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Abstract. In the automata-theoretic approach to model checking we check the
emptiness of the product of a system S with an automaton A¬ψ for the comple-
mented specification. This gives rise to two automata-theoretic problems: com-
plementation of word automata, which is used in order to generate A¬ψ , and
the emptiness problem, to which model checking is reduced. Both problems have
numerous other applications, and have been extensively studied for nondetermin-
istic Büchi word automata (NBW). Nondeterministic generalized Büchi word
automata (NGBW) have become popular in specification and verification and are
now used in applications traditionally assigned to NBW. This is due to their richer
acceptance condition, which leads to automata with fewer states and a simpler
underlying structure.
In this paper we analyze runs of NGBW and use the analysis in order to de-
scribe a new complementation construction and a symbolic emptiness algorithm
for NGBW. The complementation construction exponentially improves the best
known construction for NGBW and is easy to implement. The emptiness algo-
rithm is almost identical to a known variant of the Emerson-Lei algorithm, and
our contribution is the strong relation we draw between the complementation con-
struction and the emptiness algorithm – both naturally follow from the analysis of
the runs, which easily implies their correctness. This relation leads to a new cer-
tified model-checking procedure, where a positive answer to the model-checking
query is accompanied by a certificate whose correctness can be checked by meth-
ods independent of the model checker. Unlike certificates generated in previous
works on certified model checking, our analysis enables us to generate a certificate
that can be checked automatically and symbolically.

1 Introduction

In model checking, we check whether all the computations of a given system S satisfy
a specification ψ. The system is usually given as a labeled state-transition graph and ψ
is a formula in LTL or a word automaton. In the automata-theoretic approach to model
checking [Kur94b,VW94], one constructs an automaton A¬ψ for the negation of ψ and
takes its product withS. The systemS is correct with respect toψ if this product is empty.
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When ψ is given as an LTL formula, the construction of A¬ψ is relatively straight-
forward, we first negate ψ and then apply on ¬ψ one of the many known translations of
LTL formulas to word automata (cf. [VW94,GPVW95,SB00]). When the specification
is given as an automaton Aψ , the task is harder and one needs to complement the au-
tomaton. The product of A¬ψ and S can be viewed as a word automaton AS×¬ψ , and
it is empty iff no computation of S violates ψ. Thus, the model-checking problem gives
rise to two automata-theoretic problems: complementation of word automata, which is
used in order to generate A¬ψ from Aψ , and the emptiness problem, to which model
checking is reduced. Both problems have numerous other applications. First, refinement
and optimization techniques that are based on language containment rather than simula-
tion involve complementation and emptiness [Kur94a]. In addition, complementation is
used in specification formalisms like ETL [Wol83,VW94], which have automata within
the logic, and emptiness is used for satisfiability, planning and synthesis [Büc62,GV00,
MW84].

Complementation and emptiness have been extensively studied for nondeterminis-
tic Büchi word automata (NBW, for short). The Büchi acceptance condition consists
of a subset F of the state space, and a run of the automaton is accepting iff it visits
F infinitely often. Consider an NBW A with n states. In [Büc62], Büchi described a
doubly-exponential complementation construction, which was improved in [SVW87] to
a construction with 2O(n2) states. Only in [Saf88], Safra introduced an asymptotically
optimal determinization construction, which also enabled a 2O(n log n) complementation
construction, matching the known lower bound [Mic88].Another 2O(n log n) construction
was suggested in [Kla91], which circumvents the need for determinization. The opti-
mal constructions in [Saf88,Kla91] are complicated, making their implementation very
difficult [THB95]. In [KV01b], we suggested an optimal complementation construc-
tion that is based on alternating automata. This construction is considerably simpler,
making it the first construction to be implemented [Mer00,GKSV03]. The emptiness
problem for NBW can be easily solved in linear time and NLOGSPACE [VW94]. The
easy algorithms, however, are based on depth-first search, and cannot be implemented
symbolically, which is very desirable in practice. Emerson and Lei’s algorithm for eval-
uation of µ-calculus formulas suggests a quadratic symbolic algorithm for the problem
[EL86], and many variants of it have been suggested and studied (cf. [HTKB92,HKSV97,
KPR98]). More involved algorithms with only O(n log n) [BGS00] and O(n) [GPP03]
symbolic steps are known too, but it is not clear that these algorithms are better in practice
then the Emerson-Lei algorithm [RBS00].

The generalized Büchi acceptance condition consists of a set {F1, . . . , Fk} of subsets
of the state space, and a run of the automaton is accepting iff it visits Fi infinitely
often, for all 1 ≤ i ≤ k. The number k of sets is the index of the automaton. The
richer acceptance condition leads to automata with fewer states and simpler underlying
structure. For example, the traditional translation of an LTL formulaψ to an NBW results
in an automaton with state space 2cl(ψ) × 2cl(ψ) [VW94]; the set cl(ψ) is the set of ψ’s
subformulas and each state consists of a “local component”, which checks satisfaction
of local requirements and an “eventuality component”, which checks satisfaction of
eventualities. Using the generalized Büchi condition, it is easier to handle the different
eventuality requirements, there is no need to the eventuality component, and the state
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space of the automaton is 2cl(ψ) [GPVW95]. Nondeterministic generalized Büchi word
automata (NGBW, for short) have become popular in specification and verification and
are now used in applications traditionally assigned to NBW [Kur94b]. Once the NGBW
is constructed, it is easy to translate it to an equivalent NBW, and then apply the known
algorithms for NBW. For an NGBW with n states and index k, the constructed NBW
has O(nk) states [Cho74].

In this paper we analyze runs of NGBW, and use the analysis in order to suggest a new
complementation construction and a symbolic emptiness algorithm for them. Recall that
an NGBW A rejects a word w if every run of A has a set Fi in the acceptance condition
that is visited only finitely often. The runs of A can be arranged in a dag (directed acyclic
graph). We show that A rejects w iff it is possible to label the vertices of the dag by
ranks so that some local conditions on the ranks of vertices and their successors are met.
Intuitively, the ranks measure the distance from a position from which no states in Fi
are visited.

The complementation construction that follows from the analysis results in an NBW
with 2O(n lognk) states. This exponentially improves current complementation construc-
tions, which first translate the NGBW into an NBW with O(nk) states, and ends up in
an NBW with 2O(nk lognk) states. Like the construction in [KV01b], our construction is
simple and easy to implement. The extension of the reasoning in [KV01b] to NGBW is
not trivial and was left open in [GKSV03]. (A trivial extension of [KV01b] to NGBW
does exists, but results in an NBW with 2O(nk log nk) states. The technical achievement
of the construction here is a simultaneous handling of all the sets in the acceptance
condition, which is the key to the improved complexity.) The emptiness algorithm that
follows from the analysis is almost identical to the OWCTY algorithm of [FFK+01]
for symbolic detection of bad cycles. Our contribution is the strong relation we draw
between the complementation construction and the emptiness algorithm – both naturally
follow from the analysis of the runs, which easily implies their correctness.

Beyond the theoretical contribution of the relation between complementation and
emptiness, it gives rise to a new certified model-checking procedure. As discussed in
[Nam01,PPZ01,PZ01], it is desirable to accompany a positive answer of a model checker
by a proof whose correctness can be verified by methods that are independent of the model
checker. As in the case of proof-carrying codes (cf. [Nec97]), such a proof certifies that
the systems was verified, and checking the certificate is much easier than the original
verification task. In addition, as in the case of a counterexample that is returned to the
user when model checking fails, the proof explains why model checking succeeds and
leads to a better understanding of the system. For a discussion of other applications of
certificates, see [Nam01].

Recall that model checking is reduced to checking the emptiness of the product
AS×¬ψ of the system S and the complemented specification A¬ψ . We show that the
ranks we associate with the vertices in the run dag of AS×¬ψ constitute a certificate
that the product of S and A¬ψ is indeed empty. Moreover, by adding to our symbolic
emptiness algorithm an algebraic decision diagram (ADD) that maintains the ranks, the
certificate is generated symbolically (ADDs extend OBDDs by allowing the leaves to
have values from arbitrary domains, thus they maintain functions that are not necessarily
Boolean. Thus, while OBDDs represent Boolean functions, ADDs represent pseudo-
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Boolean functions [BFG+97].) Once the certificate is generated, it can be easily checked,
automatically and symbolically, or manually, and it involves only local checks and no
fixed points. Unlike the certificates in [Nam01,PPZ01,PZ01], whose goal is to provide
the user with a deductive proof to ponder, our goal is to generate a compact certificate
that can be verified automatically. Since a deductive proof usually consists of a long
list of assertions, we believe that machine-checkable certificates are more appropriate
in the verification of large systems. The generation of certificates that can be checked
automatically is possible thanks to the analysis of runs, which bounds the domain of the
well-founded sets that are used in the deductive certificates generated in previous works.
As explained in Section 6, our method can generate, for users that are interested in a
manual check, also “list-based” proofs.

2 Preliminaries

A word automaton is A = 〈Σ,Q, δ,Qin, α〉, whereΣ is the input alphabet,Q is a finite
set of states, δ : Q × Σ → 2Q is a transition function, Qin ⊆ Q is a set of initial
states, and α is an acceptance condition that defines a subset ofQω. Given an input word
w = σ0 ·σ1 · · · inΣω, a run of A onw is a word r = q0, q1, . . . inQω such that q0 ∈ Qin
and for every i ≥ 0, we have qi+1 ∈ δ(qi, σi). Since the transition function may specify
many possible transitions for each state and letter, A may have several runs on w. A run
is accepting iff it satisfies the acceptance condition α. We consider here the generalized
Büchi acceptance condition, where α = {F1, . . . , Fk} is a set of subsets of Q. The
numberk of sets is the index ofα) (orA). For a run r, let inf(r)denote the set of states that
r visits infinitely often. That is, inf(r) = {q ∈ Q : qi = q for infinitely many i ≥ 0}.
AsQ is finite, it is guaranteed that inf(r) �= ∅. A run r is accepting iff inf(r)∩Fj �= ∅
for all 1 ≤ j ≤ k. That is, r is accepting if every set in α is visited infinitely often. The
generalized co-Büchi acceptance condition dualizes the generalized Büchi condition.
Thus, again α = {F1, F2, . . . , Fk} is a set of subsets of Q, but a run r is accepting if
inf(r) ∩ Fj = ∅ for some 1 ≤ j ≤ k. Thus, r visits some set in α only finitely often.

If the automaton A is nondeterministic, then it accepts an input word w iff it has an
accepting run onw. If A is universal, then it acceptsw iff all its runs onw are accepting.
The language of A, denoted L(A) is the set of words that A accepts. Dualizing a nonde-
terministic generalized Büchi automaton (NGBW) amounts to viewing it as a universal
generalized co-Büchi automaton (UGCW). It is easy to see that by dualizing A, we
get an automaton that accepts its complementary language. Note that nondeterministic
Büchi automata (NBW) are a special case of NGBW, with k = 1.

In the linear-time approach to model checking, we check whether all the compu-
tations of a given system S satisfy a specification ψ. The system is usually given as
a labeled state-transition graph and ψ is either a formula in LTL or a word automaton
(traditionally, NBW or NGBW). LTL formulas can be translated to word automata. The
original translation in [VW94] uses NBW. More recent translations use NGBW. For
example, it is shown in [GPVW95] that an LTL formula ψ of lengthm can be translated
to an NGBW Aψ that accepts exactly all the words that satisfy ψ. The automaton Aψ

has 2O(m) states and index m.
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3 Ranks for UGCW

Let A = 〈Σ,Q,Qin, δ, α〉 be a universal co-Büchi automaton with α = {F1, . . . , Fk}.
Let |Q| = n. The runs of A on a word w = σ0 · σ1 · · · can be arranged in an infinite
dag (directed acyclic graph) Gr = 〈V,E〉, where

– V ⊆ Q× IN is such that 〈q, l〉 ∈ V iff some run of A onw has ql = q. For example,
the first level of Gr contains the vertices Qin × {0}.

– E ⊆ ⋃
l≥0(Q×{l})× (Q×{l+1}) is such thatE(〈q, l〉, 〈q′, l+1〉) iff 〈q, l〉 ∈ V

and q′ ∈ δ(q, σl).

Thus, Gr embodies exactly all the runs of A on w. We call Gr the run dag of A on w.
For a set F ⊆ Q, we say that a vertex 〈q, l〉 in Gr is an F -vertex iff q ∈ F . We say that
Gr is accepting if each path π in Gr has an index 1 ≤ j ≤ k such that π contains only
finitely many Fj-vertices. It is easy to see that A accepts w iff Gr is accepting.

Let [2n] denote the set {0, 1, . . . , 2n}, and let [2n]odd and [2n]even denote the set
of odd and even members of [2n], respectively. Also, let R = [2n]even ∪ ([2n]odd ×
{1, . . . , k}), and ≤ be the lexicographical order on the elements of R. We refer to the
members ofR in [2n]even as even ranks and refer to the members ofR in [2n]odd ×{j}
as odd ranks with index j.

A ranking for Gr is a function f : V → R that satisfies the following conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) = 〈2i+ 1, j〉, then q �∈ Fj .
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in Gr a rank in R so that ranks along paths
decrease monotonically, and Fj-vertices cannot get an odd rank with index j. Note that
each path in Gr eventually gets trapped in some rank. We say that the ranking f is an
odd ranking if all the paths of Gr eventually get trapped in an odd rank. Formally, f is
odd iff for all paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in Gr, there is l ≥ 0 such that f(〈ql, l〉)
is odd, and for all l′ ≥ l, we have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f is
odd if every path of Gr has infinitely many vertices with odd ranks.

In the rest of this section we prove that Gr is accepting iff it has an odd ranking.
Consider a (possibly finite) dag G ⊆ Gr. We say that a vertex 〈q, l〉 is finite in G iff
only finitely many vertices in G are reachable from 〈q, l〉. For a set F ⊆ Q, we say that
a vertex 〈q, l〉 is F -free inG iff all the vertices inG that are reachable from 〈q, l〉 are not
F -vertices. Note that, in particular, 〈q, l〉 is not an F -vertex.

We define an infinite sequence of dags G0 ⊇ G1 ⊇ G1
1 ⊇ . . . Gk1 ⊇ G3 ⊇ G1

3 ⊇
. . . Gk3 ⊇ G5 . . . as follows. To simplify notations, we sometimes refer toGk+1

2i+1 asG2i+2

and refer toG2i+1 asG1
2i+1. Thus,G1

1 = G1,G2 = Gk+1
1 ,G1

3 = G3,G4 = Gk+1
3 , and

so on.

– G0 = Gr.
– G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.
– Gj+1

2i+1 = Gj2i+1 \ {〈q, l〉 | 〈q, l〉 is Fj-free in Gj2i+1}, for 1 ≤ j ≤ k.

Lemma 1. For every i ≥ 0, there exists li such that for all l ≥ li, there are at most n− i
vertices of the form 〈q, l〉 in G2i.
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Proof: We prove the lemma by an induction on i. The case where i = 0 follows from the
definition ofG0. Indeed, inGr all levels l ≥ 0 have at most n vertices of the form 〈q, l〉.
Assume that the lemma’s requirement holds for i, we prove it for i+1. Consider the dag
G2i. We distinguish between two cases. First, ifG2i is finite, thenG2i+1 is empty,G2i+2
is empty as well, and we are done. Otherwise, we claim that there must be some Fj-free
vertex in Gj2i+1, for some 1 ≤ j ≤ k. To see this, assume, by way of contradiction, that

G2i is infinite and all the vertices in Gj2i+1 are not Fj-free, for all 1 ≤ j ≤ k. Note that

then Gj2i+1 = G2i+1 for all 1 ≤ j ≤ k. Thus, all the vertices in G2i+1 are not Fj-free,
for all 1 ≤ j ≤ k. Since G2i is infinite, G2i+1 is also infinite. Also, each vertex in
G2i+1 has at least one successor. Consider some vertex 〈q0, l0〉 in G2i+1. Since, by the
assumption, it is not F1-free, there exists an F1-vertex 〈q′

0, l
′
0〉 reachable from 〈q0, l0〉.

Let 〈q1, l1〉 be a successor of 〈q′
0, l

′
0〉. By the assumption, 〈q1, l1〉 is not F2-free. Hence,

there exists an F2-vertex 〈q′
1, l

′
1〉 reachable from 〈q1, l1〉. Let 〈q2, q2〉 be a successor of

〈q′
1, l

′
1〉. By the assumption, 〈q2, l2〉 is not F3-free. Thus, we can continue similarly and

construct an infinite sequence of vertices 〈qh, lh〉 and 〈q′
h, l

′
h〉 such that for all h, the

vertex 〈q′
h, l

′
h〉 is a F(hmod k)+1-vertex reachable from 〈qh, lh〉, and 〈qh+1, lh+1〉 is a

successor of 〈q′
h, l

′
h〉. Such a sequence, however, corresponds to a path in Gr that visits

Fj infinitely often, for all 1 ≤ j ≤ k, contradicting the assumption thatGr is accepting.
So, let j be the minimal index for which there is an Fj-free vertex in Gj2i+1, and let

〈q, l〉 be such a vertex. By the minimality of j, we have thatGj2i+1 is equal toG2i+1, and

it contains no finite vertices. Hence, everyFj-free vertex inGj2i+1 has a successor, which
is also Fj-free, thus we can assume without loss of generality that l ≥ li. We claim that
taking li+1 = l satisfies the lemma’s requirement. That is, we claim that for all x ≥ l,
there are at most n− (i+1) vertices of the form 〈q, x〉 inG2i+2. Recall that 〈q, l〉 is not
finite inG2i. Thus, there are infinitely many vertices inG2i that are reachable from 〈q, l〉.
Hence, by König’s Lemma,G2i contains an infinite path 〈q, l〉, 〈q1, l+1〉, 〈q2, l+2〉, . . ..
For all x ≥ 1, the vertex 〈qx, l + x〉 has infinitely many vertices reachable from it in
G2i and thus, it is not finite in G2i. Therefore, the path 〈q, l〉, 〈q1, l+ 1〉, 〈q2, l+ 2〉, . . .
exists also in G2i+1. Recall that 〈q, l〉 is Fj-free in Gj2i+1. Hence, being reachable from
〈q, l〉, all the vertices 〈qx, l+ x〉 on the path are Fj-free as well. Therefore, they are not
inGj+1

2i+1. It follows that for all x ≥ l, the number of vertices of the form 〈q, x〉 inGj+1
2i+1

(and hence also in G2i+2) is strictly smaller than their number in G2i. Hence, by the
induction hypothesis, we are done.

Lemma 1 implies that G2n is finite, and G2n+1 is empty.
Each vertex 〈q, l〉 in Gr has a unique i ≥ 1 such that 〈q, l〉 is either finite in G2i or

Fj-free in Gj2i+1, for some 1 ≤ j ≤ k. This induces a function f : V → R defined as
follows.

f(〈q, l〉) =
[

2i If 〈q, l〉 is finite in G2i.
〈2i+ 1, j〉 If 〈q, l〉 is Fj-free in Gj2i+1.

For an odd rank η = 〈2i+ 1, j〉, we refer to Gj2i+1 as Gη.

Lemma 2. For every vertex 〈q, l〉 in Gr and η ∈ R, if 〈q, l〉 �∈ Gη, then f(〈q, l〉) < r.
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Lemma 3. For every two vertices 〈q, l〉 and 〈q′, l′〉 in Gr, if 〈q′, l′〉 is reachable from
〈q, l〉, then f(〈q′, l′〉) ≤ f(〈q, l〉).

Lemma 4. For every infinite path in Gr, there exists an index 1 ≤ j ≤ k and a vertex
〈q, l〉 with an odd rank with index j such that all the vertices 〈q′, l′〉 on the path that are
reachable from 〈q, l〉 have f(〈q′, l′〉) = f(〈q, l〉).

The proofs of Lemmas 2, 3, and 4 appear in the full version. We can now conclude
with Theorem 1 below.

Theorem 1. Gr is accepting iff it has an odd ranking.

Proof: Assume first that there is an odd ranking for Gr. Then, every path in Gr even-
tually gets trapped in some odd rank 〈2i + 1, j〉. Hence, as Fj-vertices cannot get this
rank, the path visits Fj only finitely often, and we are done.

For the other direction, note that Lemma 3, together with the fact that a vertex gets
an odd rank with index j only if it is Fj-free, imply that the function f described above
is a ranking. Lemma 4 then implies that the ranking is odd.

We note that the reasoning above is similar to the one described for co-Büchi automata
in [KV01b]. The extension to the case of generalized co-Büchi is not trivial and involves
a refinement of the dagG2i+2. In particular, the minimality of j in the proof of Lemma 1
is crucial for its correctness.

4 Complementation of NGBW

Theorem 1 implies that a UGCW A accepts a word w iff there is an odd ranking for
the run dag Gr of A on w – a ranking in which every infinite path in Gr has infinitely
many vertices with an odd rank. Intuitively, the theorem suggests that the requirements
imposed by the generalized co-Büchi condition (finitely often, for some set in α) can
be reduced to a new condition of a simpler type (infinitely often, for vertices with an
odd rank). Recall that by dualizing an NGBW, we get a UGCW for the complementary
language. Theorem 1 enables us to translate this UGCW to an NBW, resulting in the
complementation construction described below.

Theorem 2. Let A be an NGBW with n states and index k. There is an NBW A′ with
2O(n log kn) states such that L(A′) = Σω \ L(A).

Proof: Let Ã be the UGCW that dualizes A. The UGCW Ã accepts exactly all words
rejected by A. We obtain A′ by translating Ã to an NBW. When A′ reads a word w,
it guesses a ranking for the run dag Gr of Ã on w. At a given point of a run of A′, it
keeps in its memory a whole level of Gr and a guess for the ranks of the vertices at this
level. In order to check that the ranking is odd, A′ keeps track of states that owe a visit
to vertices with odd ranks.

Before we define A′, we first need some notations.A level ranking for A is a function
g : Q → R, such that if g(q) is odd with index j, then q �∈ Fj . Let R be the set of all level
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rankings1. For S ⊆ Q and a letter σ, let δ(S, σ) =
⋃
s∈S δ(s, σ). Note that if level l− 1

inGr contains the states in S, and the l-th letter inw is σ, then level l ofGr contains the
states in δ(S, σ). For two level rankings g and g′ in R and a letter σ, we say that g′ covers
〈g, σ〉 if for all q and q′ inQ, if q′ ∈ δ(q, σ), then g′(q′) ≤ g(q). Thus, if g describes the
ranks of the vertices of level l− 1, and the l-th letter in w is σ, then g′ is a possible level
ranking for level l. Finally, for g ∈ R, let odd(g) = {q : g(q) ∈ [2n]odd × {1, . . . , k}}.
Thus, odd(g) contains states to which g gives an odd rank.

Let A = 〈Σ,Q, qin, δ, α〉. Then A′ = 〈Σ,Q′, q′
in, δ

′, α′〉, where

– Q′ = 2Q × 2Q × R. A state 〈S,O, g〉 ∈ Q′ indicates that the current level of the
dag contains the states in S and the guessed level ranking for the current level is g.
The setO ⊆ S contains states along paths that have not visited a vertex with an odd
rank since the last time O has been empty.

– q′
in = 〈{q′

in}, ∅, fin〉, where fin(q) = 2n for all q ∈ Q.
– δ′ is defined, for all 〈S,O, g〉 ∈ Q′ and σ ∈ Σ, as follows.

• If O �= ∅, then δ′(〈S,O, g〉, σ) = {〈δ(S, σ), δ(O, σ) \ odd(g′), g′〉 :
g′ covers 〈g, σ〉}.

• If O = ∅, then δ′(〈S,O, g〉, σ) = {〈δ(S, σ), δ(S, σ) \ odd(g′), g′〉 :
g′ covers 〈g, σ〉}.

– α′ = 2Q × {∅} × R.

Thus, when A′ reads the l-th letter in the input, it guesses the level ranking for level l in
the run dag. This level ranking should cover the level ranking of level l− 1. In addition,
in theO component, A′ keeps track of states along paths that owe a visit to a vertex with
an odd rank. When all the paths of the dag have visited a vertex with an odd rank, the
set O becomes empty, and is initiated according to the states in the current level and its
ranking. The acceptance condition then checks that there are infinitely many levels in
which O become empty.

Since there are at most (k(2n+ 1))n level rankings, the number of states in A′ is at
most 22n · (k(2n+ 1))n = 2O(n log kn).

Note that the previous complementation construction for NGBW involves a
2O(nk lognk) blow up, as they first translate the NGBW into an NBW withO(nk) states,
and complementing an NBW with m states results in an NBW with 2O(m logm) states
[Saf88,Mic88]. Thus, our construction exponentially improves the previous construc-
tion.

5 Model Checking

Recall that the model-checking problem is reduced to the emptiness problem of an
NGBW AS×¬ψ over a single-letter alphabet. Equivalently, we can check the nonempti-
ness of the UGCW ÃS×¬ψ that dualizes AS×¬ψ . Indeed, since AS×¬ψ has a single-letter
alphabet, it is empty iff ÃS×¬ψ is not empty (see also [MP87]).

1 When we refer to level rankings, we only care for the ranks of a subset of Q (the set of states
that appear in the corresponding level). For technical convenience, we let g range on all states.
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In this section we describe a symbolic algorithm for UGCW non-emptiness. The al-
gorithm is induced by the analysis in Section 3, and its correctness follows immediately
from Theorem 1. The algorithm is a variant of Emerson-Lei algorithm and is similar
to the OWCTY algorithm of [FFK+01] for detecting bad-cycles (see also [HTKB92,
KPR98]). The tight relation between the complementation construction and the empti-
ness procedure is very interesting, as it shows that progress in the emptiness procedure
can be measured by means of the ranks that are used in the construction of the comple-
mentary automaton. As we describe in the next section, this observation gives rise to a
new certified model-checking procedure.

Consider a single-letter UGCW A = 〈{a}, Q, δ,Qin, α〉. The analysis in Section 3
associates ranks with members of the infinite setQ×IN. On the other hand, nonemptiness
algorithms handle the finite state setQ. Accordingly, we first associate ranks with states:

Lemma 5. Consider a UGCW A over a single-letter alphabet. Then, for every state q
of A, all the vertices in {q} × IN have the same rank.

Proof: Consider a state q and two levels l1 and l2 such that 〈q, l1〉 and 〈q, l2〉 are vertices
inGr. Recall that the dagGr embodies all the runs of A on the input word. Since A is a
single-letter UGCW, the sub-dag with root 〈q, l1〉 coincides with the sub-dag with root
〈q, l2〉. Indeed, both embody exactly all the runs of A with initial state q on aω. Thus,
all the sub-dags of Gr with roots in {q} × IN coincide. Hence, it is easy to prove by an
induction on r ∈ R that for all states q and r ∈ R, either all vertices in {q} × IN get
rank r, or no vertex in {q} × IN gets rank r.

For a state q of A, the rank of q, denoted rank(q), is the rank of the vertices {q}× IN
in Gr. We are now ready to describe the nonemptiness procedure that follows. The
procedure, described in Figure 1, gets as input the UGCW A and calculates the set b
of all the states q such that A with initial state q is empty. The UGCW A is then not
empty iffQin ∩ b = ∅. The algorithm uses the following set-based operations (all easily
implemented by means of OBDDs).

– The operator pre : 2Q → 2Q. Given a set of states γ, the set pre(γ) contains all
states that have an immediate successor in γ. Formally, q ∈ pre(γ) iff δ(q, a)∩γ �= ∅
(in temporal logic, q |= EXγ).

– The operator until : 2Q × 2Q → 2Q. Given two sets of states η and γ, the set
until(η, γ) contains all states that reach a state in γ ∩ η via states in η. Formally,
q ∈ until(η, γ) iff there are q0, . . . , ql such that q0 = q, for all 0 ≤ i < l, we have
that qi+1 ∈ δ(qi, a) and qi ∈ η, and ql ∈ η∩γ (in temporal logic, q |= EηU(η∧γ)).
Note that the operator until can be implemented by repeatedly applying the pre
and intersection operators, until a fixpoint is reached.

Note that the set b is monotonically decreasing during the execution of the procedure
NonEmpty. Intuitively, b contains all states that have not yet been ranked.At initialization,
b contains all the states, and in each iteration it is intersected with some set. We say that
a state q is removed from b in iteration i[0] if q is removed from b during the internal
while loop of the i-th external while loop. We say that q is removed from b in iteration
(i[1], j) if q is removed from b during the j-th internal for loop of the i-th external while
loop. Lemma 6 then follows directly from the definition of ranks.
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procedure NonEmpty(A)
b := Q;
while b changes do

while b changes do b := b ∩ pre(b);
for j = 1 . . . k do b := b ∩ until(b, Fj);

if Qin ∩ b = ∅ then return(“not empty”) else return(“empty”);

Fig. 1. A nonemptiness procedure.

Lemma 6. Consider a state q in A.

– The state q is removed from b in iteration i[0] iff rank(q) = 2i.
– The state q is removed from b in iteration (i[1], j) iff rank(q) = 〈2i+ 1, j〉.

By Lemma 6, a state q is removed from b during the execution of the procedure if
it has a well-defined rank, which holds, by Theorem 1, if A with initial state q is not
empty. Thus, Lemma 6, together with the analysis in Section 3, naturally induce the
algorithm and immediately imply its correctness. (The only, minor, difference between
our algorithm and the OWCTY algorithm [FFK+01], is that in our algorithm the internal
while loop precedes the internal for loop, rather than the other way around. Since the
purpose of the internal while loop is to eliminates quickly states that cannot be on a
cycle, it makes sense to apply it as soon as possible.)

Remark 1. When ψ is a safety property, the automaton Aψ is a looping automaton (all
infinite runs are accepting), and the automaton A¬ψ can be defined as a nondeterministic
automaton on finite words [Sis94,KV01a]. Thus, a runs of A¬ψ is accepting iff it reaches
a set F of accepting states. Accordingly (assuming that the system has no fairness
conditions), the automaton ÃS×¬ψ is a universal automaton in which all runs except
these that reach F are accepting. As a result, we need a much simpler nonemptiness
procedure, which corresponds to backwards traversal. Thus, it initializes b with Q \ F ,
follows with the single while loop while b changes do b := b∩ pre(b), and returns “not
empty” when Qin ⊆ b.

6 Certified Model Checking

Recall that ÃS×¬ψ with initial state q is not empty iff rank(q) is well defined, and hence
belongs to R. Thus, beyond a correctness proof, the analysis in Section 3 can be used in
order to accompany the output of the procedure described in Figure 1 by a certificate,
namely the odd ranking, that ÃS×¬ψ is indeed not empty, and S satisfies ψ. In this
section we describe how to generate and check such a certificate.

As we showed, a function f : V → R is an odd ranking if Fj-vertices do not get an
odd rank with index j, ranks along paths decrease monotonically, and all the paths ofGr
eventually get trapped in an odd rank. The number of vertices along a path that get an
even rank depends on the input word and is in general unbounded.Accordingly, checking
whether a given function f is an odd ranking involves, in addition to local checks, also
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a check for eventualities, which involves a fixed-point computation. We now show that
when A is a single-letter automaton, as is the case with ÃS×¬ψ , it is possible to bound
the number of vertices that get even ranks. Let A = 〈{a}, Q, δ,Qin, α〉 be a single-letter
UGCW. Consider a vertex 〈q, l〉 that is finite inG2i. Let height(q, l) be the length of the
longest path from 〈q, l〉 to a leaf of G2i.

Lemma 7. For all vertices 〈q, l〉, we have that height(q, l) ∈ {0, . . . , n− 1}.

Proof: Assume by way of contradiction that G2i contains a vertex 〈q, l〉 such that
height(q, l) ≥ n. Then, the longest path from 〈q, l〉 to a leaf ofG2i contains at least one
state q′ that repeats at least twice. Thus, there is a path inG2i that starts in 〈q, l〉, reaches
a vertex 〈q′, l1〉 with l1 ≥ l and continues to a vertex 〈q′, l2〉 with l2 > l1. As argued in
the proof of Lemma 5, the sub-dag with root 〈q′, l1〉 coincides with the sub-dag with
root 〈q′, l2〉. Hence, there is a path in G2i that starts in 〈q′, l2〉 and reaches a vertex
〈q′, l3〉 with l3 > l2. By repeating this argument, we obtain an infinite path in G2i that
starts in 〈q, l〉, contradicting the fact that 〈q, l〉 is finite.

Following Lemma 7, we refine our set of ranks to R = ([2n]even × {1, . . . , n}) ∪
([2n]odd × {1, . . . , k}). We say that a function f : V → R is a bounded odd ranking if
the following hold.

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) = 〈2i+ 1, j〉, then q �∈ Fj .
2. Consider an edge 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E.

a) If f(〈q, l〉) is odd, then f(〈q′, l + 1〉) ≤ f(〈q, l〉).
b) If f(〈q, l〉) is even, then f(〈q′, l + 1〉) < f(〈q, l〉).

Thus, in a bounded odd ranking, the rank of successors of a vertex 〈q, l〉 with an even
rank must be strictly smaller than the rank of 〈q, l〉.
Theorem 3. Let A be a single-letter automaton. Then, Gr is accepting iff it has a
bounded odd ranking.

Proof: Each bounded odd ranking is also an odd ranking (with the height component
being ignored). Thus, the direction from right to left follows from Theorem 1. For the
other direction, we refine the function rank : V → R to account for heights of vertices.
Thus, rank(q, l), for 〈q, l〉 that is finite with height h in G2i is 〈2i, h〉. It is easy to see
that, as with odd ranking, the first two conditions on rank being a bounded odd ranking
hold. For the third condition, consider a vertex 〈q, l〉 with rank 〈2i, h〉. By the definition
of height, the successors of 〈q, l〉 in G2i have heights that are strictly smaller than h. By
Lemma 2, the successors of 〈q, l〉 that are not in G2i have rank that is strictly smaller
than 2i. Thus, all the successors of 〈q, l〉 have ranks that are strictly smaller than 〈2i, h〉,
and we are done.

It turns out that the nonemptiness procedure actually accounts for heights too: we
say that a state q is removed from b in iteration (i[0], h) if q is removed from b during
the i-th external while loop and its h-th internal while loop (we start to count iterations
from 0). Lemma 8 then follows directly from the definition of ranks.



602 O. Kupferman and M.Y. Vardi

Lemma 8. Consider a state q in A.

– The state q is removed from b in iteration (i[0], h) iff rank(q) = 〈2i, h〉.
– The state q is removed from b in iteration (i[1], j) iff rank(q) = 〈2i+ 1, j〉.

In a symbolic implementation of the procedure NonEmpty, we maintain b in an
OBDD. By maintaining in addition an ADD that maps states to ranks, we generate a
certificate that can be used the certify the model-checking procedure. Let f : Q → R be a
partial function from Q to R. The procedure Certified Nonempty described in Figure 2
gets as input a single-letter UGCW A and calculates, in addition to the set b, also a
function f that describes the odd ranking, which is returned in case no state of Qin is in
b2. The procedure uses the operator assign, which given a set γ ⊆ Q and a rank r ∈ R,
returns a function in which all the states in γ are assigned r. In addition, initializing f to
∅ corresponds to an empty function, and ∪ between two functions with disjoint domains
returns their union.

procedure Certified NonEmpty(A)
b := Q; f := ∅; i := 0;
while b changes do

i := i + 1;
h := 0;
while b changes do

b := b ∩ pre(b);
f := f ∪ assign(b \ pre(b), (2i, h));
h := h + 1;

for j = 1 . . . k do
b := b ∩ until(b, Fj);
f := f ∪ assign(b \ until(b, Fj), (2i + 1, j));

if Qin ∩ b = ∅ then return(“not empty with certificate” f ) else return (“empty”);

Fig. 2. A nonemptiness procedure that generates a certificate.

The procedure can be easily implemented symbolically, with f being maintained in
an ADD. Note that R consists of pairs, thus in some ADD implementations, where the
domain of the ADD is restricted to single values, we have to encode R, which is easy.

Once the procedure Certified Nonempty terminates and f is returned to the user,
she can check that f represent a bounded odd ranking and that all the states in Qin
have a rank. Note how the use of heights, which enables us to consider bounded odd
rankings, is essential here, as checking f involves only local checks (a comparison of a
rank of vertices and their successors) and no fixed points. As described in the procedure
Check Certificate in Figure 3, the check can be done automatically and symbolically.
The procedure uses the following Boolean functions.

2 In case the intersection of Qin and b is not empty, it is possible to enhance the procedure to return
an evidence to the emptiness of A; this is similar to the known generation of counterexamples
and we do not discuss it here.
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– undef : 2Q → {true, false}. Given a set γ of states, undef(γ) is true iff f does
not assign a rank to some state in γ; i.e., γ ∩ comp(f−1(R)) �= ∅.

– oops : {1, . . . , k} × 2Q → {true, false}. Given an index 1 ≤ j ≤ k and a set γ
of states, oops(j, γ) is true iff there is q ∈ γ with an odd rank with index j; i.e.,
f(q) ∈ [2n]odd × {j}. The symbolic implementation of oops checks whether the
intersection of f−1([2n]odd × {j}) and b is empty.

The correctness of the procedure Check Certificate follows immediately from Theo-
rem 3.

procedure Check Certificate(A, f)
if undef(Qin) then return(“incorrect certificate”);
for j = 1 . . . k do

if oops(j, Fj) then return(“incorrect certificate”);
for all q ∈ Q and q′ ∈ δ(q, a) do

if f(q) is odd and f(q′) > f(q) then return (“incorrect certificate”);
if f(q) is even and f(q′) ≥ f(q) then return (“incorrect certificate”);

return(“correct certificate”);

Fig. 3. Verifying that a certificate is correct.

In the case of LTL model checking, the automaton A is ÃS×¬ψ and its state space
consists of pairs 〈s, P 〉, where s is a state of S and P ⊆ cl(ψ) is a set of LTL formulas.
The automaton ÃS×¬ψ with initial state 〈s, P 〉 is not empty if each path that starts in s
violates at least one formula inP . Each set in the generalized Büchi acceptance condition
corresponds to a formula of the form ϕUθ and consists of all the states 〈s, P 〉 in which
P contains θ or does not contain ϕUθ. The rank of a state 〈s, P 〉 explains how one of
the formulas in P is not satisfied. If the rank is even, the explanation is transfered, via
local conditions, to the successors of s. If the rank is odd, the particular formula that is
not satisfied is recorded (by means of the index of the odd rank). Hence, for users that
prefer to get a certificate that is similar to deductive proofs generated by proof-theoretic
approaches to verification [MP92] (as in [PPZ01,PZ01]), it is possible to present the
certificate as a list of states and how they satisfy (that is, do not satisfy the negation of)
relevant subformulas of ψ.

Remark 2. As discussed in Remark 1, when ψ is a safety property, nonemptiness of
ÃS×¬ψ can be checked by backwards traversal and the nonemptiness procedure consists
of the single loop while b changes do b := b ∩ pre(b). In this case, we can take b itself
as the certificate, and there is no need to compute ranks. To check that b is a correct
certificate, one has to check that Qin ⊆ b, b ∩ F = ∅, and b = b ∩ pre(b). Thus,
while the computation of b involves a fixed-point, checking that it is indeed a fixed-point
involves only local checks.
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7 Discussion

We suggested a new complementation construction for NGBW. The analysis behind the
construction led to a symbolic certified model-checking procedure. For an NGBW with
n states and index k, our complementation results in an NBW with 2O(n log nk) states.
This exponentially improves current complementation construction that first translate the
NGBW into an NBW with O(nk) states, and end up in an complementary automaton
with 2O(nk log nk) states. Using our analysis it can also be shown that an alternating
generalized co-Büchi word automaton with n states and index k can be translated to
an alternating weak word automaton with O(n2k) states, rather than O(n2k2), which
would be the result of a translation that first translates the automaton into an alternating
co-Büchi automaton. These improvements suggest that when it is possible to use both
NGBW and NBW, one should prefer an NGBW with fewer states, even if its index is
large. The above give rise to the following problem:

Given an NBW, find an equivalent NGBW with fewer states.

In particular, it’d be interesting to look for a variant of the translation in [MH84], of
an alternating Büchi word automaton with state space Q into an NBW with state space
2Q × 2Q, that will end up in an NGBW with state space 2Q.

Another open problem refers to the particular nonemptiness algorithm we were able
to relate to the complementation construction and to augment with a certificate. Re-
call that our algorithm is similar to the OWCTY algorithm, which is a variant of the
quadratic Emerson-Lei algorithm. As discussed in Section 1, more recent algorithms
solve the nonemptiness problem with a sub-quadratic number of symbolic steps [BGS00,
GPP03]. It’d be interesting to consider whether these algorithms can be related to com-
plementation as well.
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[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962.
Stanford University Press.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of
Computer and System Sciences, 8:117–141, 1974.

[EL86] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the proposi-
tional µ-calculus. In Proc. 1st LICS, pages 267–278, 1986.

[FFK+01] K. Fisler, R. Fraer, G. Kamhi, M.Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. 7th TACAS, LNCS 2031, pages 420–434, 2001.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing
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