution. Section Blpresents our protocol, establishes
a security theorem, and discusses its impact on latency. We discuss implemen-
tation considerations in Section @ and review related work in Section [B. We
conclude with our expectations for deployment of this protocol in the field.

2 Requirements for SCADA Communications Protection

To be effective, a protocol for retrofit protection of SCADA communications
must address the three classical security properties of confidentiality, integrity,
and availability. Since SCADA systems measure and control physical processes
that are generally of a continuous nature, and since SCADA systems are simple
and repetitive, SCADA commands and responses are relatively easy to predict.
Thus confidentiality is secondary in importance to data integrity. To assure data
integrity, the protocol must prevent an adversary from constructing unauthentic
messages, modifying messages that are in transit, reordering messages, replaying
old messages, or destroying messages without detection. Given the predictable
nature of SCADA commands and responses, the protocol must be designed to
address these issues with the recognition that known plaintext attacks are not
only possible but likely. Guaranteeing availability of the communications link
is more difficult. Unlike the Internet, SCADA communications networks seldom
have redundant communications paths. Thus an adversary with access to the
communications link can flood the link to deny communications, or even se-
lectively jam specific messages. However, most SCADA masters monitor link

Low-Latency Cryptographic Protection for SCADA Communications 267

quality and will report excessive errors to the operator. The protocol should
either ensure that this link monitoring facility continues to function, or should
provide an alternative.

Many SCADA systems communicate at rates as low as 19200, 1200, or even
300 bits per second. At these speeds, the time required to transmit a single
character is significant. Character overhead in message formatting must be kept
to a minimum and full message buffering must be avoided if at all possible to limit
impact on message latency. Message buffering at the receiving SCM particularly
impacts latency since the plaintext port of the SCM will generally operate at the
same speed as its ciphertext port, and thus forwarding the decrypted message will
take as long as receiving it. Since many SCADA installations continuously cycle
amongst devices, initiating a new status poll as soon as a response is received,
any increase in latency directly affects the rate at which system state is updated.
On the other hand, most embedded CPUs suitable for use in SCMs have more
than adequate computation power for cryptographic operations at these speeds.
The low communication rate also works to our advantage in limiting the rate at
which an adversary can make online trials.

Finally, the retrofit communications protection system must be easy to de-
ploy and manage, and must not adversely impact safe operation of the SCADA
system.

3 Retrofit Protection for SCADA Communications

In this section we present an overview of our protocol designed for retrofit pro-
tection of SCADA communications, describe the encryption method, including
our new position-embedding encryption mode, establish its security, and analyze
the latency the protocol introduces.

3.1 Protocol Overview

We consider a simple point-to-point scenario where two SCMs are deployed to
protect the communications between a SCADA master and a single remote de-
vice. The two SCMs initially share session establishment keys and use these to
negotiate shared session keys. The session negotiation procedure is fairly stan-
dard and not our focus, so we will not describe it further. The result of session
negotiation is that the two SCMs share an encryption key and an authentication
key.

A SCM has two communication ports. A SCM receives and transmits SCADA
messages on its plaintext port. SCADA messages comprise commands, responses,
acknowledgments, negative acknowledgments, keep-alive messages, etc. gener-
ated by the SCADA system, and are all treated by the SCM in the same manner.
A SCM must be able to recognize the beginning and end of a SCADA message,
but for this scenario needs no other knowledge of the format of a SCADA mes-

268 A.K. Wright, J.A. Kinast, and J. McCarty

sageE We assume the SCADA message contains a CRC that is checked by the
receiving SCADA device.

A SCM transmits and receives ciphertext messages on its ciphertext port.
Once a session has been negotiated, a SCM sends a ciphertext message to its
peer SCM only when it receives a SCADA message on its plaintext port. If a
ciphertext message is damaged or lost in transit, our protocol does not attempt
to retry it. In this way, whatever methods the SCADA system uses to recover
from communication errors and to avoid collisions will continue to operate as
usual.

When the first characters of a SCADA message are received on a SCM’s
plaintext port, the SCM immediately begins transmitting a ciphertext message
header that includes a sequence number to its peer. Each time enough characters
are received on the plaintext port to fill a cipher block, the SCM encrypts and
transmits a block of ciphertext. Finally the SCM transmits a trailer that includes
a message authentication code (MAC).

At the receiving SCM, an incoming ciphertext message header signals the
start of a new message. The receiving SCM checks that the sequence number in
the header is greater than the last sequence number it received. If this comparison
fails, the SCM ignores the remainder of the ciphertext message. Otherwise, each
time enough characters are received on the ciphertext port to fill a cipher block,
the SCM decrypts the block and immediately begins forwarding the decrypted
characters via its plaintext port to the receiving SCADA unit. When the trailer
of the ciphertext message is received, the SCM computes and checks the MAC.
By this time, the decrypted SCADA message may have already been forwarded
in its entirety to the receiving SCADA unit. If the authentication check fails, it is
too late to prevent forwarding the unauthentic message. Thus the authentication
code only alerts the SCM to a possible failure of data integrity. The crux of our
design is to encrypt in such a way that an adversary attempting to modify or
inject an unauthorized ciphertext message can at best hope to construct one in
which no fewer than one cipher block will decrypt to random bits, and thus the
h-bit SCADA CRC will be correct with probability 27",

3.2 Encryption

Our protocol uses a block cipher encryption algorithm that operates on b-bit
blocks, such as AES for which b is 128. We require this cipher to have real-or-
random indistinguishability [3]: modification of any of the bits of a ciphertext
block makes the result of decryption appear uniformly random. Typical block
ciphers have this property [4, p. 228]. We denote the single-block encryption
and decryption functions for key k by Ej [-] and Dy [-] respectively. We also use a
message authentication algorithm such as HmacSHA-1 or CBC-MAC. We denote
the authentication function for key &’ by MACy [-]. We assume the sender and
receiver have previously negotiated the shared session keys k and k’.

2 In a multidrop scenario where several remote devices share the communications link,
a sending SCM will need to parse the header of the SCADA message in order to
select the appropriate encryption key for the receiver.

Low-Latency Cryptographic Protection for SCADA Communications 269

A SCM maintains a send sequence state variable in order to assign a sequence
number to each ciphertext message it sends. The send sequence variable is ini-
tialized to one at session negotiation, and is incremented with every ciphertext
message sent. Let S be a SCADA message containing an h-bit CRC. The SCM
prepends a sequence number i to the SCADA message S to form a plaintext
message P =i S, where juxtaposition denotes concatenation. Let a padding se-
quence z be a sequence of bits beginning with a ‘1’ bit and followed by from 0
to b —1 ‘0" bits [5]. The SCM appends to P = i S a padding sequence z such
that the concatenation S z is a multiple of b bits long. The SCM formats S z
into n = [(|S| 4+ 1)/b] plaintext blocks p1,...,p,, where |S| denotes the length
of S in bits, as follows:

Pz = i8Sz = ipips ... pp

The resulting padded plaintext message is thus nb + |imax| bits long, where
|imax| is the fixed number of bits used to represent a sequence number.
The sending SCM enciphers P z to the ciphertext message C' as follows:

C = dcicea ... cpa

where
¢ = Ek[p]@Ek[Z]OH
a = MACL [i p1 p2 ... Dnl

Here E; [i j 0...] denotes the encryption of i concatenated with j concatenated
with enough zeros to fill b bits, and @ denotes ezclusive or (bitwise addition mod
2). The SCM outputs each ciphertext block ¢; as soon as it is available. Thus
the SCM transmits on its ciphertext port the sequence number i, followed by a
sequence of cipher blocks, followed by the MAC a. A simple character escaping
mechanism, the details of which are not important here, enables the receiver to
parse this message into its header 4, body ¢y ¢s ... ¢,, and trailer a. Including
the sequence number in the message’s header allows the receiver to decrypt the
message regardless of whether any preceding messages were damaged by either
line noise or an adversary’s actions.

Let C be the ciphertext message that the receiving SCM sees. If C differs
from C, this may be due to line noise or malicious actions of an adversary. A
SCM receiving C formats the message into a sequence number, a sequence of
cipher blocks, and a MAC as follows:

C = 1C1 Cy ... Cp @

The SCM maintains a receive sequence state variable in order to record the
sequence number of the last authenticated message that it received. The receive
sequence variable is initialized to zero at session negotiation. Before decrypting
the following ciphertext blocks, the SCM checks that the sequence number 7
contained in the message is greater than the SCM’s receive sequence variable. If
it isn’t, the SCM discards the remainder of the message. This check ensures that
an adversary cannot replay old messages. Provided the sequence number check

270 A.K. Wright, J.A. Kinast, and J. McCarty

succeeds, the SCM decrypts the message as follows:

Pz = iSzZ = ip Py Dn
where
P, = Dilg]®EL[ij0..]

The SCM forwards the decrypted plaintext blocks p; to the SCADA system as
soon as they are available, stripping the padding from the last block. Finally,
the SCM computes the MAC for the message as follows:

a = MACy [iP, Py --- Dyl

and compares it to the MAC @ received with the message. If the two match,
the SCM updates its receive sequence variable to the sequence number i of the
received message, and otherwise it logs an error.

Our encryption algorithm is essentially a cascade cipher composed of two
block ciphers, each using a different NIST-approved encryption mode [5]. The
plaintext is first encrypted using counter (CTR) mode with a counter that de-
pends on both the message sequence number and the block position within the
message. The result is reencrypted using electronic codebook (ECB) mode. We
call this combination position embedding (PE) mode since it embeds the position
of a plaintext block into its corresponding cipher block. The properties of PE
mode allow us to leverage the underlying SCADA CRC to assure data integrity.

3.3 SCADA Model

We model the operation of a SCADA unit receiving a decrypted SCADA mes-
sage S with the total function PAYLOAD. This function checks the format of
S, calculates and verifies the CRC, and either returns a substring of S that
represents the actual SCADA data with header and formatting stripped, or the
distinguished token error indicating that the message was either incorrectly for-
matted or the CRC check failed. We assume that for all S for which PAYLOAD
returns a non-error message substring, PAYLOAD returns either the same sub-
string or error for all prefixes of S. That is, PAYLOAD finds the shortest prefix
of S that can be interpreted as a valid SCADA message. Extra bits beyond the
end of that substring are either ignored or result in error. This assumption is
realistic as shortest-prefix decoding corresponds to what most SCADA systems
implement. Furthermore, any SCADA system in which a prefix of a valid mes-
sage was also a valid message would be susceptible to the longer message being
transformed into the shorter one by line errors.

3.4 Security

We consider the security of our protocol in the face of known plaintext attacks.
We do not consider chosen plaintext attacks because the adversary’s principal
goal is to disrupt the operation of the SCADA system and the physical processes

Low-Latency Cryptographic Protection for SCADA Communications 271

it controls. If the adversary is able to inject chosen plaintext messages into the
plaintext port of a SCM, the adversary has physical access to the SCADA system
and can likely perform far greater disruption and damage by other means.

To assure the integrity of SCADA messages, our protocol must guard against
an adversary injecting an unauthentic ciphertext message into the communica-
tions link, modifying a ciphertext message during its transmission, reordering
messages, or replaying an old message. Forging and alteration are prevented by
ensuring that an unauthentic ciphertext has a low probability of decrypting to a
SCADA message containing a valid CRC. Reordering and replay are prevented
by ensuring that an alteration of the sequence number will likewise result in a
low probability that the ciphertext decrypts to a SCADA message containing a
valid CRC. The following theorem captures this security property more precisely.

Theorem 1. Let CP be a collection of corresponding ciphertext, plaintext mes-
sage pairs defined as in Section[TZ Let PAYLOAD, as defined in Section [3.3,
return non-error for each plaintext message, and utilize an h-bit CRC whose
generating polynomial has the form g(z) = gnz" + gn_12" 4+ - 4+ g17 + go
where g, = 1 and go = 1. Let Ei [[] and Dy [-] be the encryption and decryption
functions of the b-bit block cipher used to form the ciphertexts in CP, with b > h.
Let C =i €, ... Ty be a ciphertext message, different from any of the ciphertexts
in CP, constructed by an adversary who knows CP but not the cipher key k.
Decrypt C to PZ=18Z=1p; ... Dy wherep; =Dy [¢;] B [i j 0...]. If P
is not one of the plaintexts in CP, then PAYLOAD(S) returns non-error with
probability at most 27"

The proof of this theorem relies on a new result on error detection by sys-
tematic shortened cyclic codes that differs from any of the results that we have
found in the literature.

Lemma 1. Let H be a systematic shortened cyclic binary code with generator
polynomial g(x) = gna” + gn_12" '+ -+ g1z + go where g, =1 and gy = 1.
Let w be any bit string of length at least h. If any h consecutive bits of w are
selected uniformly and independently at random, then w is a codeword of H with
probability 27"

Proof of Lemma [First, consider the long division process that is used to
encode or decode a message [6]. The function M, (-,-) represents one interme-
diate step of the division process:
Mi(bp—1-+-bo, gnh " go) =bn-1--+bo ifn=nh
Ml(bn_1~'~ bo, gn - go) =b,_o-- by ifn>handb,_1 =0
Ml(bn—l “bo, g go) = (bn—2 - gh—l) T (bn—h—l - 90) bp—h—2--bo
ifn>handb,_1 =1

To encode a message bit string m, h zero bits are first appended to it, and
then M is repeatedly applied until the result is h bits wide. Let M denote the

272 A.K. Wright, J.A. Kinast, and J. McCarty

repeated application of M until the result is h bits wide (transitive closure).
The concatenation m M(m 0p_1--- 0g) is a codeword. A received bit string w
is a codeword if and only if M(w) = 0p_1 --- Op.

Fix [and consider the set of all bit strings {bj_1--- by 0;—1 -+ 0g}. This
set has cardinality 2". We will show by induction on [that the set of remain-
ders after repeated application of M; has cardinality 2. The base case where
[= 0 is straightforward. For the induction step, we need to show that the set
{My(bp_1---by0;_1--- 09, gn--- go)} has cardinality 2". To see this, consider
the two cases for the values of b,_1. If b,_1 is 0, we have

Xo = {Mi(bp—1---bo0;—1--- 00, gn--- go)}
={bn_2---0p00;_2--- 0g}

and Xp has cardinality 2"~ !. If b;_; is 1, we have

Xy ={Mi(bp—1---b00i—1--- 00, gn--- go)}
= {(bh—2 — gn-1)--- (bo — 1) (0 —go) O—2 - - - O}
={(bh—2 —gn-1)--- (bo —g1) L 0j—2--- 0o} since go =1

and X has cardinality 2h=1 Since X, and X; do not intersect, their union has
cardinality 2".

Consider a bit string w = W+ (bp—1 -+ bp0;—1 - - - 0p) where |w| = [w] > h+1
and bits b1, ..., by are selected uniformly and independently at random. Then

M(w) = M@ + (byy_1 - by 0,1 --- 0g))
= M(@) +M(bh,1 e b() 0l71 e 00).

Now, M takes each element of {bj_1--- by 0;—1--- 0o} to a different image, by
the cardinality argument above. Hence M(bj—1 -+ by 0;—1 -+ 0p) is uniformly
distributed. Hence M (w) is uniformly distributed. Since M(w) has h bits, the
probability that w is a valid codeword is 27". O

CRCs are systematic shortened cyclic codes. Figure [J] gives the generator
polynomials for a number of CRC codes in widespread use, and all of those we
have encountered satisfy the prerequisites of Lemma [[] With Lemma [[]in hand,
we return to the proof of our security theorem.

Proof of Theorem [Not knowing the encryption key, an adversary is lim-
ited to constructing an unauthentic message P by choosing ciphertext blocks at
random, or by using ciphertext blocks from CP and (¢) modifying bits in cipher-
text blocks, (i7) changing the sequence number, and/or (ii¢) splicing together
ciphertext blocks from messages in CP, including reordering ciphertext blocks,
deleting ciphertext blocks, and inserting ciphertext blocks. We first show that
some of these cases lead directly to PAYLOAD returning error for the decrypted
message, while the remaining cases lead to at least one plaintext block of the
decrypted message being randomized.

Choosing ciphertext blocks at random or modifying bits in a ciphertext block
randomizes the corresponding decrypted plaintext block, due to real-or-random

Low-Latency Cryptographic Protection for SCADA Communications 273

CRC Code generator polynomial

CRC-4 gx)=a*+ 23+ 22+ +1

CRC-7 gx) =" + 2% +2* +1

CRC-84 g(m)=x8+w7+x6+x4+x2+l

CRC-8B g(z) =2 +a° +2* +1

CRC-12 g@) =+ttt et 1
CRC-ANSI g(z) = 210+ 215 42?2 41

CRC-CCITT glz) =2 + o' a® 4+ 1

CRC-SLDC g@) =2+ 4B 4"+t 2t a1
CRC-24 glx) =a* + 2 a2 a8 1
CRC-32 (IEEE 802.3) g(x) = 2 +2%° 4+ 2® + 22 + 20 4 2" 4 2!

Fig. 3. Generator Polynomials for Popular CRC codes [6]

indistinguishability of the cipher used in the term Dy, [¢;] in the decryption for-
mula.

Changing the sequence number 4 randomizes the term Ej, [Z 70..] in the
decryption formula, due to the security of the cipher used in this term, and thus
randomizes every block of decrypted plaintext.

Using blocks from different messages or moving blocks to different positions
within a message again randomizes the term Ej ﬁ J 0} in the decryption
formula, and thus randomizes the decrypted plaintext of any ciphertext blocks
from messages other than i or ciphertext blocks from 7 that do not occupy their
original message positions. Deleting ciphertext blocks from the end of a mes-
sage shortens the decrypted SCADA message, but by the assumptions in the
definition of PAYLOAD, PAYLOAD returns error on such a shortened mes-
sage. Adding ciphertext blocks to the end of a message lengthens the decrypted
SCADA message, but again by definition PAYLOAD returns either the same
result or error for such a lengthened message. Modifying the last ciphertext
block can shorten or lengthen the message by changing the padding bits, but
again PAYLOAD returns either the same result or error. Modifying the last
ciphertext block which contains the padding bits could also result in fewer than
h bits of the message being randomized. If this is the only portion of the message
that is randomized, we can consider this as a burst error of width less than h.
An h-bit CRC detects all such cases [6], and thus PAYLOAD returns error.

Now, if one or more plaintext blocks of S are randomized, we consider the
randomized blocks as errors introduced into an originally correct plaintext mes-
sage. Since b > h, there is at least one span of h consecutive bits that are
randomized. Thus, provided PAYLOAD finds S to be correctly formatted, the
CRC is correct with probability 27" by Lemma [Tl O

274 A.K. Wright, J.A. Kinast, and J. McCarty

3.5 Latency

We discuss latency in terms of the time required to transmit a character over
the long-haul SCADA communications line. For a typical SCADA configuration
of 1200 baud, 8 data bits, 1 start bit, and 1 stop bit, transmitting one character
takes 8.3 milliseconds. We assume that the plaintext and ciphertext ports of
both SCMs all use the same data rate, and that the SCADA system delivers
SCADA messages that are free of gaps. We also assume that SCMs have enough
computing power that encryption and decryption have no significant impact on
latency.

On the sending side, the SCM must wait to receive an entire block of plaintext
from the sending SCADA device before it can encrypt and begin transmitting
ciphertext. This requirement introduces a delay of % character times, e.g. 16
character times for AES with b = 128. However, the SCM can begin transmitting
the SCM message header, containing the sequence number 4, as soon as it receives
the first character of the SCADA message. Provided this header is shorter than
the cipher block length, the SCM will complete transmitting the header before it
receives enough plaintext characters to encrypt the first block. The transmission
time for the header is thereby entirely masked by the time required to receive
the first block of plaintext. Thus the latency introduced at the sender is exactly
g character times.

On the receiving side, the SCM must wait to receive an entire block of ci-
phertext before it can decrypt and begin forwarding the corresponding cleartext.
Again, this requirement introduces a delay of g character times. Receiving and
checking the MAC in the trailer is performed after (or perhaps during) the for-
warding of the decrypted SCADA message to the SCADA system, and hence
introduce no additional latency. The total delay introduced at the receiver is
thus g character times.

In sum, our protocol introduces a fixed latency of 2 - g character times,
regardless of the length of the SCADA message. For AES, this is 32 character
times.

4 Implementation

As observed earlier, our position embedding encryption mode is essentially a
cascade cipher composed of an ECB-mode cipher and a CTR-mode cipher. Since
these block ciphers use the same algorithm and key, during encryption they can
share the same special-purpose cipher unit in a hardware-based implementation,
or the same state variables and key expansion in a software implementation.
During decryption, however, the CTR-mode cipher is used in encryption mode
while the ECB-mode cipher is used in decryption mode, and this may preclude
sharing hardware units or software modules.

It is possible for both the sender and receiver to optimistically perform CTR-
mode encryptions for several blocks of several future messages in advance of the
receipt of those messages. While we expect even the least capable of the current

Low-Latency Cryptographic Protection for SCADA Communications 275

generation of embedded processors to provide more than adequate performance
for cryptographic operations at SCADA communications rates, this optimization
could be useful in other applications.

A Java implementation that codifies many of the details we expect to appear
in the AGA recommendation is available as open source [7]. This implementation
supports several cipher suites, of which one uses the position embedding mode
described in this paper. The implementation also includes a cipher suite that
relies on the MAC rather than the SCADA CRC to assure integrity, at the cost
of requiring the receiver to verify the MAC before delivering the deciphered
SCADA message. This cipher suite provides stronger security at the expense of
latency, and should be used in deployments where the additional latency can
be tolerated. In the future, additional cipher suites may be defined to support
different key lengths, MAC lengths, and encryption algorithms.

5 Related Work

Stream ciphers are particularly susceptible to known-plaintext active attacks,
and are thus unsuitable for protecting SCADA communications without the
additional protection of a MAC. This includes block ciphers used with CTR mode
alone. An adversary who knows the plaintext corresponding to an encrypted
message can recover the key stream, and then replace the message with a different
one that decrypts to a plaintext of his choosing. Even with only partially-known
plaintext, the linear nature of CRCs allows an adversary to patch up a CRC
underneath a stream cipher by performing operations on the encrypted stream.
These problems are well known vulnerabilities in the WEP protocol [R].

Stubblebine and Gligor [9] show how blocks from messages encrypted with
a block cipher in CBC mode may be spliced together to form unauthentic mes-
sages. Their attack applies even when the plaintext includes a CRC. Thus block
encryption with CBC mode alone provides inadequate integrity protection.

Our work has a similar goal to that of non-malleable cryptography, which
seeks to ensure that given a ciphertext, it is impossible to generate a different
ciphertext so that the respective plaintexts are related [10]. Our system achieves
a weaker property. While the plaintexts may be related, they will be sufficiently
unrelated that the CRC is likely to fail.

Beaver et al. describe an encryption scheme that uses the internal state of
the cipher to obtain authentication. Authenticated encryption solves a different
problem than we are concerned with, namely that of computing authentication
cheaply in parallel with encryption. However, the internal properties of their
cipher appear to provide similar randomization of the plaintext when the ci-
phertext is modified, and thus their cipher may be viable alternative to our
scheme. Ours has some advantage in being built entirely from NIST approved
primitives.

Gligor and Donescu [12] propose an encryption and authentication mode
called XCBC that requires only a non-cryptographic integrity check such as a
CRC to assure message integrity. Their method may also be a viable alternative

276 A.K. Wright, J.A. Kinast, and J. McCarty

to our scheme, however the fact that it is patented could deter broad acceptance
of a standard that employed it.

A good deal is known about the properties of cyclic and shortened cyclic
codes for detecting various kinds of errors, including burst errors [I3] and errors
over a binary symmetric channel [T4]. However, neither of these types of errors
precisely matches the types of errors that an adversary’s actions can introduce
with our encryption scheme. In particular, the classic results on burst errors,
which are sometimes stated imprecisely, apply to errors that occur as one single
consecutive string of randomized bits. In our situation, an adversary’s actions
can produce bursts of error bits separated by segments of non-error bits, to which
the classic results do not apply. Our Lemma [[]appears to represent a new result
on error detection.

6 Conclusion

The American Gas Association (AGA) develops and publishes standards for the
gas industry. In February 2004 the AGA 12 task group distributed for ballot
a draft of the first AGA 12 recommendation for protecting SCADA commu-
nications [T5]. This draft describes general requirements for a solution, and a
subsequent recommendation will specify a protocol in detail. Several vendors
are planning to build and market SCM devices that implement the final stan-
dard. These devices will likely be targeted for use not only in the gas industry but
in other industries such as power, oil, and water. It is our hope and expectation
that these devices will be widely deployed before a significant cyberterrorism
incident makes their need all too evident.

Acknowledgments. We would like to acknowledge the leadership of Bill Rush
of the Gas Technology Institute in the AGA-12 effort, the many individuals who
have contributed to the AGA-12 standards effort, and Mark Torgerson and Erik
Anderson at Sandia National Labs who provided valuable advice and critique.

References

1. Gas Technology Institute: http://www.gtiservices.org/security. (2004)

2. National Institute of Standards and Technology: Federal Information Process-
ing Standards Publication 197 (FIPS PUB 197), Advanced Encryption Standard
(AES). (2001)

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption: Analysis of the DES modes of operation. Proc. 38th Annual
Symposium on Foundations of Computer Science (1997)

4. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1997)

5. National Institute of Standards and Technology: NIST SP 800-38A 2001 ED,
Recommendation for Block Cipher Modes of Operation. (2001)

6. Wicker, S.B.: Error Control Systems for Digital Communication and Storage.
Prentice Hall (1995)

10.

11.

12.

13.

14.

15.

Low-Latency Cryptographic Protection for SCADA Communications 277

Wright, A.K.: http://scadasafe.sourceforge.net. (2004)

Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: The
insecurity of 802.11. Proc. MOBICOM (2001)

Stubblebine, S.G., Gligor, V.D.: On message integrity in cryptographic protocols.
Proc. 1992 IEEE Symposium on Research in Security and Privacy (1992) 85-104
Dolev, O., Dwork, C., Naor, M.: Non-malleable cryptography. Proc. 23rd ACM
Symposium on Theory of Computing (1991)

Beaver, C., Draelos, T., Schroeppel, R., Torgerson, M.: ManTiCore: Encryption
with joint cipher-state authentication. IACR Preprint, 2003/154, www.iacr.org
(2003)

Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. Presented at the 2nd NIST Workshop on AES
Modes of Operation, Santa Barbara, CA (2001)

Peterson, W.W., Weldon, E.J.: Error correcting codes. MIT Press, Cambridge, MA
(1972)

Witzke, K.A., Leung, C.: A comparison of some error-detecting CRC code Stan-
dards. IEEE Trans. Commun. COM-33, No. 9, 996 (1985)

AGA 12 Task Group: Cryptographic protection of SCADA communications: Gen-
eral recommendations (2004)

	Introduction
	Requirements for SCADA Communications Protection
	Retrofit Protection for SCADA Communications
	Protocol Overview
	Encryption
	SCADA Model
	Security
	Latency

	Implementation
	Related Work
	Conclusion

