
X2Rep: Enhanced Trust Semantics for the XRep
Protocol

Nathan Curtis, Rei Safavi-Naini, and Willy Susilo

Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong 2522, Australia

{nathanc,rei,wsusilo}@uow.edu.au

Abstract. Peer-to-peer file sharing networks are a popular means of
sharing a diverse range of resources and information. Many of today’s
most widely used file sharing networks are built on the Gnutella file shar-
ing protocol. The open, insecure nature of such networks means that
they are susceptible to the distribution of malicious, unauthentic or low
quality resources. XRep is a reputation-based trust management system
designed to reduce the number of malicious or low quality resources dis-
tributed in a Gnutella file sharing network. XRep is significant in that it
can be integrated into a Gnutella environment with minimal disruption.
This is achieved primarily through the use of the same message passing
mechanism as in the standard Gnutella protocol. We demonstrate that
the trust semantics algorithm employed by XRep has a number of weak-
nesses and does not produce correct trust values when used against a
range of strategies that can be employed by malicious agents. We de-
scribe an enhanced trust semantics algorithm called X2Rep that can be
seamlessly incorporated into the XRep protocol. We demonstrate that
this algorithm is robust against such strategies, offers a high degree of
expressiveness in voting and vote evaluation and significantly reduces the
network communications required by the XRep protocol.

1 Introduction

Peer-to-peer (P2P) file sharing networks have become a popular way of dis-
tributing a diverse range of resources and information. P2P systems are truly
decentralized systems that are believed to reflect society better than other types
of computer architectures. In a P2P network each node is a client and server
both, and by participating in the network allows others to access its comput-
ing resources. P2P networks have a number of attractive properties including
scalability, anonymity and fault-tolerance, that are much harder to achieve in
traditional networks. Nodes can join and leave the network without leaving any
trace and while active can initiate downloads and respond to queries. However
due to the lack of accountability, such networks have tremendous potential to
be misused. For example a malicious peer can use the network to distribute
malicious code [7].

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 205–219, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

206 N. Curtis, R. Safavi-Naini, and W. Susilo

Another important problem is authenticity and quality of downloaded re-
sources. Unauthentic or poor quality resources could be deliberately shared by
the casual user. A peer that has requested a resource may receive one or more
response(s) and needs to decide which one, if any, to download. In the absence of
any mechanism to differentiate between good and poor quality resources a peer
may have to download a resource many times and this will result not only to the
high network cost but also contribute to network load and slower downloads.

Traditional methods of providing security in networks cannot be implemented
effectively as the heavy use of cryptography will not only slow down the net-
work but also may be unacceptable to users with less powerful computers. An
approach to increase reliability of P2P networks without loosing their essential
properties including anonymity is to use reputation systems to identify the qual-
ity of peers and resources. A reputation system collects, processes and distributes
information about entities based on their history in the system [7]. For exam-
ple in a P2P system, a peer’s reputation may be determined by its behaviour
in previous transactions, and a resource reputation may be determined by the
evaluation of peers who have downloaded the resource.

In [5], a reputation based trust management system for the Gnutella protocol
was proposed that has a number of attractive properties. The system uses repu-
tation of peers and resources both, to assist a requesting peer in selecting which
resource to download. The reputations generated by the system allow a user to
have an indication of the level of risk associated with the download, hence en-
abling him to make the required provisions. This is the first system that includes
reputations of resources and is shown that because of this inclusion a number
of known attacks can be prevented. An important feature of the system is that
the reputation system can be incorporated into the Gnutella protocol and the
additional information be piggybacked onto the existing Gnutella protocol.

1.1 Our Contribution

We present a trust semantics algorithm called X2Rep that extends the XRep
protocol. The purpose of X2Rep is to address the weaknesses of XRep. We
demonstrate that our algorithm provides substantial improvements against these
weaknesses using extensive simulations. We give more expressive power to peers
to express their opinion about resources that they have downloaded and the
peers that they have downloaded from. We allow collusions of malicious peers to
use a range of strategies and use the reputation to protect against these attacks.

A major challenge to the development of a reputation system is to ensure
the reliability of gathered reputation information. In particular, it is vital that
any “vote spoofing” activity is as difficult or expensive as possible for malicious
agents. The XRep protocol uses a complex process of challenge and response
messages to ensure that a vote is supplied by a ‘real’ peer. We eliminate this
complexity by employing extensive vote generation and evaluation system that
makes use of voter credibility information. Voter credibility is an additional piece
of information that helps an evaluating peer to determine the trustworthiness of
a voter’s vote through the evaluation of the voter’s previous voting activity.

X2Rep: Enhanced Trust Semantics for the XRep Protocol 207

1.2 Related Work

Reputation-based trust management systems must address issues at two levels
[2]: 1) Data Management, and 2) Trust semantics. Data management is con-
cerned with the storage and dissemination of reputation information in a dis-
tributed environment with no centralised control. Trust semantics specify the
model for the evaluation of ‘trust’ through the computation of gathered reputa-
tion information.

Data management techniques used in distributed reputation-based trust
management systems fall into two broad categories:

1. Peers maintain repositories of their experiences and make it available to
others through a voting mechanism;

2. Reputation information is held in the network and is accessed through an
additional network overlay, such as a distributed hash table (DHT).

Work in the former category includes XRep [5] and its predecessor, P2PRep [4].
In both protocols the reputation information is piggybacked onto the Gnutella
P2P file sharing protocol. In the P2PRep protocol reputation information is
associated only with peers.

Work in the latter category includes EigenRep [6] that uses a distributed
hash table as its network overlay. Another system in this category is proposed
by Aberer and Despotovic [2] and uses a P-Grid [1] as its network overlay. A novel
aspect of this system is the use of a complaint system for assigning reputations.

The rest of this paper is organised as follows. In Section 2.1 we give a
brief overview of the Gnutella protocol and XRep protocol. Section 3 gives our
analysis of the system and its shortcomings. Section 4 defines the properties
that must be found in a reputation system. Section 5 describes X2Rep, our
trust semantics algorithm. Finally, Section 6 concludes the paper.

2 Peer-to-Peer File Sharing

Recent years have seen a tremendous growth in the popularity of peer-to-peer
(P2P) file-sharing networks [9]. Traditionally, the term P2P has been used to
describe a decentralised network architecture in which all peers have equal roles
and responsibilities, and follow the same behavioural patterns. In a P2P network,
a peer acts as both client and server and exchanges information and services
directly with other peers. Often, a peer also acts as a router, forwarding messages
it receives to directly connected neighbours.

Each peer in a P2P file-sharing network participates by offering files for
downloading by other peers. A file exchange interaction follows two phases; a
search phase in which the enquirer attempts to locate a peer offering the desired
file, and a download phase in which the peer connects directly with the offerer to
initiate the download, commonly using traditional protocols such as HTTP or
FTP. Many of todays most widely used P2P file sharing applications are based
on the Gnutella protocol [8].

208 N. Curtis, R. Safavi-Naini, and W. Susilo

2.1 XRep Protocol

XRep [5] is a notable reputation based trust management system that can
be straightforwardly piggybacked onto the Gnutella P2P file sharing protocol.
XRep defines a secure protocol for the exchange of reputation information us-
ing the same message passing mechanisms as used in standard Gnutella Query
andQueryHit exchanges. Thus, to provide XRep functionality, current Gnutella
implementations require only modest modifications.

In XRep reputation information is associated with both peers and resources.
XRep requires resources and peers to be uniquely identifiable. This is achieved
by using the digest of a resource’s content as the resourceid, and the digest
of the public key of a peer as the peerid. Using a cryptographic hash function
ensures that the resources and the peers are uniquely identifiable.

When considering a file download in Gnutella, the user selects the resource
that best satisfies the request (using information such as the standard resource
meta data string and offerers connection speed). To assist the user in making
the download decision, the network is ‘polled’ for any available reputation infor-
mation on that resource and the peers that offer it. Poll messages are broadcast
in the same way as Gnutella Query messages. All peers maintain repositories of
their experiences (both good and bad) of resources they have downloaded and
the peers with whom they have interacted. When a peer receives a Poll message,
it checks its repositories for matching resource and peer identifiers. If it has some
information to offer, it generates a set of binary votes based on its experiences,
and returns them to the enquirer as a PollReply message.

The resource and peer votes are then processed and combined to produce a
single value to the user as a reputation value for the download under consider-
ation. Based on this reputation value, the user can make a decision whether or
not to initiate a download.

Prior to the download, the offering peer for whom the highest peer reputation
value was calculated is contacted directly to verify that it has really offered the
target resource. This exchange is known as the Best Peer Check.
We note the following about the protocol.
Phase 1. A minor change to the Gnutella Query exchange is required; the re-
source identifier is added to the resource information contained in the ResultSet
of the QueryHit message. This allows the polling peer to uniquely identify each
offered resource.
Phase 2. The poll message consists of the identifier of the resource under con-
sideration and the set of peers that offer it. Also included is a public key Pkpoll

for which only the polling peer knows the private key. This may be a persistent
key pair or a pair generated on the fly for each poll. Voting peers return their
votes for some or all of the entities listed in the Poll message together with their
IP address. The message is encrypted with Pkpoll to ensure confidentiality.
Phase 3. Once a set of votes are received, the polling peer must try to ensure the
reliability of the votes and the honesty of the voters. The polling peer attempts
this by carrying out the following steps.

X2Rep: Enhanced Trust Semantics for the XRep Protocol 209

– Decrypt each PollReply message and detect any tampering that may have
taken place.

– Group votes from voters that are from the same IP network.
– Select a portion of peers from each group send a TrueVote challenge, from

which the poller expects to receive a TrueVoteReply. This ensures that at
least some of the votes are from genuine peers and not merely spoofed votes
from non-existent IP addresses.

Phase 4. At this stage the polling peer has evaluated trust for all the entities
under consideration. The poller now carries out one further phase to ensure that
the peer with the best trust evaluation exists and actually offers the resource. It
is important for two reasons:

– A malicious peer is prevented from ‘hijacking’ the identity (peerid) of a rep-
utable peer.

– If it can be established that the resource has a good reputation and is of-
fered by a peer with a good reputation, then it is possible to download that
resource from any offerer and be assured that the resource is reliable. This
can be considered as a load balancing technique.

3 Evaluating XRep

XRep uses the same constrained broadcast and back propagation mechanisms as
used in the standard Gnutella Query and QueryHit exchange and therefore effec-
tively doubles the amount of traffic required to complete a single transaction. A
number of additional messages must also be exchanged to ensure vote reliability
and the existence of voting peers.

The main shortcoming of XRep is the inadequacy of trust semantic and cal-
culation of reputation values. In XRep a peer’s experience repository consists
of a table that contains a binary value for each resource describing the peer’s
opinion, good (+) or bad (-), about the resource, and a peer repository, which in-
cludes triplets of (peerid, numplus, numminus) that records the number of good
and bad download counts for each peer.

When polled, a peer converts these experiences into a binary vote for each
entity matched in the poll message. Although these values are adequate to pro-
vide rudimentary information on whether a peer or resource is good or bad, finer
evaluations such as the voter’s judgement on the quality of a resource cannot be
expressed. This results in the reputation calculation becoming ineffective against
a range of malicious strategies. Important successful malicious strategies are the
following.

– The generation of “spoofed” positive votes from fake peer identities.
– The systematic generation of positive votes for other members of a voting

clique.
– The generation of negative votes for genuine peers in order to reduce their

evaluated trust value.

210 N. Curtis, R. Safavi-Naini, and W. Susilo

The XRep protocol attempts to ensure the reliability of votes and protect
against votes originating from colluding peers. This is by identifying voting
cliques through clustering the votes that are provided by voters with the same
network portion of their IP address. Such a correlation between colluding peers
and IP addresses is tenuous because,

– Users connecting via a proxy server will share the same network part of their
IP address and will therefore be considered as part of a voting collusion. It is
therefore likely that a substantial number of legitimate votes will be treated
as malicious.

– It is highly likely that, in the real world, malicious agents will have completely
different IP addresses, for example, if they subscribe to different providers.
These agents will therefore be able to continue generating spurious votes
unchallenged.

– The protocol requires that a portion of the clustered peers be directly con-
tacted to ensure that the they have actually voted. It is impractical to di-
rectly contact any more than a very small proportion of peers from each
cluster and therefore a large amount of spurious voting activity could poten-
tially continue unchallenged.

XRep provides some safeguards against ID Stealth attacks. These attacks
take place when a malicious peer ‘hijacks’ the identity (peerid) of a reputable
peer in order to deceive another peer into a malicious download. In such cases,
the downloading peer believes it is interacting a peer with a good reputation.
XRep provides safeguards against this attack in the Best Peer Check message
exchange. Prior to downloading a resource, the downloading peer challenges the
offering peer as to whether it really does offer the resource under consideration.
The offering peer sends a response that is signed using its private key, and also
supplies its public key. The downloading peer can be certain of the identity of the
offering peer, firstly by verifying the signature of the message, and secondly by
taking a cryptographic hash of the provided public key and comparing it against
the peerid of the offering peer. If all verification is successful the downloading
peer can initiate the download.

3.1 Malicious Strategies

We focus on three basic strategies that can be employed by a single malicious peer
or a group (collusion) of malicious peers with the intention of circumventing or
degrading the reputation system in order to continue to share malicious resources
unchallenged. We outline these strategies in the following sections.

Strategy A. This strategy is the simplest way for a malicious peer to share
malicious resources. The peer actively participates in the network by offering
good resources. However occasionally the malicious peer will offer malicious re-
sources. The malicious peer must carefully monitor the amount of good and
bad resources it supplies in order to maintain a network-wide reputation that is
sufficiently high for other peers to deem it trustable.

X2Rep: Enhanced Trust Semantics for the XRep Protocol 211

Strategy B. In this strategy a malicious agent attempts to degrade the quality
of the reputation system by generating spurious votes when polled. The principal
objective of this strategy may either be to simply degrade the correctness of
reputation values to the point where these information are no longer trustable,
or to attempt to increase the peer’s relative standing by voting positively for
itself and negatively for all others.

Strategy C. This strategy shares a similar objective with Strategy B. The
principal differentiator is that more effort and resources are required on the
part of the malicious peer(s) and such activity is harder to counteract by the
reputation system. A group of peers systematically vote positively for each other
whilst sharing malicious resources. Each peer in the group may also share some
good resources in order to enhance its own reputation. The difficultly in detection
of this strategy results from the evaluating peer receiving what appears to be a
set of valid votes sent by real peers.

Other strategies hybrids of the basic strategies identified above to further
increase their effectiveness.

4 Reputation-Based Trust Management for Peer to Peer
Networks

The aim of a reputation system is to provide some kind of ‘rating’ that can be
used by users to select a resource and a peer from which the resource will be
downloaded. The reputation system, at each time t, will result in a number σx(t),
the reputation score for x, such that a high score represents the genuineness of
x (peer or resource) and low score, shows the opposite, and t is the time. A
reputation system must satisfy the following properties.

1. Correctness and Soundness: the system must ensure that genuine
entities x will eventually receive high σx

0 and fake entities (malicious peer or
resource) will eventually receive low σx

0 , where σx
0 denotes a True Score.

2. Dynamic behaviour: Reputation scores vary over time. We require that
the reputation of an entity x to stabilize to a True Score, σx

0 . That is although
the instant value of reputations will change but after a transient phase their
values will be within an ε error from the True Score. We are also interested
in the transient behaviour of the function σx(t) with time: that is the rate of
convergence of σx(t) to σx

0 . This is a measure of effectiveness of the system.
There are a number of conflicting requirements on the dynamic behaviour of

the system.

1. Start up: A reputation system must provide a strategy for a genuine entity
(resource or peer) to join the system (resource to be chosen for download,
and peer be selected to download from). However the start-up strategy must
prevent malicious agents from entering the system.

2. Runtime protection: A reputation system must ensure that an existing ma-
licious entity will loose its reputation, even if it starts with high reputation
value, after a defined length of time.

212 N. Curtis, R. Safavi-Naini, and W. Susilo

The strategies that are used to speed up Runtime behaviour in general will
make the start up phase of genuine entities slower. Balancing the two require-
ments must be done for each particular system.

σx(t) converges to σx
0 in minimum time. We accept that since reputation is a

function of time over a period of time, its value could be different from its true
value. We require that the system can be stabilized to its true value.

4.1 Requirements of a Reputation System

Reputation values are evaluated through the past experience of a peer and its
response to a current query. Applying the above principles to an XRep type
reputation system for P2P file sharing we will have the following groups of re-
quirements.

Security Requirements

S1 Honest peers should be able to join the network and introduce resources in
the network as they wish. The reputation of both resource and peer should
raise to a level τ , determined by the network designer, that gives them a
reasonable chance of being chosen by other peers.

S2 Reputations must be calculated and and propagated through the network
securely, and at a sufficient rate to allow timely identification of malicious
resources and/or peers.

We note that requirement S2 implies that a secure communication environ-
ment exists. However following XRep approach we will not assume a secure
communication layer and will incorporate the required security as part of the
reputation system. This includes protection against the deletion of and tamper-
ing with recommendations whilst in transit. We note that we need not consider
source authentication because of the anonymous nature of the system.

One may assume such a layer to be able to focus on the design and behaviour
of reputation functions and their dynamics.

Operational Requirements

1. A reputation system should maintain the essential properties of the un-
derlying P2P system. In the case of Gnutella, this includes a decentralised
architecture, network transitivity, and anonymity of participants.

2. Reputation system can assist with balancing the load in the system. That is,
use reputation values as a mechanisms to ensure avoidance of unnecessary
bottlenecks by using harsh assessments of entities (for example by using only
zero and one for reputation values).

A reputation system will add some communication and computation cost to the
original system.

Efficiency

1. The reputation system must not produce excessive network traffic to the
extent that the service provided by the underlying network is degraded.

X2Rep: Enhanced Trust Semantics for the XRep Protocol 213

2. A reputation system must not require excessive storage space and computa-
tion power from peers in the network.

In the following section we propose modifications to XRep protocol to provide
protection against the malicious strategies outlined in Section 3. We describe
how this can be achieved at little cost to each peer, requiring only a modest
amount of additional storage space and computational power. We also describe
how the introduction of voter credibility allows XRep network communications
to be simplified, reducing network traffic.

5 X2Rep

X2Rep is designed to address the weaknesses of the XRep protocol. The X2Rep
reputation system provides safeguards against threats posed by collusions of
malicious peers, attempting to circumvent the system and causing malicious
downloads. The algorithm achieves its security goal whilst reducing communi-
cations overhead. This is achieved by determining the trustworthiness of voters
by using voter credibility, rather than by clustering voters and requiring that a
portion of them confirm their vote.

5.1 X2Rep Trust Semantics Algorithm

We describe the system by breaking it down into four logical parts: 1) Local
Reputation Repository; 2) Voting; 3) Evaluating Ratings for Downloads; and 4)
Updating State on a Peer. Each of these is described in detail in the following
sections.

Local Reputation Repository. Each peer will store data expressing its expe-
riences with peers and resources that it has interacted with. For each downloaded
resource with identification string Resourceid, it stores a pair (Resourceid,
λResourceid

), where λResourceid
is a real value between 0 (poor or malicious) and

1 (good), that is a measure of satisfaction of the peer with the resource.
For each peer Pj that Pi has interacted with, Pi maintains a vector of length

n storing its past n experiences with that peer . The peer Experience Vector υij

is denoted by υij = (Pj , (qij,1, qij,2, qij,3...qij,n)) where qij,k, k = 1, · · ·n are real
values between 0 (poor or malicious) and 1 (good).

On completion of each transaction with the peer Pj , Pi evaluates the trans-
action and generates a number that reflects his satisfaction and appends it to
the end of the Experience Vector associated with peer Pj . The vector stores the
results of the most recent n experiences and so as new experiences are appended
the oldest ones are removed. During the initialization phase all data items will
be set to zero.

214 N. Curtis, R. Safavi-Naini, and W. Susilo

Voting
Resource Vote. The vote of peer Pi for a resource with ID (resourceid is simply
λresourceid

). This allows the polling peer to learn precisely how the voting peer
rated the resource.
Peer Vote. Voting for a peer uses the content of the Experience Vector associated
with that peer. This information will be used to generate a vote that is a number
in the interval [0, 1]. The function that is used to calculate the vote must cater
for conflicting requirements. On one hand it must harshly treat peers who have
resulted in a bad experience so that opportunities for malicious agents to share
malicious resources while still enjoying a good reputation are reduced. On the
other hand the system must provide tolerance for situations in which an other-
wise good peer inadvertently shares a bad resource, perhaps by downloading it
from a malicious peer and leaving it in its shared directory. In such a circum-
stance, the innocent peer should not be penalized to such an extent to exclude
it from all subsequent transactions.

To reconcile the above conflicting requirements we will use a vote evaluation
function that uses all elements of the E(i, j) and reduces the effect of low ratings
by using the square function. To generate the vote νi,j of peer Pi for peer Pj ,
we use the following:

νij =
∑

k υ̃ij,k/n

One may use other criteria, for example giving more importance to more
recent experiences or emphasizing bad experiences. To implement the function
in the former case higher weights (multipliers) may be used for more recent
experiences, and for the latter case a higher power function (xn), can be used.

Using the Experience Vector and the above method of calculating votes, pro-
vides a conservative method of admitting newcomers to the system with reputa-
tion built over time. Experience vectors are initialised to zero, resulting in votes
for newcomers to be low until the experience vector for that peer is filled with
real experience values. Using this method, a newcomer must make some effort in
order to gain a good reputation. One way this can be achieved is for a newcomer
to share popular resources that already have a good reputation. Similarly, new
resources can build a good reputation by being offered by reputable peers. Ma-
licious agents must also undertake this effort to gain a positive reputation and
it is a primary consideration of the X2Rep protocol that the speed with which
malicious activity is identified, that this effort is not worthwhile.

Evaluating Ratings for Downloads. After a specified time period (set in
a configuration file) the polling peer will have received zero or more PollReply
messages (votes). The peer must now convert these votes into an evaluation for a
possible transaction. Each transaction is specified by a resourceid and a peerid.

If rating evaluation is only based on the votes received from other peers, the
polling peer implicitly assumes the voting peers are honest. However a received
vote may have been spoofed, or may be generated as part of a malicious strategy
used by a group of colluding peers. To reduce this implicit trust in voting peers

X2Rep: Enhanced Trust Semantics for the XRep Protocol 215

we introduce an additional factor called credibility. Credibility focuses on the
reliability of peers with respect to the voting process and is an indication of the
confidence that a polling peer places in the votes provided by other peers. The
experience vector reflects the satisfaction of Pi with respect to transactions with
a specific peer and combines quality of the downloaded resource and the peer.
The credibility cij is given by the peer Pi for the peer Pj that has provided votes
in previous transactions and will be stored in the Local Credibility Repository of
the peer Pi. Credibility cij is a real number in the interval [0, 1] and is initialised
to zero for an unknown peer.

On completion of a transaction, credibility of all the peers who had partici-
pated in the voting phase of the transaction are updated. The updating policy
may vary. The aim of this policy is to reward the peers who have voted correctly,
that is in accordance with the assessment of the transaction after the download,
and punish those whose votes were contrary to this assessment. Voter credibility
is updated for all peers who participated in the voting process, whether the peer
voted for the resource, offering peer(s) or both.

Credibility values will be used to adjust a peers’ votes for the current down-
load. A peer Pi that sent a resource vote µ to polling peer Pj , will have the
Adjusted Resource Vote µ̃i as µ̃ = µcij . A peer Pi, that sent a peer vote νij about
offering peer Pj to peer Pl, will have the Adjusted Peer Vote ν̃ij as: ν̃ij = νijcli.

To collate these voting information to produce a single value for the rating of
each entity (resource, or peer) one may use an average value. However this could
result in attacks by large collusions to succeed. We noted that a collusion of
malicious peers may degrade the reputation of an entity (resource or peer) by all
providing bad votes during the polling phase. The X2Rep protocol mechanism
to detect and counter such activities is to identify agents that vote inaccurately
and punish them by reducing their credibility to zero. As such, a vote cast by an
agent with no credibility will have little effect on the summation the of adjusted
votes. However, if we are not careful in this approach, a large number of votes
of this nature will significantly reduce the calculated trust value. To negate this
attack we choose not to include votes from peers for which there is no credibility
rating or peers whose credibility rating is zero. Thus:

– Resource Trust Value Rτi =
∑

µ̃i where ci is not 0
– Peer Trust Value Pτj =

∑
ν̃ij where ci is not 0

Rτi and the set of Pτj will be used to find the most trustworthy offering peer
and to determine whether the transaction can be considered trustworthy overall.
A simple approach will be to use threshold values to define trust categories and
determine the category of an entity with a given calculated trust by comparing it
against this threshold. For example running averages of all previous Rτ and Pτij

can be maintained and the difference of the calculated trust and these values be
used as to determine the category of the current entity.

The final trust value presented to the user will be a combination of the
resource and peer trust values. The simplest approach would be to find the
average of the two values. Users can use trust categories combined with other
criteria, for example accepted level of risk, to make the final decision.

216 N. Curtis, R. Safavi-Naini, and W. Susilo

Updating State on a Peer. After the completion of a transaction, the state
information of the downloading peer must be updated. This includes the follow-
ing.

– Updating the downloading peer’s Local Reputation Repository with peer and
resource evaluation values.

– For each peer that provided a vote:
• If the voting peer Pi provided an accurate vote ci = ci + 0.05.
• If the voting peer Pi provided an inaccurate vote ci = 0.

Although reducing ci to zero for a single inaccurate vote may seem harsh
but this will protect against a malicious agent who plans to build credibility
and then subsequently use that credibility to provide inaccurate votes over an
extended period. Reducing credibility to zero after a single inaccurate vote will
minimise the success chance of such peers. This is an important feature as it is
relatively easy to build credibility. Clearly, an unfortunate consequence is that a
well-intentioned peer that mistakenly provides an inaccurate vote will have its
credibility reduced to zero on the downloading peer.

5.2 XRep Protocol Modifications

X2Rep requires that the PollReply message in phase 2 of the XRep protocol be
modified to include the identity of the sending peer. Thus we define the message
as: PollReply ({[peerid, votes]Skvoter,Pkvoter}Pkpoll).

The voting peer sends it peerid and the set of votes signed using its private
key Skvoter, and its public key Pkvoter.The entire message is encrypted with the
public key of the polling peer Pkpoll which had been sent in the Poll message.

This modification to the PollReply message is significant because it allows the
polling peer to be certain that the peerid provided belongs to the voting peer and
thus it can find the correct credibility rating. This assurance is made in what
will now be phase 3 of the XRep protocol as follows:

1. The polling peer decrypts the message using its private key Skpoll.This pro-
vides confidentiality to the message and votes cast.

2. The polling peer verifies the signature of the peerid and votes token using the
public key provided by the voting peer Pkvoter.This ensures that integrity of
the token.

3. The polling peer finds the digest of the public key provided by the voting
peer Pkvoterusing a secure hash function and compares the result to the
peerid provided by the voting peer. If these values are equal then the polling
peer can be assured that peerid provided in the message really belongs to
the voting peer.

The polling peer can then search its Local Credibility Repository for a rating for
that voting peer. Obviously, there is nothing to stop a malicious agent creating
a new peerid and key pair with which to vote, but the polling peer will have no

X2Rep: Enhanced Trust Semantics for the XRep Protocol 217

credibility rating for that peerid and the vote will not carry any weight in the
trust evaluation. We note that peerid is an opaque identifier and does not affect
the anonymity provided by the underlying system.

As a result of this modification, a number of alterations can be made to the
XRep protocol.

– Vote clustering techniques in phase 3 of the XRep protocol are no longer
required. Such techniques offer little protection against the activities of col-
lusions of malicious agents. X2Rep provides a more robust approach, com-
bining the verification of the peerid provided in the PollReply message and
the use of voter credibility ratings.

– The TrueVote and TrueVoteReply message exchange in Phase 3 is no longer
required as the verification of votes and authentication of the peerid are now
provided in the PollReply message.

– For the same reason phase 4, the Best Peer Check message exchange is also
not required.

These modifications significantly reduce the amount of message exchanges re-
quired by the protocol, whilst providing more a robust approach to combat
malicious strategies. It should be noted that the X2Rep algorithm requires an
additional signature in the PollReply message. The extra computation required
for this signature is not negligible but we argue that it still remains more efficient
than the network communication that it replaces.

The XRep protocol with X2Rep extensions is summarised in table 1.

5.3 Consideration of X2Rep Properties

In this section we consider how the X2Rep extensions measure against the prop-
erties of a reputation system, as defined in section 4.

Firstly we analyse the effects of the X2Rep extensions on efficiency. A ma-
jor design goal of X2Rep is to reduce the amount of network communications
required to determine trust. This is to ensure that the system is as scalable
as possible within the constraints of the underlying architecture [9,3]. This is
achieved by making redundant several unnecessary XRep network communica-
tion phases. This considerable benefit is reached as a result of a small amount of
additional storage and computation resource use on each host machine. Given
the processing power and amount of disk space available on modern PCs, we
believe this trade off is reasonable.

Both XRep and X2Rep fullfil the operational requirements of a reputation
system. Neither system requires any modifications to the underlying network
architecture or its dynamics. Furthermore, the inherent anonymity provided by
the network is retained. This is achieved through the use of opaque identifiers,
which cannot be traced to individual participants.

X2Rep provides significant improvements over XRep in its security proper-
ties. X2Rep utilises the cryptographic security features provided by XRep that
prevent vote tampering. This is obtained through the use of digital signatures.

218 N. Curtis, R. Safavi-Naini, and W. Susilo

Table 1. XRep Protocol with X2Rep extensions

Phase Description
1 Resource
Searching

Poller to Network: Query (search string, min speed)
Offerer to Poller: QueryHit (no hits, IP, speed, ResultSet, trailer,
peerid)

2 Resource
Selection
and Vote
Polling

Poller to Network: Poll ((resource id, {peer1,. . . .peern}, Pkpoll)
Voter to Poller: PollReply ({[peerid, votes]Skvoter,Pkvoter}Pkpolr)

3 Vote Eval-
uation

Actions:

– Find credibility ratings for voting peers and adjust votes accord-
ingly.

– Create Adjusted Resource and Peer votes and compare them with
each other and with the Trust Threshold values.

4 Resource
Download

Actions:

– Select peer from which to download
– After download, check the resource’s digest
– Update repositories and credibility ratings

Legend
(Pk i, Sk i) pair of public and private keys where i can be a peer or poll request
{M}kencryption of message M under key k
[M]k signature of message M under key k

Furthermore, the smarter vote evaluation algorithm protects against generation
of false reputations through the execution of malicious strategies. We have ex-
plored this improvement in our simulation. However, due to the page limitation,
we omit the detail in this paper and we refer the reader to the full version of
this paper.

X2Rep continues to deliver the same safeguards as XRep against ID Stealth
attacks. The primary modification is that X2Rep requires that the offering peer
provides both its public key and peerid within the PollReply message, and that
the message is signed by its private key. Prior to initiating a download from a
selected offering peer the downloading peer can carry out the same verification
as previously described in the Best Peer Check phase of the XRep protocol.

6 Conclusion

We have presented X2Rep, a trust semantics algorithm that extends the XRep
reputation-based trust management protocol. X2Rep provides reliable evaluation
of trust even against a number of hostile environments. We started by describing

X2Rep: Enhanced Trust Semantics for the XRep Protocol 219

the XRep protocol and identified some weaknesses. We then outlined our algo-
rithm by describing the semantics for the storage of experience information, the
generation of votes and the evaluation of trust. We gave detailed descriptions
of how X2Rep improves on the XRep protocol, including how two of the XRep
message exchanges can be dropped. We then demonstrated through simulation
that although the performance of a simplistic trust semantics algorithm is com-
parable to X2Rep in an environment where no malicious strategies are imposed,
X2Rep displays far more accuracy and robustness when such strategies are intro-
duced. Our conclusion is that when X2Rep is integrated into the XRep protocol,
a significant improvement in trust evaluation reliability can be obtained. Fur-
thermore, this improvement is achieved whilst reducing network traffic and the
complexity of the protocol.

References

1. Aberer, Cudré-Mauroux, Datta, Despotovic, Hauswirth, Punceva, Schmidt, and Wu.
Advanced Peer-to-Peer networking: The P-grid system and its applications. EPFL
Technical Report IC/2002/73, 2002.

2. Aberer and Despotovic. Managing trust in a Peer-2-Peer information system. Proc
of the Ninth International Conf on Information and Knowledge Management, 2001.

3. Anderson. Analysis of the traffic on the gnutella network. March 2001.
4. Cornelli, D. C. di Vimercati, Paraboschi, and Samarati. Choosing reputable servents

in a P2P network. May 2002.
5. Damiani, C. di Vimercati, Paraboschi, Samarati, and Violante. A reputation-based

approach for choosing reliable resources in peer-to-peer networks. November 2002.
6. Kamvar, Schlosser, and Garcia-Molina. Eigenrep: Reputation management in p2p

networks. 2002.
7. Resnick, Zeckhauser, Friedman, and Kuwabara. Reputation systems: Faciliating

trust in internet interactions. 2000.
8. C. D. S. Services. The gnutella protocol specification v0.4 document revision 1.2.
9. K. Sripanidkulchai. The popularity of gnutella queries and its implications on scal-

ability. 2001.

	Introduction
	Our Contribution
	Related Work

	Peer-to-Peer File Sharing
	XRep Protocol

	Evaluating XRep
	Malicious Strategies

	Reputation-Based Trust Management for Peer to Peer Networks
	Requirements of a Reputation System

	X2Rep
	X2Rep Trust Semantics Algorithm
	XRep Protocol Modifications
	Consideration of X2Rep Properties

	Conclusion

