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Abstract. Model-checking gained wide popularity for analyzing software and
hardware systems. However, even when the desired property holds, the property
or the model may still require fixing. For example, a property ϕ: “on all paths, a
request is followed by an acknowledgment”, may hold because no requests have
been generated. Vacuity detection has been proposed to address the above problem.
This technique is able to determine that the above propertyϕ is satisfied vacuously
in systems where requests are never sent. Recent work in this area enabled the
computation of interesting witnesses for the satisfaction of properties (in our case,
those that satisfy ϕ and contain a request) and vacuity detection with respect to
subformulas with single and multiple subformula occurrences.
Often, the answer “vacuous” or “not vacuous”, provided by existing techniques, is
insufficient. Instead, we want to identify all subformulas of a given CTL formula
that cause its vacuity, or better, identify all maximal such subformulas. Further,
these subformulas may be mutually vacuous. In this paper, we propose a framework
for identifying a variety of degrees of vacuity, including mutual vacuity between
different subformulas. We also cast vacuity detection as a multi-valued model-
checking problem.

1 Introduction

Model-checking gained wide popularity for analyzing software and hardware systems.
However, even when the desired property ϕ holds, the property or the model may still
require fixing. Early work on “suspecting a positive answer” addressed the fact that
temporal logic formulas can suffer from antecedent failure [2]. For example, the property
p = AG(req ⇒ AFack) (“on all paths, a request is followed by an acknowledgment”)
may hold because no requests have been generated, and thus model-checkers should
distinguish between vacuous satisfaction of ϕ, in systems where requests are never
generated, and non-vacuous satisfaction, in which at least one request is generated.

Industrial experience [3] convinced researchers that vacuous satisfaction of prob-
lems presents a serious problem. Based on this experience, Beer et al. [3] proposed the
following definition of vacuity: a formula ϕ is vacuous in a subformula ψ on a given
model if ψ does not influence the value of ϕ on this model. For example, for models
where requests are not generated, property p is vacuous in ack. Vacuity detection has
been an active area of research [23,24,25,14,1,4]. Work in this area enabled computation
of interesting witnesses [3] for the satisfaction of properties (for our property p, it is
a computation that satisfies it and contains a request), vacuity detection with multiple
occurrences of a subformula [1], extensions to different temporal logics [14,23], etc.
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We feel that vacuity detection should always accompany a model-checking run. If the
model-checker does not yield a witness or a counterexample (as is the case in CTL [12]
for true universal properties, false existential properties, and all mixed properties), then
a vacuity check is essential for accepting the answer, since it can point to a mismatch
between the model and the property. Clearly, if vacuity detection can determine not only
whether a property ϕ is vacuous, but also whether it is true or false, then the interesting
witness to non-vacuity can be used to inspect either answer. Information about vacuity is
useful even in cases when the model-checker can generate a counterexample – knowing
that a formula is vacuous helps understand the generated evidence or skip it completely
(e.g., when vacuity resulted from a typo).

Let us look at checking whether a propositional formulaϕ is vacuous in a subformula
b: (1) b is non-vacuous in b; (2) if ϕ is non-vacuous in b, then so is ¬ϕ; (3) a∨ b is non-
vacuous in b if a is false; (4) a ∧ b is vacuous in b if a is false. These examples lead
us to constructing the truth table shown in Figure 1(a). That is, to check whether a
propositional formula ϕ is vacuous in b, we can replace b with the value “matters” (M )
and evaluate the resulting propositional formula according to the rules of the truth table.
If the result isM , then the value of bmatters, and ϕ is non-vacuous in b; otherwise, ϕ is
vacuous, and we know whether it is true or false. For example, the first row of Figure 1(a)
specifies that when a is true, then a∧ b is non-vacuous in b, a∨ b is vacuously true, ¬a is
vacuously false, and¬b is non-vacuous. So, to check whether (a∧¬b)∨c is vacuous in b
when a is true and c is false, we substituteM for b and evaluate the resulting expression:
(true ∧ ¬M) ∨ false = (true ∧M) ∨ false = M ∨ false = M . Therefore, the formula
is non-vacuous in b.

The same idea can be used for checking vacuity of temporal properties. Note that
Figure 1(a) is just the truth table for the 3-valued Kleene logic [20]. Thus, simple vacuity
detection, or reasoning with the value “matters”, is exactly the 3-valued model-checking
problem [9,6,19]!

As we show in this paper, a variety of generalizations of the simple vacuity problem
can be solved by reducing them to multi-valued model-checking problems [9] over some
logic L, where the values of L are used to keep track of how the formula depends on
its subformulas. For example, we can determine whether ϕ is non-vacuous and true
or non-vacuous and false by refining the value “matters” into “non-vacuously true”
and “non-vacuously false”, resulting in a four-valued logic and thus four-valued model-
checking. We also show that witnesses and counterexamples computed by multi-valued
model-checking can be used to produce interesting witnesses for arbitrary CTL formulas.
We discuss vacuity detection with respect to a single subformula in Section 3, after giving
the necessary background in Section 2.

The idea of using multi-valued logic for encoding different degrees of vacuity is
also applicable to cases where we want to check vacuity of a formula ϕ with respect
to several subformulas. In those cases, we are interested in determining all maximal
subformulas of ϕ in which it is vacuous, and gracefully deal with multiple occurrences
of the same subformula. To solve this problem, we introduce the notion of mutual vacuity
between different subformulas. We then cast mutual vacuity detection as a multi-valued
model-checking problem, where logic values encode different degrees of vacuity, such
as “ϕ is mutually vacuously true in a and b, vacuous in c and d independently, and non-
vacuous in e”. As in the case of checking vacuity for a single subformula, witnesses and
counterexamples provided by multi-valued model-checking give sufficient information
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q
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s0 s1 s2

s3

a b a ∧ b a ∨ b ¬a ¬b
true M M true false M
false M false M true M

(a) (b)

Fig. 1. (a) Truth table for checking vacuity in b. (b) A simple Kripke structure.
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Fig. 2. Examples of De Morgan algebras. �1(¬�2) means that �1 = ¬�2. (a) Classical logic 2. (b)
Kleene logic 3; (c) A 4-valued algebra 4; (d) Cross-product 2× 2; (e) Upset algebra U(2× 2).

to explain the answer given by the vacuity algorithm. Vacuity detection with respect
to several subformulas is discussed in Section 4. In Section 5, we address complexity
issues, and Section 6 concludes the paper.

2 Background

In this section, we give the necessary background on lattice theory and model-checking.
Lattice Theory. A finite lattice is a partial order (L, �), where every finite subset

B ⊆ L has a least upper bound (called “join” and written as �B) and a greatest lower
bound (called “meet” and written �B). The maximum and the minimum elements of
the lattice are denoted by � and ⊥, respectively. If (L,�) is a lattice and its ordering
� is clear from the context, we refer to it as L. A lattice is distributive if meet and join
distribute over each other. A lattice is De Morgan [5] if it is distributive and there exists
a function ¬ : L → L such that for all a, b ∈ L,

¬¬a = a involution a � b = ¬a � ¬b anti-monotonicity
a � b = ¬(¬a � ¬b) De Morgan 1 a � b = ¬(¬a � ¬b) De Morgan 2

We refer to a De Morgan lattice L with a given ¬ as De Morgan algebra. Examples of
some De Morgan algebras are given in Figure 2. Note that the algebra 2, corresponding
to classical two-valued logic, is a subalgebra of any De Morgan algebra. We often use
symbols true and false to denote the top and bottom elements of 2.

An element j of a lattice L is join-irreducible [13] iff j 
= ⊥ and for any x and y in
L, j = x � y implies j = x or j = y. In other words, j is join-irreducible if it cannot
be further decomposed into a join of other elements in the lattice. We denote the set of
all join-irreducible elements of a lattice L by J (L). Every element � of a finite lattice
L can be uniquely decomposed as a join of all join-irreducible elements below it, i.e.
� =

⊔{j ∈ J (L) | j � �} [13].
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Given an ordered set (L,�) and a subset B ⊆ L, the upward closure of B is
↑B � {� ∈ L | ∃b ∈ B · b � �}. B is an upset if ↑B = B. We write U(L) for the
set of all upsets of L, i.e. U(L) = {A ⊆ L | ↑A = A}. The set U(L) is closed under
union and intersection, and forms a lattice ordered by set inclusion. We call the lattice
(U(L),⊆) an upset lattice of L. For singleton sets, we often write a for {a}, and ↑a
instead of ↑{a}. Let a, b be elements of a lattice L, then

↑a � ↑b = ↑(a � b) distribution of meet ↑a � ↑b = a � b anti-monotonicity of ↑

Theorem 1. If a latticeL is De Morgan, then so isU(L), where for j ∈ J (L), negation
is defined as ¬U↑j � L \ ↓¬j. The set J (U(L)) is isomorphic to L via ↑ : L →
J (U(L)).

Moreover, by distribution of meet, every join-irreducible element of U(L) can be
uniquely decomposed as a meet of upsets of join-irreducible elements of L.

Theorem 2. IfL1 andL2 are De Morgan algebras, then so is their cross-productL1×L2
where meet, join and negation are extended point-wise. Furthermore, J (L1 × L2) =
(J (L1)×⊥) ∪ (⊥× J (L2)).

For example, the algebra in Figure 2(d), denoted 2×2, is a cross-product of two algebras
2. Its upset lattice is shown in Figure 2(e). In the rest of this paper, we often use ∧ and
∨ for lattice operations � and �, respectively.

Model Checking. A model is a Kripke structure K = (S,R, s0, A, I), where S is a
finite set of states, R : S × S → 2 is a (total) transition relation, s0 ∈ S is a designated
initial state, A is a set of atomic propositions, and I : S ×A→ 2 is a labeling function,
assigning a value to each a ∈ A in each state. We assume that any subset of B ⊆ S
can be represented by a propositional formula over A, i.e. 2S is isomorphic to PF (A)
the set of propositional formulas over A. An example of a Kripke structure is given in
Figure 1(b), where A = {a, b, p, q}. Note that only reachable states are shown, and in
each state, only true atomic propositions are shown.

χCTL(L) [9] is an extension of Computation Tree Logic (CTL) [12] to De Morgan
algebras. Its syntax is defined with respect to a set A of atomic propositions and a De
Morgan algebra L:

ϕ = � | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | EXϕ | AXϕ | EFϕ | AFϕ
| EGϕ | AGϕ | E[ϕ U ϕ] | A[ϕ U ϕ],

where p ∈ A is an atomic proposition and � ∈ L is a constant. Informally, the meaning
of the temporal operators is: given a state and all paths emanating from it, ϕ holds in
one (EX) or all (AX) next states; ϕ holds in some future state along one (EF ) or all
(AF ) paths; ϕ holds globally along one (EG) or all (AG) paths, and ϕ holds until a
point where ψ holds along one (EU ) or all (AU ) paths.

We write [[ϕ]]K(s) to indicate the value of ϕ in the state s of K, and [[ϕ]](s) when
K is clear from the context. Temporal operators EX , EG, and EU together with the
propositional connectives form an adequate set [11] (i.e. all other operators can be defined
from them). The formal semantics of χCTL(L) is given in Figure 3. In what follows, we
refer to χCTL(L) as multi-valued CTL, and to model-checking problem of χCTL(L)
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[[�]](s) � � [[p]](s) � I(s, p)
[[ϕ ∧ ψ]](s) � [[ϕ]](s) � [[ψ]](s) [[ϕ ∨ ψ]](s) � [[ϕ]](s) � [[ψ]](s)
[[¬ϕ]](s) � ¬[[ϕ]](s) [[EXϕ]](s) � ⊔

t∈S(R(s, t) � [[ϕ]](t))
[[EGϕ]](s) � [[νZ · ϕ ∧ EXZ]](s) [[E[ϕUψ]]](s) � [[µZ · ψ ∨ ϕ ∧ EXZ]](s)

Fig. 3. Semantics of χCTL(L).

as multi-valued model-checking. Note that model-checking of χCTL(2) is exactly the
classical CTL model-checking problem.

Multi-valued model-checking is reducible to several classical model-checking prob-
lems [17]. Since each element of a lattice can be decomposed using join-irreducible
elements, model-checking a χCTL(L) formula ϕ is reduced to solving [[ϕ]](s) � j for
every join-irreducible element of the lattice, and composing the results.

Theorem 3. [17] For every De Morgan algebra L, every χCTL(L) formula ϕ and a
join-irreducible j, there exists a χCTL(2) formula ϕ ⇑ j, called the j-cut of ϕ, such
that [[ϕ ⇑ j]] = ([[ϕ]] � j).
In our case, the formula ϕ ⇑ j is obtained from ϕ as follows: (a) for every � ∈ L that
occurs positively in ϕ, replace it by the value of � � j, (b) for every � ∈ L that occurs
negatively in ϕ, replace it by the value of � � �(L \ ↓¬j). Furthermore, since every
χCTL(2) formula ϕ is in χCTL(L) for any L, a cut of ϕ is itself (ϕ ⇑ j = ϕ). For
example, (AG((a ∧M) ⇒ AF (q ∧M)) ⇑ M) is AG((a ∧ ⊥) ⇒ (AF (q ∧ �))).
Theorem 4 shows how to combine the results of the cuts to obtain the solution to the
multi-valued model-checking problem.

Theorem 4. [17] Let L be a De Morgan algebra and ϕ be a χCTL(L) formula. Then,
[[ϕ]] =

⊔
ji∈J (L)(ji ∧ [[ϕ ⇑ ji]]).

We write ϕ[ψ] to indicate that the formula ϕ may contain an occurrence of ψ. An
occurrence of ψ in ϕ[ψ] is positive (or of positive polarity) if it occurs under the scope
of even number of negations, and is negative otherwise. A subformula ψ is pure in ϕ if
all of its occurrences have the same polarity. We write ϕ[ψ ← q] for a formula obtained
fromϕ by replacingψ with q. A formulaϕ is universal (or in ACTL) if all of its temporal
operators are universal, and is existential (or in ECTL) if all they are existential. In both
cases, negation is restricted to the level of atomic propositions.

Quantified CTL (QCTL) is an extension of CTL with quantification over propo-
sitional formulas [22]. QCTL extends the syntax of CTL by allowing free variables
and universal and existential quantifiers over them to occur in the formula. Let ϕ[Y ]
be a QCTL formula with a free variable Y . The semantics of universal and existential
quantifiers is:

[[∀Y · ϕ[Y ]]](s) � ∀p ∈ PF (A) · [[ϕ[Y ← p]]](s)
[[∃Y · ϕ[Y ]]](s) � ∃p ∈ PF (A) · [[ϕ[Y ← p]]](s)

A QCTL formula ϕ[X] in which X is the only free variable can be seen as a function
λx · ϕ[X ← x] from CTL to CTL. If X is positive in ϕ, then ϕ[X] is monotonically
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increasing, i.e. (p ⇒ q) ⇒ (ϕ[X ← p] ⇒ ϕ[X ← q]); if X is negative, ϕ[X] is
monotonically decreasing. Since false and true are the smallest and the largest elements
of CTL, respectively, we get the following theorem:

Theorem 5. Let ϕ[X] be a QCTL formula in which all occurrences of X are positive.
Then (∀X · ϕ[X]) = ϕ[X ← false], and (∃X · ϕ[X]) = ϕ[X ← true].

Vacuity. We define vacuity of a CTL formula ϕ using quantified CTL as suggested
in [1].

Definition 1. [1] A formula ϕ is vacuously true in ψ at state s iff [[∀Y ·ϕ[ψ ← Y ]]](s),
it is vacuously false iff [[¬∃Y · ϕ[ψ ← Y ]]](s). A formula ϕ is vacuous if it contains a
subformula ψ such that ϕ is vacuous in ψ.

Note that according to our definition, if ψ is not a subformula of ϕ, then ϕ is trivially
vacuous in ψ. In this paper, we do not consider vacuity with respect to a subformula
that occurs both positively and negatively; instead, we treat the two occurrences as
independent subformulas. Under this assumption, all definitions given in [1], including
Definition 1, referred to by the authors as structure vacuity, are equivalent.

3 Vacuity in a Single Subformula

In this section, we look at checking whether a formula ϕ is vacuous with respect to a
single subformula ψ.

3.1 Vacuity Detection Using 3-Valued Logic

As we have shown in Section 1, detecting vacuity of a propositional formula ϕ with
respect to a formula b that is pure in ϕ can be accomplished by (a) replacing all of the
occurrences of b by M , and (b) interpreting the result in 3-valued Kleene logic. This
approach can be easily extended to CTL since according to its semantics, CTL is just an
interpretation of propositional logic over Kripke structures. For example, the meaning
ofEX(a∨b) evaluated in state s is [[EX(a∨b)]](s) =

∨
t∈S R(s, t)∧([[a]](t)∨ [[b]])(t),

and it is vacuous in b if and only if the propositional formula denoting its meaning is
vacuous in b. If we replace b by M , we obtain that [[EX(a ∨ b)]](s) is vacuous in b iff∨
t∈S(R(s, t) ∧ ([[a]](t) ∨ [[M ]](t))) = [[EX(a ∨M)]](s) evaluates to either � or ⊥,

and is non-vacuous otherwise. This leads to a simple vacuity detection algorithm for
checking whether ϕ is vacuous in ψ on a Kripke structure K:

function Vacuous (ϕ, ψ, K) : boolean
� = ModelCheck (ϕ[ψ ←M ],K)
return (� 
= M )

Proof of correctness of this algorithm is given by the following theorem:

Theorem 6. Let ϕ[ψ] be a CTL formula, and ψ is pure in ϕ. Then,

[[ϕ[ψ ←M ]]](s) =






� iff ϕ is vacuously true in ψ

M iff ϕ is non-vacuous in ψ

⊥ iff ϕ is vacuously false in ψ.
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Table 1. A few examples of vacuity checking of ϕ with respect to b.

Formula Condition Answer Comment
ϕ = b b = true (true, {}) ϕ is true iff b is true
ϕ = a a = true (true, {b}) ϕ does not depend on b and is therefore

a = false (false, {b}) vacuously true in b iff a is true
ϕ = a ∧ b a = false (false, {b}) ϕ does not depend on b

a = true, b = true (true, {}) ϕ depends on b
¬ϕ ϕ is (true, {b}) (false, {b}) negation changes the answer but preserves vacuity

Now consider the case where a subformula b occurs both positively and negatively
in ϕ. In this case, the 3-valued vacuity detection algorithm is no longer complete. For
example, ϕ = AG(b ⇒ b) is clearly vacuous in b; however, ϕ[b ← M ] = AG(M ⇒
M) = AG(M) = M . Thus, non-vacuity of a formula cannot be trusted. Yet, the
algorithm remains sound. For example, AG(q ⇒ AF (p ⇒ AXp)) is vacuous in p
on any model where a state in which q holds is unreachable, and in those models,
AG(q ⇒ AF (M ⇒ AXM)) evaluates to� as well.We summarize this in the following
theorem:

Theorem 7. Let ϕ[ψ] be a CTL formula with a subformula ψ. If [[ϕ[ψ ←M ]]](s) is �,
then ϕ is vacuously true in ψ; if [[ϕ[ψ ←M ]]](s) is ⊥, then ϕ is vacuously false in ψ.

In the rest of the paper, we only check vacuity of ϕ with respect to pure subformulas.

3.2 True and False Non-vacuity

The 3-valued model-checking approach to vacuity detection can determine whether
a subformula is non-vacuous, but it does not tell us whether a non-vacuous formula
evaluates to true or false. That is, this approach keeps track of whether a given subformula
matters for the evaluation of the formula, but not how it influences the final result. In
this section, we show that the flavor of vacuity detection that can determine the truth and
falsity of a given formula as well as vacuity of a subformula is equivalent to a 4-valued
model-checking problem.

Once again, we start with a series of examples and use the notation (�, Vacuity),
where � is the value of the formula ϕ and Vacuity is the set of vacuous subformulas of ϕ.
In examples in Table 1, we look at the vacuity of ϕ with respect to a subformula b. After
examining all combinations and building a truth table for the propositional connectives, it
becomes evident that the truth table corresponds to meet, join, and negation of a 4-valued
De Morgan algebra 4, shown in Figure 2(c). The values of the algebra are interpreted
as follows: V T , V F are vacuously true and false, and NV T , NV F are non-vacuously
true and false, respectively.

Thus, checking whetherϕ is vacuous in b is equivalent to model-checking the formula
ϕ′ obtained from ϕ by replacing all occurrences of b with an expression (b ∧NV T ) ∨
(¬b∧NV F ), or equivalently, since b is boolean, ϕ′ = ϕ[b← b∧NV T ∨NV F ]. Note
that this corresponds to ϕ[b ← M ] = ϕ[b ← b ∧M ∨M ] for the case addressed in
Section 3.1. For example, ifϕ = a∧b, thenϕ′ = a∧(b∧NV T ∨NV F ), and if a is true
(i.e. V T ), the expression simplifies to V T ∧ (b∧NV T ∨NV F ) = b∧NV T ∨NV F .
That is, the answer is NV T iff b is true, as desired. The correctness of our analysis is
captured by the following theorem.
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Theorem 8. Let ϕ[ψ] be a CTL formula, and ψ is pure in ϕ. Then,

[[ϕ[ψ ← ψ ∧NV T ∨NV F ]]](s) =






V T iff ϕ is vacuously true in ψ;
NV T iff ϕ is non-vacuously true in ψ;
NV F iff ϕ is non-vacuously false in ψ;
V F iff ϕ is vacuously false in ψ.

The algebra 4 has three join-irreducible elements: V T , NV T , and NV F . Thus, by
Theorem 4, model-checking the formula ϕ[b← b∧NV T ∨NV F ] is reducible to three
classical model-checking problems. In particular, if b occurs positively in ϕ, then

[[ϕ[b← b ∧NV T ∨NV F ]]] 	 V T = [[ϕ[b← false]]]
[[ϕ[b← b ∧NV T ∨NV F ]]] 	 NV T = [[ϕ[b← b]]]
[[ϕ[b← b ∧NV T ∨NV F ]]] 	 NV F = [[ϕ[b← true]]]

This is exactly the vacuity checking algorithm of Kupferman and Vardi [24,23].
Alternatively, we can view the vacuity detection problem as follows: given a QCTL

formula ϕ[X] with a free variable X , find which of the substitutions [X ← false],
[X ← b], and [X ← true] lead to ϕ being true. The set of substitutions forms a 3-valued
De Morgan algebra isomorphic to 3 via the mapping (true→ �, false→ ⊥, ϕ→M).
If X occurs positively in ϕ, then if substituting false for X makes ϕ true, then so does
substituting b and true. Further, if substituting b for X makes ϕ true, then so does true.
That is, the set of all possible solutions is the set of upsets of 3 — U(3). Since 3 is a De
Morgan algebra, by Theorem 1, U(3) is De Morgan as well, and is isomorphic to 4 via
the mapping (↑false→ V T, ↑ϕ→ NV T, ↑true→ NV F, ↑∅ → V F ). So, using either
intuition, this type of vacuity detection is a multi-valued model-checking problem over
the algebra 4.

3.3 Witnesses to Non-vacuity

Beer et al. [4] pointed out that it is essential not only to tell the user that his/her formula
is not vacuous, but also to give an interesting witness explaining why it is the case. For
example, to show non-vacuity ofAG(p⇒ q), we need to exhibit a path starting from the
initial state that goes through the state where both p and q hold.Yet, the approach of Beer
et al can only produce witnesses for non-vacuity of properties expressed in ACTL. We
now show how to use our framework to compute witnesses to non-vacuity of arbitrary
CTL formulas.

Definition 2. [16] Let ϕ be a χCTL(L) formula, � be an element of L, s be a state of a
Kripke structureK, and assume that the value of ϕ in state s is �, i.e. [[ϕ]](s) = �. Then,
a witness to ϕ is an evidence that justifies that [[ϕ]](s) � �, and its counterexample is
an evidence for [[ϕ]](s) � �.

As described in [16], a value of a universal formula ϕ in a model K is an infimum
(or meet) over values of ϕ on all paths of K. Thus, a counterexample to [[ϕ]](s) = � is a
minimal subtree of the computational tree ofK on which ϕ evaluates to �. For example,
the path s0, s1, s2 in the model in Figure 1(b) is a counterexample to [[AG¬p]](s0).
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Dually, a witness to an existential formula [[ϕ]](s) = � is also a minimal subtree of the
computational tree of K on which ϕ evaluates to �. Note that “minimal” does not mean
“linear” (unlike [23,24]), but only that all paths are necessary for the explanation.

We now apply multi-valued witnesses and counterexamples to compute explanations
why an arbitrary CTL formula is non-vacuous. Let ϕ[b] be a universal CTL formula
with a subformula b, and let ϕ′ = ϕ[b ← b ∧ NV T ∨ NV F ] be a corresponding
χCTL(4) formula that is used to check the vacuity of ϕ with respect to b. If [[ϕ′]](s)
evaluates to NV T , then its counterexample is a subtree of the computational tree on
which ϕ evaluates to true, and its value depends on b. That is, the counterexample is a
witness to non-vacuity of ϕ with respect to b, exactly as computed by [4]. Similarly, a
counterexample to [[ϕ′]](s) = NV F is both an execution of the system that violatesϕ and
a witness to non-vacuity of ϕ. Dualizing the examples yields that if ϕ[b] is existential,
then a witness to ϕ′ is also a witness to non-vacuity of ϕ. Combining witnesses and
counterexamples allows us to give evidence to non-vacuity of an arbitrary CTL formula.

For example, consider a formula ϕ = AXEX(p ⇒ q) evaluated in the state s0
of the model in Figure 1(b). To check whether ϕ is vacuous in q, we model-check
ϕ′ = ϕ[q ← q ∧ NV T ∨ NV F ] and obtain the result NV T , i.e. ϕ is true and is
non-vacuous in q. The path s0, s1 is a counterexample to AX , provided that [[EXp ⇒
(q∧NV T ∨NV F )]](s1) = NV T , i.e., this path explains why the value ofAX cannot
be more than NV T . The path s1, s2 is the witness to the EX operator, i.e., it explains
why this EX cannot be less than NV T . The combination of these is a path s0, s1, s2
which is a witness to non-vacuity of ϕ with respect to q.

If ϕ is vacuous, then a witness to its vacuity is just the classical counterexample (or
witness) to ϕ. For example, if ϕ is universal and [[ϕ′]](s) = V F , then a counterexample
to ϕ′ is a computation of the model in which ϕ is false independently of b. Further, if
[[ϕ′]](s) = V T , then ϕ is true independently of b in any computation of the model, i.e.
every computation is a witness.

4 Vacuity in Many Subformulas

In this section, we look at the problem of detecting maximal vacuous subformulas and
vacuity with respect to several occurrences of a subformula.

4.1 Towards Mutual Vacuity

Vacuity checking can be seen as a check of correctness, or well-formedness, of the
property. A negative result, i.e., that the property is vacuous, indicates a problem that
should be brought to the user’s attention. Thus, a simple binary answer is not sufficient,
since it only indicates an existence of the problem, but does not provide any information
on how to locate and solve it. In addition to determining that the formulaϕ is vacuous and
producing witnesses and counterexamples explaining the answer, we expect the vacuity
detection algorithm to yield the following information:

1. Vacuous subformulas of ϕ. Since ϕ can be vacuous in many subformulas, e.g.,
ϕ = a ∨ b when a and b are true, the algorithm should return all vacuous subformulas
of ϕ. When ϕ is complex, it is more useful to receive information just about maximal
(w.r.t. subformula ordering) subformulas. For example, if q and r are the only maximal
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vacuous subformulas in AG(p ⇒ (q ∨ r)), then a state in which p is true is reachable,
and q or r hold in it; on the other hand, if q ∨ r is the maximal vacuous subformula,
then there are no reachable states in which p is true. Clearly, it is useful to differentiate
between these two cases.

2. Dealing with multiple occurrences of the same subformula. The algorithm
should check vacuity of ϕ not only with respect to each subformula ψ, but also for each
occurrence of ψ separately. For example, suppose p occurs in ϕ twice. Then ϕ can be
vacuous in p, e.g., when ϕ = AG(q ⇒ AF (p ∧AXp)) and q never happens; ϕ can be
vacuous in some occurrences of p but not in others, e.g., when ϕ = p∧AG(q ⇒ AFp);
ϕ can be vacuous in each occurrence of p separately, but not be vacuous in p, e.g.,
ϕ = (AFp) ∨ (A[qUp]) and both disjuncts are true.

In this section, we introduce a notion of mutual vacuity and show that an algorithm
that can detect all maximal subsets of atomic propositions of ϕ in which it is mutually
vacuous is sufficient for detecting vacuity in many subformulas, while satisfying the
above requirements. Note that our results hold only for subformulas of pure polarity.

Definition 3. A formula ϕ[ψ1, . . . , ψn] is mutually vacuously true in ψ1, . . . , ψn in
state s iff [[∀Y1, . . . Yn ·ϕ[ψ1 ← Y1, . . . , ψn ← Yn]]](s) is true; it is mutually vacuously
false iff [[¬∃Y1, . . . Yn · ϕ[ψ1 ← Y1, . . . , ψn ← Yn]]](s) is true.

We say thatϕ is mutually vacuous inψ1, . . . ψn if it is mutually vacuously true or mutually
vacuously false inψ1, . . . , ψn, denoted (true, {ψ1, . . . , ψn}) and (false, {ψ1, . . . , ψn}),
respectively. Let Atomic(ψ,ϕ) be the set of all occurrences in ϕ of atomic propositions
occurring in ψ, e.g. Atomic(EFp, (EFp) ∧ (AGp)) is the first occurrence of p. Using
mutual vacuity, we can reduce the vacuity checking problem to the level of atomic
propositions:

Theorem 9. A formula ϕ[ψ] is vacuously true (false) in ψ iff it is mutually vacuously
true (false) in Atomic(ψ,ϕ).

Detecting mutual vacuity with respect to atomic propositions is also sufficient for de-
tecting mutual vacuity with respect to arbitrary subformulas.

Theorem 10. LetΨ = {ψ1, . . . , ψn}. A formulaϕ[Ψ ] is mutually vacuously true (false)
in Ψ iff it is mutually vacuously true (false) in

⋃
ψ∈Ψ Atomic(ψ,ϕ).

From Theorem 10, mutual vacuity checking can be used to determine vacuity w.r.t.
different occurrences of the same subformula.

Theorem 11. Letϕ[ψ] be a formula with multiple occurrences ofψ of the same polarity,
and let Ψ = {ψ1, . . . , ψn} be the set of these occurrences. Then, ϕ is vacuously true
(false) in the subformula ψ iff it is mutually vacuously true (false) in Ψ .

Consider the algorithm that receives a formula ϕ and detects all maximal subsets
of Atomic(ϕ,ϕ) in which ϕ is mutually vacuous. By Theorems 9-11, such an algorithm
satisfies all of the requirements set earlier in this section. In the rest of this section, we
show how to construct such an algorithm by casting mutual vacuity into a multi-valued
model-checking problem.
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Table 2. A few examples of vacuity checking of ϕ[a, b].

Formula Condition Answer Comment
ϕ = a a = true (true, {b}) true iff a is true

a = false (false, {b})
ϕ = b b = true (true{a}) true iff b is true

ϕ = ϕ1[a] ∧ ϕ2[b] ϕ1[a] is (true, {a, b}) (true, {a}) true, non-vacuous in b,
and ϕ2[b] is (true, {a}) and vacuous in a
ϕ1[a] is (true, {a, b}) (false, {a, b}) false, mutually

and ϕ2[b] is (false, {a, b}) vacuous in {a, b}
ϕ1[a] is (false, {b}) (false, {{a}, {b}}) false, vacuous in a

and ϕ2[b] is (false, {a}) and in b
ϕ = ¬ϕ1[a, b] ϕ1[a, b] is (true, {a}) (false, {a}) ¬ does not affect vacuity

(a) (b)

(f, f)

(a, f) (f, b)

(t, f) (a, b) (f, t)

(t, b) (a, t)

(t, t)

↑(t, t)

↑(t, b) ↑(a, t)

NVF1 ↑(t, f) ↑{(t, b), (a, t)} ↑(f, t) NVF2

↑{(t, f), (a, t)} ↑{(t, b), (f, t)}

↑{(t, f), (f, t)}

↑(a, b)

↑{(t, f), (a, b)} ↑{(a, b), (f, t)}

NVT1 ↑(a, f) ↑{(t, f), (a, b), (f, t)} ↑(f, b) NVT2

↑{(a, f), (f, t)} ↑{(f, b), (t, f)}

↑{(a, f), (f, b))}

↑(f, f)

∅

tr
ue

fa
ls

e

Fig. 4. De Morgan algebras for vacuity detection: (a) 3× 3; (b) U(3× 3).

4.2 Detecting Mutual Vacuity

Assume that we have a formula ϕ[a, b], and we want to check whether it is vacuous in
a, b, or both. A few examples of ϕ are given in Table 2. For example, if ϕ = a, then it
is vacuous in b, and it is true iff a is true.

The result of exploring all combinations and building the vacuity tables for the
propositional connectives is isomorphic to the De Morgan algebra given in Figure 4(b).
In this figure, we use t and f to stand for true and false, respectively. Further, both thin
dashed and solid lines indicate lattice ordering – the differentiation was made only to
enhance the visual presentation. Values ↑(a, false) and ↑(true, false) correspond to non-
vacuously true (NV T1) and non-vacuously false (NV F1) in a, respectively. Similarly,
↑(false, b) and ↑(false, true) correspond to NV T2 and NV F2 in b, as indicated in the
figure.
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Table 3. Correspondence between values of � and vacuity of ϕ.

Alternatively, we can view mutual vacuity detection of ϕ[a, b] as follows: given a
QCTL formula ϕ′ = ϕ[a ← X, b ← Y ] with free variables X and Y , find which
substitutions from L = {true, a, false} × {true, b, false} for (X,Y ) make ϕ′ true. The
set L forms a De Morgan algebra isomorphic to 3× 3, given in Figure 4(a). Assuming
that ϕ′ is positive in both X and Y , then if substituting (false, b) for (X,Y ) makes
ϕ′ true, then so does any pair in {true, a, false} × b. This means that ϕ is vacuously
true in a; in other words, its value is (true, {a}). Similarly, if (false, false) makes ϕ′

true, then so does every other substitution, so ϕ is mutually vacuous in a and b, i.e.,
(true, {a, b}). Finally, if substituting (a, false) makes ϕ′ true, but (false, true) does not,
then ϕ is (true, {b}).

As illustrated above, the set of substitutions that make ϕ′ true is an element of
U(L). Since L is a De Morgan algebra, so is U(L) (by Theorem 1); moreover, it is
isomorphic to the algebra given in Figure 4(b). As in Section 3.2, checking vacuity
of ϕ[a, b] with respect to a and b is equivalent to model-checking the formula ϕ′ =
ϕ[a← a∧NV T1 ∨NV F1, b← b∧NV T2 ∨NV F2]. Vacuity of ϕ in state s of some
Kripke structure is then determined by the value � = [[ϕ′]](s). Some of the examples
are given in Table 3. For example, if the value of � is ↑(false, false), then ϕ is true and
is mutually vacuous in a and b. In this algebra, any value above ↑(a, b) and any value
below ↑{(t, f), (f, t)} (NV F1 ∨NV F2) indicate that ϕ is true or false, respectively, as
shown in Figure 4(b) by thick solid lines. Also, any value above NV T1 means that ϕ is
vacuous in b (it may also be vacuous in a), and any value above NV T2 means that ϕ
is vacuous in a, as indicated by thick dashed lines in Figure 4(b). False vacuity is also
guaranteed for values below NV F1 and NV F2.

Before giving the general algorithm for detecting mutual vacuity of a formula, we
introduce some additional notation. Let V = U(Πn

i=13) be a De Morgan algebra, and
{a1, . . . , an} be n atomic propositions occurring inϕ. Let κi : 3→ V be an embedding
of 3 into V such that κ1(�) = ↑(�, false, . . . ), κ2(�) = ↑(false, �, false, . . . ), etc. In
particular, if V = U(3), as in Section 3.2, then κ1(�) = ↑�. Thus, if we interpret the
values of 3 as {true, a, false}, then κ1(a) = NV T , κ1(true) = NV F and κ1(false) =
V T . Similarly, if V = U(3×3), as in the example of checkingϕ[a, b], κ1(a) = NV T1,
κ1(true) = NV F1, κ2(b) = NV T2, and κ2(true) = NV F2. For A ⊆ {a1, . . . , an},
we define f(A) � ↑(x1, . . . , xn) and g(A) � ↑(y1, . . . , yn), where

xi =

{
false if ai ∈ A
ai otherwise

yi =

{
false if ai ∈ A
true otherwise

Theorem 12. Let ϕ′ be a χCTL(V ) formula obtained from ϕ by replacing each ai by
(ai ∧ κi(ai)) ∨ κi(true). Then, ϕ is mutually vacuously true in A ⊆ {a1, . . . , an} in
state s of a Kripke structure K iff [[ϕ′]](s) � f(A); and ϕ is mutually vacuously false
iff [[ϕ′]](s) � g(A).
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s0

s1

s3

EF (a ∨ b) = (true, {{a}, {b}})

(a ∨ b) = (true, {b})

(a ∨ b) = (true, {a})

s0 s1 s2

EF (p ∨ q) = (true, {{a}, {b}})

EF (p ∨ q) = (true, {{a}, {b}})

(p ∨ q) = (true, {{a}, {b}})

s0 s1 s2

EF (p ∧ q) = (true, {})

EF (p ∧ q) = (true, {})

(p ∧ q) = (true, {})

(a)

(b)

(c)

Fig. 5. Proof-like witnesses for non-vacuity of (a)EF (a∨ b), (b)EF (p∨ q), and (c)EF (p∧ q).

Moreover, the largest mutually vacuous subset can be extracted directly from the re-
sult of model-checking ϕ′. For example, if [[ϕ′]](s) � ↑(false, false, a3), then ϕ is
(true, {a1, a2}); and if the result is equal to ↑(false, false, a3), then we also know that ϕ
is definitely not vacuous in a3.

4.3 Witnesses and Counterexamples

Multi-valued witnesses and counterexamples provide witnesses for mutual non-vacuity,
just as they do for vacuity detection with respect to a single subformula. LetK be a Kripke
structure,ϕ be a universal formula whose atomic subformulas area, b, and c, andϕ′ be the
multi-valued formula used to check mutual vacuity of ϕ. If ϕ in state s is (true, {a, b}),
then (a) it is non-vacuous in c, and (b) a counterexample to [[ϕ′]](s) = ↑(false, false, c)
is a minimal subset of the computational tree of K on which ϕ evaluates to true, and is
mutually vacuous in a and b, and non-vacuous in c. This allows us to generate witnesses
for mutual non-vacuity for arbitrary CTL formulas.

In the case of mutual vacuity, a witness even for a single temporal operator may
contain more than one path. Consider formulas evaluated in state s0 of the model in
Figure 1(b). The formula EF (a ∨ b) is (true, {{a}, {b}}), corresponding to the value
NV T1∨NV T2, and its witness for non-vacuity consists of two paths: s0, s1 (explaining
non-vacuity in a) and s0, s3 (explaining non-vacuity in b), as shown in Figure 5(a). The
number of paths in a witness does not necessarily correspond to the number of ways
a formula is vacuous. For example, EF (p ∨ q) is also (true, {{p}, {q}}); however, its
witness for non-vacuity is a single path s0, s1, s2, shown in Figure 5(b). The formula
EF (p∧ q) is non-vacuous, i.e., it evaluates to (true, {}), but its witness for non-vacuity,
shown in Figure 5(c), is the same as the one for EF (p ∨ q).

Proof-like witness presentation was introduced in [16] to disambiguate between the
different paths in a multi-valued witness. In this approach, each state of the witness is
labeled with the part of the formula that it explains. For example, in Figure 5(a), state
s1 is labeled with (true, {b}) indicating that it explains non-vacuity in a (and vacuity in
b). Similarly, state s0 of the witness in Figure 5(c) is labeled with (true, {}), indicating
that it is a witness for non-vacuity, etc.

5 Complexity

In this section, we look at the complexity of vacuity detection of a formula ϕ.
To determine vacuity of ϕ with respect to a single subformula requires solving two

model-checking problems and therefore has the same complexity as model-checking ϕ.
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Finding all mutually vacuous subsets of n atomic subformulas of ϕ requires solving at
most 3n model-checking problems and is therefore exponential in n.

Casting vacuity detection into a multi-valued model-checking problem does not
affect its complexity. Further, the complexity is independent of the implementation of
multi-valued model-checking, be that the reduction to classical model-checking [17], or
the direct implementation, either using the automata-theoretic approach [7], or using the
symbolic approach based on decision diagrams [9].

A symbolic approach to checking a χCTL(L) formula ϕ over a De Morgan algebra
L in a Kripke structure K = (S,R, s0, A, I) is a fixpoint computation of a monotone
function over the lattice LS of functions from the statespace S to L. The computation
of the fixpoint converges in at most O(|S|) iterations [15], i.e. it is linear in the size of
the statespace, just as classical model-checking. Each iteration consists of a symbolic
pre-image computation, i.e. computing [[EXψ]] for some ψ, which is polynomial in the
size of the transition relation and the size of the symbolic representation of [[ψ]], and is
linear in the complexity of meet and join operations on L. Finally, the complexity of
meet and join operations is in the worst case linear in |J (L)| [18].

The algebra used for mutual vacuity detection with respect to n atomic subformu-
las has 3n join-irreducibles, leading to a symbolic algorithm that is exponential in n.
However, in practice, various heuristics can be used to implement meet and join much
more efficiently. For example, if L is relatively small, we can pre-compute its meet and
join tables, reducing their complexity to O(1). Alternatively, elements of L can be rep-
resented in a way that allows the implementation of meet and join using logical bitwise
operations [10], taking advantage of the ability of modern hardware to perform logical
operations on several bits in parallel. Furthermore, only some of the algebra values are
used in the computation of vacuity detection for any given problem. Thus, even if the
algebra is large, it is still possible to precompute the relevant portions of meet and join
tables dynamically, again reducing their complexity to O(1).

Direct automata-theoretic approach to multi-valued model-checking yields similar
results [7,8]. Guided by our experience [18], we conjecture that the vacuity detection
problem is feasible if implemented on top of a direct multi-valued model-checker, even
when a naive reduction to several classical model-checking problems is not.

6 Conclusion

In this paper, we have shown that the vacuity checking problem [3] is an instance of
a multi-valued model-checking over a De Morgan algebra L [9], where the values of
L are used to keep track of how a formula depends on its subformulas. In the process,
we have introduced a more general notion of vacuity, mutual vacuity, that captures
truth or falsity of a property, its vacuity with respect to subformulas, and vacuity with
respect to different occurrences of the same subformula. In addition, we have shown
that witnesses and counterexamples for multi-valued model-checking coincide with the
notion of an interesting witness [3], and give users all the necessary information for
debugging vacuous properties. Note that all results of this paper trivially extend to
(multi-valued) µ-calculus [21,17], and thus to CTL∗ and LTL.

In the future, we plan to address vacuity detection for subformulas with mixed
polarity [1]. Further, this paper addressed two extremes of the vacuity detection problem:
vacuity with respect to a single subformula, and mutual vacuity with respect to all
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subformulas. Other vacuity detection problems, such as only detecting vacuity with
respect to all (atomic) subformulas, but not their mutual vacuity, reduce to multi-valued
model-checking over a subalgebra of the algebra used for mutual vacuity detection.
Exploring this is left for future work.
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