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Abstract. A continuous-time Markov decision process (CTMDP) is a
generalization of a continuous-time Markov chain in which both prob-
abilistic and nondeterministic choices co-exist. This paper presents an
efficient algorithm to compute the maximum (or minimum) probability
to reach a set of goal states within a given time bound in a uniform CT-
MDP, i.e., a CTMDP in which the delay time distribution per state visit
is the same for all states. We prove that these probabilities coincide for
(time-abstract) history-dependent and Markovian schedulers that resolve
nondeterminism either deterministically or in a randomized way.

1 Introduction

Why continuous-time Markov decision processes? A continuous-time Markov
decision process (CTMDP) [6,14,21,24] is a generalization of a continuous-time
Markov chain (CTMC) in which both probabilistic and nondeterministic choices
co-exist. CTMDPs occur in many contexts, ranging from stochastic control the-
ory [14] to dynamic power management [22]. We are particularly interested in this
class of models because they can be viewed as a common semantic model for var-
ious performance and dependability modelling formalisms including generalised
stochastic Petri nets [1], Markovian stochastic activity models [23], interactive
Markov chains (IMC) [17] and TIPP process algebra [16].

So far, the analysis of models developed in these and related formalisms
was restricted to the subset that corresponds to CTMCs, usually referred to as
’non-confused’, ’well-defined’, or ’well-specified’ models [11,12,13,17] . All these
notions are semantic notions, usually checked by an exhaustive exploration of
the state space, with models being discarded if the check fails. In other words,
no specification-level check is available, and the offered analysis algorithms are
actually partial algorithms.
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Why time-bounded reachability? Model checking of CTMCs [4] has received re-
markable attention in recent years. Various model checkers exist [18,20,10], an-
swering questions such as: Is the probability to hop along Φ-states, until reaching
a Ψ -state within 5 to 10 time units greater than 0.95? The core algorithmic in-
novation allowing to answer such questions is a mapping from interval-bounded
until-formulae – specified in the continuous stochastic logic CSL [2] – to time-
bounded reachability problems, which in turn can be approximated efficiently
using a stable numeric technique called uniformization [19]. To enable the same
kind of questions being answered for models specified in any of the above men-
tioned formalisms, the key problem is how to compute time-bounded reacha-
bility probabilities in CTMDPs. This is the problem we address in this paper.
While model checking algorithms for discrete-time Markov decision processes
are well-understood [8,5], we are not aware of any model checking algorithm for
continuous-time Markov decision processes.

Our contribution. Given a CTMDP, our aim is to compute the maximum (or
minimum) probability to reach – under a given class of schedulers – a certain set
of states within t time units, given a starting state. We consider this problem for
uniform CTMDPs, a class of CTMDPs in which the delay time distribution per
state visit is the same for all states, governed by a unique exit rate E. We show
that an efficient greedy algorithm can be obtained using truncated Markovian
deterministic (MD)-schedulers, that is, step-dependent schedulers which sched-
ule up to a limited depth. The algorithm computes the maximum (or minimum)
probabilities for timed reachability. It is then shown that these probabilities for
truncated MD-schedulers coincide with the maximum (or minimum) probabilites
for timed reachability for Markovian and history-dependent schedulers (both de-
terministic and randomized). We show that stationary Markovian schedulers –
as opposed to the discrete case [8,5] – yield a smaller maximum, whereas timed
history-dependent schedulers may yield a higher probability.

The main result of this paper is a computationally efficient approximation
algorithm for computing maximum (or minimum) probabilities for timed reach-
ability in uniform CTMDPs under all time-abstract schedulers. The time com-
plexity is in O(E·t·N2·M) and the space complexity in O(N2·M) where t is the
time bound, N is the number of states, and M is the number of actions in the
CTMDP under consideration.

Organization of the paper. Section 2 introduces the necessary background. Sec-
tion 3 presents the algorithm for uniform CTMDP. Section 4 places the result
of the algorithm in the context of other classes of schedulers. Section 5 discusses
the problem of uniformizing arbitrary CTMDPs. Section 6 concludes the paper.
Proofs of all theorems can be found in [3].

2 Background and Problem Statement

2.1 Continuous-Time Markov Decision Processes

A continuous-time Markov decision process M, is a tuple (S,Act ,R) with S a
finite set of states, Act a finite set of actions, and R : (S × Act × S) → IR�0
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the three-dimensional rate matrix. For each state s ∈ S we require the existence
of a pair (α, s′) ∈ Act × S with R(s, α, s′) > 0. Note that this can easily be
established by adding self-loops, i.e., having R(s, α, s) > 0 for some α ∈ Act . If
Act is a singleton, we can project R on an (S × S) matrix, and M is a CTMC.

For B ⊆ S, let R(s, α,B) denote the total rate to move from state s via
action α to some state in B, i.e.,

R(s, α,B) =
∑

s′∈B

R(s, α, s′).

The behavior of a CTMDP is as follows. R(s, α, s′) > 0 intuitively means that
there is a transition from s to s′ under action α. If state s has outgoing transitions
for distinct actions, one of these actions is selected nondeterministically where we
assume that the nondeterminism is resolved by means of a scheduler (also called
policy or adversary). Given that action α has been chosen, 1−e−R(s,α,s′)·t is the
probability that the α-transition s → s′ can be triggered within t time units.
Thus, the delay of α-transition s → s′ is governed by the negative exponential
distribution with rate R(s, α, s′). If R(s, α, s′) > 0 for more than one state s′, a
competition between the α-transitions originating in s exists, known as the race
condition. The discrete probability of selecting α-transition s → s′ is determined
by the embedded discrete-time Markov decision process (DTMDP, for short) of
M, denoted emb(M), a tuple (S,Act ,P) with S and Act as before and

P(s, α, s′) =
R(s, α, s′)
E(s, α)

if E(s, α) > 0

and 0 otherwise. Here, E(s, α) = R(s, α, S), i.e., E(s, α) is the exit rate of state
s via some α-transition. Note that P(s, α, s′) is the time-abstract probability for
the α-transition from s to s′ when action α is chosen. For B ⊆ S let P(s, α,B) =∑

s′∈B P(s, α, s′) denote the probability to move from s to some state in B via an
α-transition. An alternative formulation of the requirement that in every state
at least one action is enabled, can be stated using E as:

Act(s) = {α ∈ Act | E(s, α) > 0 } �= ∅ for any state s.

A CTMDP (S,Act ,R) is uniform if for some E > 0 it holds E(s, α) = E
for any state s ∈ S and α ∈ Act(s). Note that E(s, α) = 0 (whence α /∈ Act(s)
follows) is possible in uniform CTMDPs. Stated in words, in a uniform CTMDP
the exit rates for all states and all enabled actions are equal.

2.2 Paths

A (timed) path σ in CTMDP M is a finite or infinite sequence

σ ∈ (S × Act × IR>0)∗ × S ∪ (S × Act × IR>0)ω.

For infinite path σ = s0, α0, t0, s1, α1, t1, s2, α2, t2, . . . we require time-divergence,
i.e.,

∑
ti = ∞. We write

s0
α0,t0−−−−→ s1

α1,t1−−−−→ s2
α2,t2−−−−→ · · ·
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rather than s0, α0, t0, s1, α1, t1, s2, α2, t2, . . .. The corresponding time-abstract
path is: s0 α0−−→ s1

α1−−→ s2
α2−−→ . . .. We write σ → s for the time- and action-

abstract path σ that is followed by state s. In the remainder of this paper we
use the term path for timed, time-abstract, and time- and action-abstract paths
whenever the kind of path is clear from the context. Let first(σ) denote the state
in which σ starts. For finite path σ, last(σ) denotes the last state of σ.

2.3 Schedulers

Nondeterminism in a CTMDP is resolved by a scheduler. For deciding which of
the next nondeterministic actions to take, a scheduler may have access to the
current state only or to the path from the initial to the current state (either with
or without timing information). Schedulers may select the next action either (i)
deterministically, i.e., depending on the available information, the next action is
chosen in a deterministic way, or (ii) in a randomized fashion, i.e., depending on
the available information the next action is chosen probabilistically. Accordingly,
the following classes of schedulers D are distinguished [21], where Distr(Act)
denotes the collection of all distributions on Act :

– stationary Markovian deterministic (SMD, also called simple schedulers),

D : S → Act such that D(s) ∈ Act(s);

– stationary Markovian randomized (SMR),

D : S → Distr(Act) such that D(s)(α) > 0 implies α ∈ Act(s);

– Markovian deterministic (MD, also called step-dependent schedulers),

D : S × IN → Act such that D(s, n) ∈ Act(s);

– Markovian randomized (MR),

D : S × IN → Distr(Act) such that D(s, n)(α) > 0 implies α ∈ Act(s);

– (time-abstract) history-dependent, deterministic (HD),

D : (S×Act)∗×S → Act such that D(s0 α0−−→s1
α1−−→. . .

αn−1−−−−→︸ ︷︷ ︸
time-abstract history

, sn) ∈ Act(sn);

– (time-abstract) history-dependent, randomized (HR),

D : (S × Act)∗ × S → Distr(Act)

such that D(s0 α0−−→ s1
α1−−→ . . .

αn−1−−−−→ , sn)(α) > 0 implies α ∈ Act(sn).

All these schedulers are time-abstract; time-dependent schedulers will be briefly
discussed in Section 4. We write X to denote the class of all X-schedulers over
a fixed CTMDP M.1

1 Strictly speaking we should write X (M), but M is omitted as it should be clear
from the context.
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Note that for any HD-scheduler, the actions in the history can be ig-
nored, i.e., HD-schedulers may be considered as functions D : S+ → Act ,
as for any sequence s0, s1, . . . , sn the relevant actions αi are given by αi =
D(s0, s1, . . . , si). Hence, any state-action sequence s0 α0−−→ s1

α1−−→ . . .
αn−1−−−−→ sn

where αi �= D(s0, s1, . . . , si) for some i, does not describe a path fragment that
can be obtained from D.

The scheduler-types form a hierarchy, e.g., any SMD-scheduler can be viewed
as a MD-scheduler (by ignoring parameter n) which, in turn, can be viewed
as a HD-scheduler (by ignoring everything from the history except its length).
A similar hierarchy exists between SMR, MR, and HR schedulers. Moreover,
deterministic schedulers can be regarded as trivial versions of their corresponding
randomized schedulers that assign probability 1 to the actions selected.

2.4 Induced Stochastic Process

Given a schedulerD (of arbitrary type) and a starting state,D induces a stochas-
tic process MD on CTMDP M. For deterministic schedulers (HD, MD, and
SMD), the induced process MD is a continuous-time Markov chain (CTMC),
referred as CD in the sequel. For MD- and HD-schedulers, though, the state space
of CD will in general be infinitely large (but countable). Formally, HD-scheduler
D : S+ → Act on CTMDP M = (S,Act ,R) induces the CTMC CD = (SD,RD)
with SD = S+ as state space, RD(σ, σ → s) = R(last(σ), D(σ), s) and 0 oth-
erwise. The embedded discrete time Markov chain (DTMC) emb(CD) is a tuple
(SD,PD) where

PD(σ, σ′) =
RD(σ, σ′)
ED(σ)

if ED(σ) > 0

and 0 otherwise. Here, ED(σ) =
∑

σ′∈SD
RD(σ, σ′), i.e., the exit rate of σ in CD.

States in CTMC CD are state sequences s0 → s1 → . . . sn−1 → sn corre-
sponding to time-abstract, unlabeled path fragments in the original CTMDP
M. State sn stands for the current state in the CTMDP whereas states s0
through sn−1 describe the history. Intuitively, the stochastic process induced by
HD-scheduler D on CTMDP M results from unfolding M into an (infinite) tree
while resolving the nondeterministic choices according toD. For SMD-schedulers
the induced CTMC is guaranteed to be finite. More precisely, for SMD-scheduler
D, CD can be viewed as a CTMC with the original state space S, as all sequences
that end in s, say, are lumping equivalent [9].

2.5 Maximum Probability for Timed Reachability

Given CTMDP M, our aim is to compute the maximum (or minimum) prob-
ability to reach – under a given class of schedulers – a certain set B of states
within t time units, when starting from a given state s. That is, we want to
calculate for time t > 0, B ⊆ S, s ∈ S and class of X-schedulers:

sup
D∈X

PrD(s,
�t
� B)
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up to some a priori given accuracy ε. Here PrD denotes the induced probabil-
ity measure in CD as formally defined by a standard cone construction in [4].
Intuitively, if B is considered as the set of “bad” states, then the value to be
computed is the sharpest bound p for which it is guaranteed that the probabil-
ity to reach a bad state from s in the next t time units is at most p under all
“relevant” schedulers, i.e., all schedulers of type X.

3 An Algorithm for Uniform CTMDPs

In the sequel, unless otherwise stated, let M be uniform and E be its unique
exit rate. Note that CTMC CD which is obtained from the uniform CTMDP M
by HD-scheduler D is also uniform [19].

3.1 Approximation

For HD-scheduler D, the (infinite) vector of the probabilities PrD(σ,
�t
� B) for

all states σ in the CTMC CD (i.e., all σ ∈ S+) is given by:

(
PrD(σ,

�t
� B)

)

σ∈S+
=

∞∑

n=0

e−E·t · (E·t)n

n!
· Pn

D,B · iB

where iB = (iB(σ))σ∈S+ with iB(σ) = 1 if last(σ) ∈ B, and 0 otherwise, and

PD,B(σ, σ′) =






PD(σ, σ′) if last(σ) ∈ S \B
1 if σ′ = σ and last(σ) ∈ B
0 otherwise.

PD,B is the (infinite) transition probability matrix of the CTMC CD,B =
(SD,RD,B) that is obtained from CD by equipping any B-state (i.e., any path
σ ∈ S+ with last(σ) ∈ B) with a self-loop and removing all its other outgo-
ing transitions: RD,B(σ, σ′) = RD(σ, σ′) if last(σ) �∈ B, RD,B(σ, σ) = E if
last(σ) ∈ B, and 0 otherwise. The justification of this transformation is as fol-
lows. As the aim is to compute the probability to reach a B-state before a certain
time bound, it is not of importance what happens once such a state has been
visited, and therefore its outgoing transitions can be replaced by a self-loop.

For the sake of brevity let

ψ(n) = e−E·t · (E·t)n

n!

denote the Poisson probabilities, i.e., ψ(n) is the probability of n events occurring
within t time units in a Poisson process with rate E. Note that, for s ∈ S:

PrD(s,
�t
� B)=

( ∞∑

n=0

ψ(n) · Pn
D,B · iB

)
(s) = ψ(0)·iB(s)+

( ∞∑

n=1

ψ(n) · Pn
D,B · iB

)
(s)
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Later we will exploit that for s /∈ B:

PrD(s,
�t
� B) =

( ∞∑

n=1

ψ(n) · Pn
D,B · iB

)
(s)

Rather than computing the precise maximum probabilities we use an approx-
imation in the following way. For any state s, the value PrD(s,

�t
� B) will be

approximated, up to a given accuracy ε, by

P̃rD(s,
�t
� B) =

(
k∑

n=0

ψ(n) · Pn
D,B · iB

)
(s)

where k = k(ε, E, t) depends on ε, E and t, but neither on state s nor on
scheduler D. This can be seen as follows. Let ‖ · ‖ denote the row-sum norm.
Then, for sufficiently large k = k(ε, E, t):

∥∥∥
∞∑

n=0
ψ(n) · Pn

D,B · iB −
k∑

n=0
ψ(n) · Pn

D,B · iB
∥∥∥ =

∥∥∥
∞∑

n=k+1
ψ(n) · Pn

D,B · iB
∥∥∥

�
∞∑

n=k+1
ψ(n) · ‖Pn

D,B‖
︸ ︷︷ ︸

�1

· ‖iB‖︸︷︷︸
�1

�
∞∑

n=k+1
ψ(n) � ε

Note that
∑∞

n=0 e
−E·t (E·t)n

n! =
∑∞

n=0 ψ(n) converges for all E and t. Hence, for
any scheduler D and state s:

P̃rD(s,
�t
� B) =

(
k∑

n=0

ψ(n) · Pn
D,B · iB

)
(s) � PrD(s,

�t
� B)

Our strategy is to construct some HD-scheduler D0 such that for any state s ∈ S:

P̃rD0(s,
�t
� B) � sup

D∈HD
P̃rD(s,

�t
� B). (1)

This yields:

sup
D∈HD

PrD(s,
�t
� B) − ε︸ ︷︷ ︸

�P̃rD(s,
�t
�B)

� P̃rD0(s,
�t
� B) � PrD0(s,

�t
� B) � sup

D∈HD
PrD(s,

�t
� B).

Since Pn
D,B(s, σ) = 0 for any σ containing more than n transitions, i.e., more

than n+1 states, the value

P̃rD0(s,
�t
� B) =

(
k∑

n=0

ψ(n) · Pn
D0,B · iB

)
(s)

only depends on the k-th truncation of D0, i.e., the function

D0

∣∣∣
k

:
⋃

0<n�k

Sn → Act , D0

∣∣∣
k
(σ) = D0(σ).
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Intuitively speaking, only the first k decisions of D0 are relevant (and not “later”

ones) for determining the value P̃rD0(s,
�t
� B). There are only finitely many

such truncations when ranging over all HD-schedulers. The brute-force approach
would consider all of them in order to determine the maximum. This technique
works, but is highly inefficient because the total number of such truncations,∏

s∈S

∣∣Act(s)
∣∣k, grows exponentially in the number of states s with |Act(s)| > 1.

Note that
∏

s∈S

∣∣Act(s)
∣∣k � 2|T |k if

∣∣Act(s)
∣∣ � 2 for all s ∈ T ⊆ S

i.e., the total number of truncations to be considered is exponential in k.

3.2 A Greedy Algorithm to Compute Scheduler D0

Consider truncated MD-schedulers of the form D : S×{ 1, . . . , k } → Act . (Later
on, it is shown that considering such schedulers suffices.)

The actions act(s, i) ∈ Act(s) for 0 < i � k will be determined such that
the truncated MD-scheduler D0 with D0(s, i) = act(s, i) fulfils equation (1).
Let Pi denote the probability matrix of cardinality |S| × |S| where the row
Pi(s, ·) = P(s, act(s, i), ·) if s �∈ B and Pi(s, ·) = is if s ∈ B, where is denotes
the identity vector for state s. Pi thus denotes the probability matrix induced
by the scheduler D0 at step i.

For s /∈ B, the actions act(s, i) will be determined in a backward manner,
i.e., starting from i=k. For i=k, the selected action act(s, k) ∈ Act(s) satisfies:

Pk(s,B) = P(s, act(s, k), B) = max
α∈Act(s)

P(s, α,B)

That is, Pk(s, ·) is determined such that for any state s the probability to move
to a B-state within at most one step is maximized. Generalizing this strategy,
for i < k, act(s, i) is chosen such that the probability to move to a B-state
within at most k−i+1 steps is maximal under the truncated MD-scheduler D :
S × {i−1, . . . , k} → Act defined by:

D(s, j) = act(s, i+j−1), for 0 < j � k−i+1.

That is, Pi is constructed such that for i � 1 the vector

qi =
k∑

n=i

ψ(n) · Pi · Pi+1 · . . . · Pn · iB

is state-wise maximal under all vectors of the form

k∑

n=i

ψ(n) · P∗ · Pi+1 · . . . · Pn · iB

where P∗ is an |S| × |S|-matrix with P∗(s, ·) = P(s, α, ·) for some action α ∈
Act(s) if s �∈ B and P∗(s, ·) = is if s ∈ B. In the above equations, iB =
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(iB(s))s∈S stands for the bit-vector that represents the characteristic function
of B (as a subset of the original state space S). I.e., iB(s) = 1 if s ∈ B and
iB(s) = 0 if s ∈ S \B.2

Informally, qi(s) is the maximum conditional probability to reach B taking
i to k steps within t time units, given that state s is occupied before the i-th
step. We let q = ψ(0)·iB + q1, which for the (S \ B)-states agrees with the
desired probability vector to reach a B-state within at most k steps when the
time bound to reach B is t. For s ∈ B we have PrD(s,

�t
� B) = 1. Moreover, for

s �∈ B it holds q(s) = ψ(0)·iB(s) + q1(s) = q1(s) (as iB(s) = 0). In the sequel,
we are therefore only interested in the calculation of the vector q1(s).

The main steps of our procedure are summarized in Algorithm 1. A stable and
efficient algorithm to compute the Poisson probabilities ψ(i) has been proposed
in [15] and can be adopted here. Note that for the computation of the values

supD∈HD P̃rD(s,
�t
� B) there is no need to compute (and store) the matrices Pi.

Instead, it suffices to compute the vectors

qi =
k∑

n=i

ψ(n) · Pi · Pi+1 · . . . · Pn · iB

= ψ(i) · Pi · iB +
k∑

n=i+1

ψ(n) · Pi · Pi+1 · . . . · Pn · iB

= ψ(i) · Pi · iB + Pi ·
k∑

n=i+1

ψ(n) · Pi+1 · . . . · Pn · iB

= ψ(i) · Pi · iB + Pi · qi+1

where qk+1 = 0 is the 0-vector. For s /∈ B, we have (Pi · iB)(s) = P(s, α,B) if
α = act(s, i).

3.3 Complexity of the Algorithm

Algorithm 1 can be implemented with a space complexity in O (|S|2·|Act | + |S|),
where the term |S|2·|Act | stands for the representation of the uniform CTMDP
M while the term |S| stands for the vectors qi+1 and qi. Note that there is
no need to store qi+1 once qi has been computed. The values qi(s, α) are only
needed temporarily, and as mentioned before, there is no need to compute and
store the matrices Pi. Inspection of the pseudo-code of Algorithm 1 reveals that
the worst-case time complexity is asymptotically bounded by:

k ·
∑

s∈S\B

∑

α∈Act(s)

∣∣{ s′ ∈ S | R(s, α, s′) > 0 }∣∣

2 At several other places, we shall use the same notation iB for the bit-vector
(iB(σ))σ∈S+ that represents the characteristic function of B viewed as subset of
the state space of the CTMC induced by a HD-scheduler. Here, we identify B with
the set of finite paths σ where last(σ) ∈ B. Whenever the notation iB occurs in our
formulae the dimension of iB should be clear from the context.
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Algorithm 1 Greedy approximation algorithm for computing sup
D∈HD

PrD(s,
�t
� B)

k := k(ε, E, t); (* determine number of required steps *)
for all s ∈ S do qk+1(s) := 0; od (* initialize qk+1 as null-vector *)
for all i = k, k−1, . . . , 1 do

for all s ∈ S \B do
m := −1;

(* search the optimal row Pi(s, ·) *)for all α ∈ Act(s) do

m := max

(
m,ψ(i) · P(s, α,B) +

∑
s′∈S

P(s, α, s′) · qi+1(s′)

)
;

od
qi(s) := m; (* choose maximum *)

od
for all s ∈ B do qi(s) := ψ(i) + qi+1(s); od (* Pi(s, ·) := is for all states s∈B *)

od
for all s ∈ S do

if s �∈ B then q(s) := q1(s); else q(s) := 1; fi
od
return the vector q.

which is in O (E·t·|S|2·|Act |). Note that k = k(ε, E, t) grows proportionally with
E·t. This bound can be improved by performing a reachability analysis (as a
preprocessing phase of Algorithm 1) to determine the set T of states from which
a B-state can be reached. The main iteration then only needs to be performed
for all states in T \ B rather than S \ B. For the other states we have, for any

scheduler D, PrD(s,
�t
� B) = 0 for s ∈ S \ T , and PrD(s,

�t
� B) = 1 for s ∈ B.

3.4 Correctness of the Algorithm

Although our greedy algorithm is based on a truncated MD-scheduler – only the
first k steps are memorized – it approximates the maximum probability to reach
the set of states B within t time units under all HD-schedulers. This is shown
by the following result where q(s) is the s-component of the vector q as returned
by Algorithm 1.

Theorem 1. sup
D∈HD

PrD(s,
�t
� B) − ε � q(s) � sup

D∈HD
PrD(s,

�t
� B).

As a result, the vector computed by Algorithm 1 is state-wise optimal under all
HD-schedulers, up to the accuracy ε.

4 Other Scheduling Disciplines

By Theorem 1 it follows that our greedy algorithm computes the maximum
probability for timed reachability under all HD-schedulers. In this section, we
show that this also applies to any MR-, MD-, and, more importantly, to any
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HR-scheduler. In addition, we will show that this does neither hold for SMD-
schedulers nor for schedulers that can base their decision on the timing of actions.
Finally, it is shown that adding a simple notion of fairness is invariant under these
maximum probabilities for HD-schedulers.

Markovian deterministic schedulers. In the sequel, let s ∈ S be a state, t � 0 a
time point and B ⊆ S a set of states. Theorem 1 states that the vector computed
by Algorithm 1 is state-wise optimal under all HD-schedulers, up to a given
accuracy ε. As Algorithm 1 calculates, in fact, a truncation of an MD-scheduler
it directly follows that the suprema under MD- and HD-schedulers agree:

Theorem 2. sup
D∈MD

PrD(s,
�t
� B) = sup

D∈HD
PrD(s,

�t
� B).

History-dependent randomized schedulers. The next results yields that the supre-
mum under HD- and HR-schedulers coincides:

Theorem 3. sup
D∈HD

PrD(s,
�t
� B) = sup

D∈HR
PrD(s,

�t
� B).

A few remarks are in order. Theorems 2 and 3 show that the suprema for the
probabilities to reach a set of goal states within a given time bound under the
classes of scheduler MD, HD, MR and HR coincide. (For MR-schedulers this
stems from the fact that MD ⊆ MR ⊆ HR.) For probabilities of some other
events, however, such correspondence may not be established. That is, in gen-
eral, randomized schedulers can be better than deterministic schedulers. This
observation was made by Beutler and Ross [7] who showed that the maximum
of time-average rewards under randomized schedulers might be larger than un-
der deterministic schedulers. In fact, the crux of the proof of Theorem 3 is the
observation that the values PrD(s,

�t
��n B) converge to PrD(s,

�t
� B), where the

subscript � n denotes that B has to be reached within at most n steps. This
property is not guaranteed for other events.

Stationary Markovian deterministic schedulers. Different from the discrete time
setting, where SMD-schedulers suffice for maximum probabilities to reach a set
of goal states within a given number of steps [8,5], this does not hold for the
corresponding question – interpreting the number of steps in the discrete case
as elapse of time – on CTMDPs. A counterexample is given in Fig. 1(a). Here,
states are represented as circles and there is an edge between states s and s′

labeled with action α if and only if R(s, α, s′) > 0. Action labels and rates
are indicated at each edge. Let B = { s2 }, and consider the only two relevant
SMD-schedulers, Dα, selecting action α in state s0, and Dβ , selecting action β.
Comparing them withDβα, i.e., the scheduler that after selecting β once switches
to selecting α in state s0, we find that for a certain range of time bounds t,
Dβα outperforms both Dβ and Dα. Intuitively, the chance of stuttering in state
s0 (by choosing β initially) may influence the remaining time to reach B to
an extent that it becomes profitable to continue choosing α. For t = 0.5, for
instance, PrDβα

(s0,
�0.5
� B) = 0.4152, whereas for Dα and Dβ these probabilities



72 C. Baier et al.

Fig. 1. Uniform CTMDPs where (a) SMD-schedulers are less powerful, and (b) where
THD schedulers are more powerful than HD-schedulers.

are 0.3935 and 0.3996, respectively. Thus, SMD-schedulers are not expressive
enough for maximum probabilities to reach a set of goal states within a given
time bound under all HD/HR-schedulers.3

Timed schedulers. This paper only considers schedulers that do not take the
timing information into account. It is however worth noticing that timed history-
dependent (THD) schedulers are more powerful than time-abstract history de-
pendent schedulers (class HD and HR), in the sense that it is possible that:

sup
D∈THD

PrD(s,
�t
� B) > sup

D∈HD
PrD(s,

�t
� B).

Here, THD refers to the class of schedulers given by functions D : (S × Act ×
IR>0)∗×S → Act (only choosing from Act(s) for any path ending in state s), i.e.,
THD-schedulers are able to observe the time points of state changes. To see that
they may yield a higher probability, consider for example the uniform CTMDP in
Fig. 1(b). In this example, it depends on the time instance of entering s1 whether
it is more profitable to continue choosing α or β. To be more precise, consider
the only relevant HD-schedulers, Dα (choosing α in s1) and Dβ (choosing β).
Fig. 2 plots the probability to reach B starting from state s1 if choosing Dα,
respectively Dβ , given by

PrDα
(s1,

�t
� B) = 1 − e−t, and PrDβ

(s1,
�t
� B) = 1 − e−2t·(1 + 2t).

Let t0 be the time instance satisfying et0 = 1+2t0, i.e., the time point where both
plots cross. The THD-scheduler D defined by D(s0

γ,u−−−→ s1) = α if t−u < t0 and
β otherwise, maximizes the probability to reach B = { s3 } from state s0 within
t time units, and obviously outperforms both Dα and Dβ .

Fairness. We conclude this section by considering a simple notion of fairness
for schedulers. Let σ = s0

α0,t0−−−−→ s1
α1,t1−−−−→ . . . be an infinite path. Infinite path

3 For SMR-schedulers this is an open issue.
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Fig. 2. Functions 1 − e−t and 1 − e−2t·(1 + 2t) for t � 0

σ is called fair if and only if for each state s that occurs infinitely often in
σ and each action α ∈ Act(s), there are infinitely many indices n such that
(sn, αn) = (s, α). Stated in words, for any state that is visited infinitely often,
each of its outgoing actions cannot have been selected only a finite number of
times. (Note that this notion of fairness is rather weak; for instance, a scheduler
that finitely many times selects the same action in a state that is visited finitely
often – without ever considering one of the other possibilities – is considered to
be fair.) Scheduler D (of some class) is called fair if and only if

PrD {σ ∈ Path(s) | σ is fair } = 1

for all states s ∈ S, where Path(s) denotes the set of paths that start in s.
Let FHD denote the set of all fair HD-schedulers. The following result states
that maximum probabilities under HD-schedulers and their fair counterparts
coincide:

Theorem 4. supD∈HD PrD(s,
�t
� B) = supD∈FHD PrD(s,

�t
� B).

5 The Uniformization Problem

Algorithm 1 assumes that the CTMDP under consideration is uniform. We now
discuss the case in which the CTMDP is not uniform, i.e., the exit rates E(s, α)
are not guaranteed to be identical for any state s and any α ∈ Act(s).

In the setting of CTMCs, uniformization [19] can be employed to transform
a CTMC into a uniform one while keeping transient probabilities invariant4. For
CTMDPs, a similar recipe might be followed. However, a simple adaptation of
the uniformization approach for CTMCs (as proposed, for instance, in [6,21])
to CTMDPs is not adequate for our purpose. The problem with this approach
is that the correspondence between schedulers on uniform CTMDP M′ and its
4 Although uniformization is traditionally considered as a transformation from a

CTMC into a discrete-time Markov chain, it can equally well be considered as a
transformation between CTMCs.
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Fig. 3. An example illustrating why uniformization on CTMDPs is not obvious

original CTMDP M is lost. (A similar observation has been made by Beutler and
Ross [7] when comparing MD- and MR-schedulers for computing time-average
rewards.) This can be illustrated as follows. Applying “standard” uniformiza-
tion to CTMDP M = (S,Act ,R) with E � maxs∈S,α∈ActE(s, α) would yield
the CTMDP M′ = (S,Act ,R′) with R′(s, α, s′) = R(s, α, s′) for s �= s′, and
R′(s, α, s) = R(s, α, s) + E − E(s, α) if α ∈ Act(s) and 0 otherwise. That is,
each state s is equipped with a self-loop for each action α ∈ Act(s) if E exceeds
the total exit rate to take an α-transition from s. Applying this recipe to the
CTMDP M depicted in Fig. 3(a) results in the CTMDP M′ in Fig. 3(b). The
latter has appeared in Fig. 1(a) already. It is not difficult to see that for any X-
scheduler on M there exists a corresponding X-scheduler on M′, as any choice
in M can be matched by the same choice in M′. The reverse, however, does not
hold. For instance, the MD-scheduler Dβα on M′ discussed in Section 4 does
not correspond to any MD-scheduler D on M, since the self-loop in state s0 in
M′ cannot be mimicked by M. Recall from Section 4 that PrDβα

(s0,
�0.5
� { s2 })

is higher than the respective probabilities for Dα and Dβ in M′. The latter in
turn correspond to the only relevant HD-scheduler on M. As a consequence,
the maximum probability (obtained for some MD-scheduler generated by Algo-
rithm 1) to reach the set { s2 } from state s0 in 0.5 time units on M′ is higher
than the probability for any HD-scheduler in M.

We are experimenting with other forms of uniformization to overcome this
problem. As yet, it is open whether a variation of the basic concept of uniformiza-
tion can be used to reduce the timed reachability problem for general CTMDPs
to that of uniform CTMDPs.

6 Concluding Remarks

This paper considered the problem of computing the maximum probability to
reach a set of goal states within a given time bound in a uniform CTMDP. It
is shown that truncated Markovian deterministic schedulers suffice for approx-
imating a solution to this problem in an efficient manner for (time-abstract)
history-dependent and Markovian schedulers, both deterministic and random-
ized ones. This does neither apply to timed history-dependent schedulers nor
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to Markovian stationary (i.e., simple) schedulers. The question whether SMR-
schedulers may yield the same optimum (or a smaller optimum) is open.

Although all results in this paper have been presented for maximum proba-
bilities, the same results can be obtained for minimal probabilities, i.e.,

inf
D∈X

PrD(s,
�t
� B)

up to some accuracy ε.5 Instead of a greedy policy that maximizes the probability
to reach the set of goal states in each step of the computation, the algorithm in
this case minimizes this quantity in each step.

The presented numerical algorithm is remarkably efficient. Its worst-case time
complexity is in O(E·t·N2·M) where E is the unique exit rate of the uniform
CTMDP, t is the time bound, N is the number of states, and M is the number of
actions. Thus, compared to CTMCs, the increase in computational effort is linear
in the number of actions in the CTMDP, i.e., the amount of nondeterminism, but
no more than that. This is the best we can hope for, since the time complexity
of computing the corresponding probability in a CTMC is in O(E·t·N2) [4].
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