Solving Disjunctive/Conjunctive Boolean
Equation Systems with Alternating Fixed Points

Jan Friso Groote?? and Misa Keinéinen!-?

! Dept. of Computer Science and Engineering, Lab. for Theoretical Comp. Science
Helsinki University of Technology, P.O. Box 5400, FIN-02015 HUT, Finland
Misa.Keinanen@hut.fi
2 Departement of Mathematics and Computer Science, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands J.F.Groote@tue.nl,

Abstract. This paper presents a technique for the resolution of alter-
nating disjunctive/conjunctive boolean equation systems. The technique
can be used to solve various verification problems on finite-state con-
current systems, by encoding the problems as boolean equation sys-
tems and determining their local solutions. The main contribution of
this paper is that a recent resolution technique from [13] for disjunc-
tive/conjunctive boolean equation systems is extended to the more gen-
eral disjunctive/conjunctive forms with alternation. Our technique has
the time complexity O(m 4 n?), where m is the number of alternation
free variables occurring in the equation system and n the number of al-
ternating variables. We found that many p-calculus formulas with alter-
nating fixed points occurring in the literature can be encoded as boolean
equation systems of disjunctive/conjunctive forms. Practical experiments
show that we can verify alternating formulas on state spaces that are or-
ders of magnitudes larger than reported up till now.

1 Introduction

Modal p-calculus [I0] is an expressive logic for system verification, and most
model checking logics can be encoded in the p-calculus. Many important features
of system models, like equivalence/preorder relations and fairness constraints,
can be expressed with the logic, also. For these reasons, pu-calculus is a logic
widely studied in the recent systems verification literature.

It is well-known that the p-calculus model checking problem is in the com-
plexity class NP N co-NP. Emerson, Jutla, and Sistla [7l8] showed the problem
can be reduced to determining the winner in a parity game, and thus is in NP
(and also by symmetry in co-NP). More recently, Jurdzinsky [9] showed that the
problem is even in UP Nco-UP. Yet the complexity of p-calculus model checking
problem for the unrestricted logic is an open problem; no polynomial algorithm
has been discovered.

Nevertheless, various effective model checking algorithms exist for expressive
subsets. Arnold and Crubille [2] presented an algorithm for checking alterna-
tion depth 1 formulas of p-calculus, which is linear in the size of the model and

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 436-[250] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Solving Disjunctive/Conjunctive Boolean Equation Systems 437

quadratic in the size of the formula. Cleaveland and Steffen [6] improved the re-
sult by making the algorithm linear also in the size of the formula. Andersen [1J,
and similarly Vergauwen and Lewi [16], showed how model checking alternation
depth 1 formulas amounts to the evaluation of boolean graphs, resulting also in
linear time techniques for model checking alternation depth 1 formulas. Even
more expressive subsets of p-calculus were investigated by Bhat and Cleaveland
[B] as well as Emerson et al. [78]. They presented polynomial time model check-
ing algorithms for fragments L1 and L2, which may contain alternating fixed
point formulas.

In this paper, instead of treating u-calculus expressions together with their
semantics, we prefer to work with the more flexible formalism of boolean equa-
tion systems [TIT2IT3[T7]. Boolean equation systems provide a useful framework
for studying verification problems of finite-state concurrent systems, because p-
calculus expressions can easily be translated into this simple formalism (see e.g.
[BIT2/T3] for such translations).

We restrict the attention to boolean equation systems, which are either in
disjunctive or in conjunctive form. We found that many practically relevant pu-
calculus formulas (actually virtually all of them) can be encoded as boolean equa-
tion systems that are disjunctive, conjunctive, or disjunctive/conjunctive straight
(see definitionB]). For instance, the model checking problems for Hennessy-Milner
logic (HML), Computation Tree Logic (CTL), and many equivalence/preorder
checking problems result in alternation-free boolean equation systems in dis-
junctive/conjunctive forms (see for instance [I3]). Moreover, encoding the L1
and L2 fragments of the p-calculus (and similar subsets) or many fairness con-
straints as boolean equation systems result in alternating systems which are in
disjunctive/conjunctive form.

Hence, the problem of solving disjunctive/conjunctive boolean equation sys-
tems with alternating fixed points is so important that developing special pur-
pose solution techniques for these classes is worthwhile. Recently, the question
has been addressed by Mateescu [I3], who presented a resolution algorithm
for disjunctive/conjunctive boolean equation systems. But, this approach is re-
stricted to alternation-free systems. We are only aware of one sketch of an algo-
rithm that is directed to alternating disjunctive/conjunctive boolean equation
systems (proposition 6.5 and 6.6 of [12]). Here a O(n3) time and O(n?) space
algorithm is provided where n is the number of variabled]. Our algorithm is a
substantial improvement over this.

In this paper, we address the problem of solving alternating disjunctive/con-
junctive straight boolean equation systems. The algorithm for the resolution of
such equation systems is quite straightforward comparable to the alternation-
free case presented in [13]. Essentially, the idea consists of computing simple
kinds of dependencies between certain variables occurring in the equation sys-

! The paper claims an O(n?) time algorithm, assuming the existence of an al-
gorithm which allows union of (large) sets, and finding and deletion of elements in
these in constant time. To our knowledge for this only a linear and most certainly
no constant time algorithm exists.

438 J.F. Groote and M. Keindnen

tems. Our technique is such that it ensures linear-time worst case complexity
of solving alternation-free boolean equation systems, and quadratic for the al-
ternating systems. More precisely, we present resolution algorithms for the dis-
junctive/conjunctive classes which are of complexity O(m + n?), where m is
the number of alternation-free variables and n the number of alternating vari-
ables occurring in the system. Hence, our approach preserves the best known
worst case time complexity of model checking of many restricted but expressive
fragments of the p-calculus.

The paper is organized as follows. Section 2 introduces basic notions concern-
ing boolean equation systems. Section 3 introduces the subclasses of disjunctive,
conjunctive and disjunctive/conjunctive straight boolean equation systems and
illustrates that many formulas with alternating fixed points fall into these classes.
Section 4 presents the algorithm and section 5 provides some initial experimen-
tal results. In section 6 we wrap up and provide an open problem that we were
unable to solve, but which — if solved — would eliminate the quadratic factor in
the time complexity of our algorithm.

2 Boolean Equation Systems

We give here a short introduction into boolean equation systems. A boolean
equation system is an ordered sequence of fixed point equations like

(o121 = 1) (0222 = aa) ... (Opy =)

where all z; are different. We generally use the letter £ to represent a boolean
equation system, and let € stand for the empty boolean equation system. The
symbol o; specifies the polarity of the fixed points. The symbol o; is u if the
i-th equation is a least fixed point equation and v if it is a greatest fixed point
equation. The order of equations in a boolean equation system is very important,
and we keep the order on variables and their indices in strict synchrony. We write
X ={x1,29,...,x,} for the set of all boolean variables. For each 1 < i < n we
allow «; to be a formula over boolean variables and constants false and true and
operators A and V, summarized by the grammar:

a = true | false |z € X | a1 Aaa | a1 V as.

We write x; € o if x; is a subterm of o;.

The semantics of boolean equation systems provides a uniquely determined
solution, to each boolean equation system £. A solution is a valuation assigning a
constant value in {0, 1} (with 0 standing for false and 1 for true) to all variables
occurring in €. Let v,vq,... range over valuations, where each v is a function
v: X — {0,1}. We extend the definition of valuations to terms in the standard
way. So, v(«) is the value of the term « after substituting each free variable x in
a by v(x). Let v[x:=a] denote the valuation that coincides with v for all variables
except x, which has the value a. We suppose that [x:=a] has priority over all
operations and v[xz:=a] stands for (v[x:=a]). Similarly, we apply [x:=a] to terms;

Solving Disjunctive/Conjunctive Boolean Equation Systems 439

alx:=a] indicates the term « where all occurrences of x have been replaced by
a.

Definition 1 (The solution of a boolean equation system). The solution
of a boolean equation system E relative to a valuation v, denoted by [E]v, is an
assignment inductively defined by

[e]v=wv

N [E]v[zi=pz;.ci([E])] if o = p
[(gizi = ;)] {ﬂgﬂv[xi:—uxi.ai([[g]]v)} ifo;=v

where pz;.a([E]v) = N{ala;([E]v[z:=a)) = a} and ve;.o([E]v) = V{a|la =
a;([E]v[z:=a])}.

It is said that a variable z; depends on variable z;, if o; contains a reference
to x;, or to a variable xj, such that x; depends on x;. Two variables z; and x;
are mutually dependent if z; depends on x; and vice versa.

A boolean equation system & is alternation free if, for any two variables
x; and x; occurring in &, z; and x; are mutually dependent implies 0; = 0.
Otherwise, system & is said to be alternating and it contains alternating fized
points.

Ezample 1. Let X be the set {1,292, 23} and assume we are given a boolean
equation system

&1 = ((pxy = 21 ANaa)(pare = 1 V x2)(ves = x2 A x3)).

The system &; is alternation-free, because it does not contain mutually depen-
dent variables with different signs. Yet, note that variable xz3 with sign o3 = v
depends on variables x7 and x5 with different sign. A solution of &; is given by
the valuation v : X — {0, 1} defined by v(z;) =0 for i = 1,2, 3.

Ezample 2. Let X be the set {x1,22,23} and assume we are given a boolean
equation system

E = ((vay = 2o Awy)(uxe = 21 A xg)(ves = x3 V true)).

The system &; is alternating, because it contains mutually dependent variables
with different signs, like x1 and x5 with o1 # 03. A solution of & is given by
the valuation v : X — {0, 1} defined by v(z;) =1 for i = 1,2, 3.

In Mader [12] there are two lemmas that allow to solve boolean equation systems.
As our proofs are based on these, we restate these here.
Lemma 1 (Lemma 6.2 of [12]). Let & and & be boolean equation systems
and let cx = o and ox = o’ be boolean equations where

;| alzi=true] if o =v,
“= alz:=false] if o = p.

Then [E1(ox = a)&s]lv = [E1(ox = o)E]w.

440 J.F. Groote and M. Keindnen

Lemma 2 (Lemma 6.3 of [12])). Let &1, &2 and E3 be boolean equation systems
and let o171 = «a, o121 = o and oaxy = 3 be boolean equations where o/ =

alre:=p0]. Then

[[51(0’1.131 = 04)52(0'2$2 = 5)53}]’0 = [[51(0'1.131 = O/)SQ(O'QJJQ = 6)53]]11

3 Disjunctive/Conjunctive Boolean Equation Systems

We introduce disjunctive/conjunctive form boolean equation systems in their
most elementary form

Definition 2. Let ox = « be a fixed point equation. We call this equation
disjunctive if no conjunction symbol (A) appears in «, and we call it conjunctive
if no disjunction (V) symbol appears in «.. Let € be a boolean equation system. We
call € conjunctive (respectively disjunctive) iff each equation in £ is conjunctive
(respectively disjunctive).

But our algorithm applies to a much wider class of equation systems, namely
those where the conjunction and disjunction symbol are not used in a nested
way

Definition 3. Let £ be a boolean equation system. We call £ disjunction/con-
Junction straight (DCS) iff for all variables x; and x; in € that are mutually
dependent, the equations o;x; = a; and ojx; = o in E are both conjunctive or
both disjunctive.

Observation I. The problem of solving disjunction/conjunctive straight boolean
equation systems can be reduced to iteratively dealing with disjuntive or con-
juntive boolean equation systems as follows. In a DCS boolean equation system
the variables can be partitioned in blocks such that variables that mutually de-
pend on each other belong to the same block. The dependency relation among
variables can be extended to blocks in the sense that block B; depends on block
B; if some variable x; € B; depends on some variable x; € B;. This dependency
relation is an ordering. We can start to find solutions for the variables in the
last block, setting them to true or false. Using lemma Pl we can substitute the
solutions for variables in blocks higher up in the ordering.
The following simplification rules can be used to simplify the equations

O A true) — ¢
o A false) — false
¢V true) — true

oV false) — ¢

and the resulting equation system has the same solution. The rules allow to
remove each occurrence of true and false in the right hand side of equations,
except if the right hand side becomes equal to true or false, in which case yet
another equation has been solved. By recursively applying these steps all non

(
(
(
(

Solving Disjunctive/Conjunctive Boolean Equation Systems 441

trivial occurrences of true and false can be removed from the equations and we
call the resulting equations purely disjunctive or purely conjunctive.

Note that each substitution and simplification step reduces the number of
occurrences of variables or the size of a right hand side, and therefore, only a
linear number of such reductions are applicable.

After solving all equations in a block, and simplifying subsequent blocks the
algorithm can be applied to the blocks higher up in the ordering iteratively
solving them all.

Note that this allows us to restrict our attention to algorithms to solve purely
disjunctive/conjunctive straight systems.

Ezxample 3. Consider the boolean equation system &; of example 2l The system
&5 is not in conjunctive form. An equivalent conjunctive equation system E; is
obtained by replacing ag of & with true and propagating x3 = true throughout
the formula using lemma 21 This results in the following sequence

Es = ((vx1 = 29 Axy)(uxe = x1)(vas = true))

within which no disjunctions occur in right-hand sides of equations.

Observation II. We found that many formulas with apparently alternating
fixed points lead to boolean equation systems that are disjunction/conjunction
straight and therefore can be solved efficiently with our techniques.

Consider for instance the examples in section 3.5 in [4]. All formulas applied
to any labelled transition systems yield disjunction/conjunction straight boolean
equation systems, except for the modal formula

pwYwZ. (P A[a]Y)V (=P Ala)Z).
But this formula is equivalent to the formula
wY.(([aY VvZ.(=P AlalZ)))

which does lead to DCS equation systems.
As an illustration we explain the transformation of the last formula in the
example section of [4]:

vX.pYvZ[a) X A ((a)true = [—a]Y) A [—a]Z.

If we consider a labeled transition system M = (S, A,—) then the boolean
equation system looks like:

VIs=1Ys
HYs = Zs
for all s € S.
Vzg = /\ xo A (/\ false Vv /\ Ys') N /\ Zgr
s’eV(a,s) s’eV(a,s) s'eV(-a,s) s'eV(-a,s)

Here, V(a,s) := {s'|s = s’} and V(-a,s) := {s|s Ly ¢ and b £ a}. On
first sight these equations do not appear to be a conjunctive boolean equation

442 J.F. Groote and M. Keindnen

system, as in the third group of equations a disjunction occurs. However, for
each concrete labelled transition system the left side of this disjunction will
either become true or false for each state s € S. By applying the simplification
rules the formula quickly becomes conjunctive.

4 The Algorithm

We develop our resolution algorithm in terms of a wvariable dependency graph
similar to those of boolean graphs [I], which provide a representation of the
dependencies between variables occurring in equation systems.

Definition 4 (Variable dependency graph). Let & = ((o121 = 1) (0222 =
az) ... (opey = ap)) be a disjunctive/conjunctive boolean equation system. The
dependency graph of € is a triple Ge = (V, E, L) where

- V={i|1<i<n}U{L, T} is the set of nodes

— E CV xV is the set of edges such that for all equations o; x; = «;

(i,7) € E, if a variable z; € o

(i, L) € E, if false occurs in «;

(i, T) € E, if true occurs in «;

(L, L),(T,T)eE

V= {,u,y} is the node labeling defined by L(i) = o; for 1 < i < n,
)= g, and L(T) =

(J_

Observe that in the definition above the sink nodes with self-loops, L and T,
represent the constants false and true. The ordering on nodes (given by their
sequence number) is extended to L and T by putting them highest in the or-
dering.

The key idea of our technique is based on the following observation that to
obtain local solutions of variables in disjunctive/conjunctive equation systems,
it suffices to compute the existence of a cycle in the dependency graph with
certain properties.

Lemma 3. Let Gg¢ = (V, E, L) be the dependency graph of a disjunctive (respec-
tively conjunctive) boolean equation system E. Let x; be any variable in £ and
let valuation v be the solution of £. Then the following are equivalent:

1. v(z;) =1 (respectively v(z;) =0)
2. 35 € V with L(j) = v (respectively L(j) = j) such that:
a) j is reachable from i, and
b) Ge contains a cycle of which the lowest index of a node on this cycle is
j.

Proof. We only prove this lemma for disjunctive boolean equation systems. The
case for conjunctive equation systems is dual and goes in the same way. First we
show that (2) implies (1). If j lies on a cycle with all nodes with numbers larger

Solving Disjunctive/Conjunctive Boolean Equation Systems 443

than j, there are two possibilities. Either j equals T or 1 < j < n. In the last
case, there is a sub-equation system of £ that looks as follows:

Vﬂ?j = Oéj

Ok Yk, = gy
OkoYky = Oy

OkyYkn = Ok,

where z; € oYk, = 0, |[Uky = ey) [Yky = Qs] - - . [Un := o,]. Using lemma
we can rewrite the boolean equation system £ to an equivalent one by replacing
the equation vr; = a; by:

Vrj = aj [ykl = akl][ykz = akz][yks = aks] S [yn = akn]'

Now note that the right hand side contains only disjunctions and the variable
z; at least once. Hence, by lemma [2 the equation reduces to

vr; = true.

Now, as x; is reachable from z;, the equation 0;z; = «; can similarly be replaced
by o;x; = true. Hence, for any solution v of £, it holds that v(z;) = 1. In case j
equals T, the term true is reachable from z;. In a similar way using lemma [2] we
can replace o,x; = oy by o;x; = true.

Now we prove that (1) implies (2) by contraposition. So, assume that there
is no j with L(j) = v that is reachable from i such that j is on a cycle with only
higher numbered nodes.

We prove with induction on n — k that £ is equivalent to the same boolean

equation system where equations oy 12541 = Qg41,--.,00T, = p that are
reachable from xz;, have been replaced by ori12k11 = Bkt1,.--,0nTn = Bn
where all ; are disjunctions of false and variables that stem from z1,...,xg.

If the inductive proof is finished, the lemma is also proven: consider the case
where n — k = n. This says that £ is equivalent to a boolean equation system
where all right hand sides of equations reachable from x; are equal to false. So,
in particular x; = false, or in other words, for every solution v of £ it holds that

For n — k = 0 the induction hypothesis obviously holds. In particular true
cannot occur in the right hand side of any equation reachable from ;. So, con-
sider some n — k for which the induction hypothesis holds. We show that it also
holds for n — k4 1. So, we must show if equation o,z = ay is reachable from z;,
it can be replaced by an equation orpx, = (B where in 35 only variables chosen

from z1,...,2,_1 and false can occur.
As xj, is reachable from x;, all variables x; occuring in «y are also reachable
from z;. By the induction hypothesis the equations o;x; = a; for [> k have

been replaced by o;x; = (5; where in 3; only false and variables from x1, ...,z

444 J.F. Groote and M. Keindnen

occur. Using lemma [2] such variables z; can be replaced by 3; and hence, «y, is
replaced by 7 in which false and variables from z1, ...,z can occur.

What remains to be done is to remove zj, from 7, assuming xzj, € ;. This can
be done as follows. Suppose o, equals v, then, as x occurs in 7, there must be
a path in the dependency graph to a node x;; with I’ > k such that z;, € ay/. But
this means that the dependency graph has a cycle on which k is the lowest value.
This contradicts the assumption. So, it cannot be that o, = v, so, o = u. Now
using lemma 1] the variable xj, in oy can be replaced by false and subsequently
be eliminated. This finalizes the induction step of the proof. O

Now consider a disjunctive/conjunctive straight boolean equation system &. In
order to find a solution for £ we first partition the set of variables X’ into blocks
such that variables are in the same block iff these are mutually dependent. As
£ is disjunctive/conjunctive straight, all variables in each block have defining
equations that are either disjunctive or conjunctive. Using the well known al-
gorithm [T5] for the detection of strongly connected components, the partition
can be constructed in linear time on the basis of the variable dependency graph.
As argued earlier, the equations belonging to the variables in each block can be
solved iteratively. If the variables in a block do not depend on unsolved variables,
the equations in this block can be solved. So, we only have to concentrate on
solving disjunctive or conjunctive equations belonging to variables in a single
block.

So, we present here an algorithm to solve a disjunctive boolean equation
system. The conjunctive case is dual and goes along exactly the same lines. Our
algorithm is an extension of Tarjan’s [I5] algorithm to detect strongly connected
components. It is given in figure [and explained below.

We assume that the boolean equation system has already been transformed
into a variable dependency graph G = (V, E, L). There are two main functions
solve and find. The function solve takes the index i of a variable x; of interest and
solves it by reporting it to be either 0 or 1. The procedure find(k) constructs all
the strongly connected components from node k and applies lemma [Blto them.

We use a standard adjacency-list representation and keep an array of lists of
nodes. We assume that an array sign is given that indicates the label for each
node. Le. sign[i] = v if the label of node i is L(¢) = v, and sign[i] = p if the label
of node 1is L(i) = p.

We keep an integer array value, initially set to all zeros, containing num-
bers indicating the order in which nodes have been visited. If value[i] = 0, this
indicates that node i has not yet been visited. In addition, we keep a stack of
integers, stack, represented as an array of size |V| with a stack pointer p initially
set to zero. We have integers id (initially zero), min, and m for the detection of
SCCs, which occur in a similar vein in the algorithm for the detection of SCCs
in [I5]. The variable id is used to number the nodes with consecutive numbers
in the sequence they are visited by the algorithm. The variable min refers to an
earlier visited node, reachable from node k. If no such node exists, min = value|k]
at the end of the first for loop and node k is the root of a strongly connected
component that includes all higher numbered nodes residing on the stack. The

Solving Disjunctive/Conjunctive Boolean Equation Systems 445

int find(int k)
if (sign[k] = v A adjacency list of k contains k)
report z; gets value 1; stop;
id := id + 1; value[k] := id;
min := id;
stacklp] :=k; p:=p+1;
for (all nodes t in the adjacency list of k) do
if (value[t] = 0)
m := find(t);
else m := value[t];
if (m < min)
min = m;
od
if (min = value[k])
mu := false; nu:= false;
S:=0;
while (stack[p] # k) do
p:=p—1; n:= stack[pl;
if (sign[n] = v)
nu := true;
else mu := true;
S:=SU{n};
od
if (|S] > 1 A mu = false)
report z; gets value 1; stop;
if (|S] > 1 A mu = true A nu = true)
for (all nodes j in S with sign[j] = v) do
if (cycle(G, S, j) = true) report x; gets value 1; stop;
od
return min;

void solve(int i)

p:= 0;id := 0;

for (1:=0to|V]|) do
value[l] := 0;

od

find(i);

if (z; is not yet reported 1)
report z; gets value 0;

Fig. 1. An algorithm for alternating, disjunctive boolean equation systems.

446 J.F. Groote and M. Keindnen

variable m plays the role of a simple auxiliary store. Finally, we keep also a set
S, integer n, and booleans mu and nu for processing the SCCs, explained below.

The procedure solve invokes the recursive procedure find. The procedure
find first checks whether the node k being visited is labelled with v and has a
self-loop. If these hold, we have found a node that trivially satisfies conditions
(2a) and (2b) of lemma [B] and the solution v(z;) = 1 can be reported and the
execution of the algorithm is terminated. Otherwise, find pushes the nodes onto
a stack, and recursively searches for strongly connected components. If such a
component is found (when min = value[k]), find puts all nodes in the component
that reside on the stack in a set S. While doing so, it is checked whether all nodes
in the component have the same label. If a label is v, corresponding to the fixed
point operator v, the variable nu is set to true, and if a label is pu, corresponding
to polarity u, the variable mu is set to true. If mu = false on a SCC with more
than one node, all nodes have label v and so, conditions (2a) and (2b) of lemma
Bl are trivially satisfied, and solution of x; can be reported to 1.

If both variables nu and mu are true, the component is alternating. In this
case it must be checked whether the SCC contains a cycle of which the smallest
numbered node j has label L(j) = v, according to lemma B] to justify z; to be
set to 1. This is simply checked by applying a procedure cycle(Ge, S, j) to all
nodes j € S with sign[j] = v. The procedure cycle consists of a simple linear
depth first search and is not given in detail here.

Finally, if no node j with L(j) = v satisfying conditions (2a) and (2b) of
lemma[3] was found, we can report at the end of the procedure solve the solution
v of € be such that v(x;) = 0.

We find that the algorithm is correct and works in polynomial time and
space.

Theorem 1. The algorithm for local resolution works correctly on any purely
disjunctive/conjunctive system of boolean equations.

In order to formally estimate the computational costs, denote the set of alter-
nating variables in a system & with variables in X' by al(€), and define it as
a set {z; | z; € X and z; is mutually dependent with some z; € X such that
0; # 0;}. The set of alternation free variables is denoted by af(£) and is defined
as af(€) = X — alt(€). Note that for alternation-free boolean equation systems
it holds that alt(€) = 0, because there are no ocurrences of mutually dependent
variables with different signs. Then, it is easy to see that:

Theorem 2. The algorithm for local resolution of disjunctive/conjunctive
boolean equation systems requires time O(af(€) + alt(€)?) and space O(|E|).

5 Some Experiments

In this section, we describe an implementation of the resolution algorithm pre-
sented in the previous section. This prototype solver for alternating disjunc-
tive/conjunctive boolean equation systems is implemented in C. To give an

Solving Disjunctive/Conjunctive Boolean Equation Systems 447

impression of the performance, we report experimental results on solving two
verification problems using the tool.

As benchmarks we used two sets of p-calculus model checking problems taken
from and [14], converted to boolean equation systems. We do not take exactly
the same formulas because our algorithm solves these in constant time, which
would not give interesting results. The verification problems consist of checking
p-calculus formulas of alternation depth 2, on a sequence of regular labelled
transition systems M}, of increasing size (see figure B)).

Fig. 2. Process M, for model checking the properties ¢1 and ¢s.

Suppose we want to check, at initial state s of process My, the property
that transitions labeled b occur infinitely often along every infinite path of the
process. This is expressed with alternating fixed-point formula:

61 = VXY (BIX A [-B]Y) (1)

The property is false at state s and we use the solver to find a counter-example
for the formula. In second series of examples, we check the property that there is
an execution in Mj, starting from state s, where action a occurs infinitely often.
This is expressed with the alternating fixed point formula

P2 = vX.pY.((a) X V (—a)Y) (2)

which is true at initial state s of the process Mj.

The problems of determining whether the system M}, satisfies the specifica-
tions ¢1 and ¢4 can be directly encoded as problems of solving the corresponding
alternating boolean equation systems, which are in conjunctive and disjunctive
forms. We report the times for the solver to find the local solutions corresponding
to the local model checking problems of the formulas at state s.

The experimental results are given in table [l The columns are explained
below:

— Problem:
e the process My, with k + 3 states
e ¢ the formula v X.uY.([b]X A [-0]Y) to be checked
e ¢ the formula vX.uY.({a) X V (—a)Y") to be checked

448 J.F. Groote and M. Keindnen

Table 1. Summary of execution times.

Problem n Time (sec)
M5000000 |@1[10000 006 2.6
¢2|10000 006 3.0
M10000000|¢1]20 000 006 5.5
$2/20 000 006 6.4
Mi15000000 1|30 000 006 7.5
$2|30000 006 9.0

— n: the number of equations in the boolean equation system corresponding to
the model checking problem
— Time: the time in seconds to find the local solution

The times reported are the time for the solver to find the local solutions measured
as system time, on a 2.4Ghz Intel Xeon running linux (i.e. the times for the solver
to read the equation systems from disk and build the internal data structure are
excluded).

In the problem with the property ¢, the solver found local solutions (and
counterexamples) even without executing the quadratic part of the algorithm.
In the problem with property ¢s, the quadratic computation needed to be per-
formed only on very small portions of the equation systems. These facts are
reflected in the performance of the solver, which exhibits linear growth in the
execution times with increase in the size of the systems to be verified, in all of
the experiments.

The benchmarks in and are essentially the only benchmarks in the
literature for alternating boolean equation systems of which we are aware. These
benchmarks have a quite simple structure, and therefore we must be careful
in drawing general results from them. A more involved practical evaluation is
desireable here and benchmarking on real world protocols and systems is left for
future work.

6 Discussion and Conclusion

We argued that the verification of many formulas in the modal mu-calculus with
alternating fixed points amounts to the verification of disjunctive/conjunctive
straight boolean equation systems. Subsequently we provided an algorithm to
solve these and showed that the performance of this algorithm on the standard
benchmarks from the literature yield an improvement of many orders of mag-
nitude. We believe that this makes the verification of a large class of formulas
with alternating fixed points tractable, even for large, practical systems.

The algorithm that we obtain is for the large part linear, but contains an
unpleasant quadratic factor. Despite several efforts, we have not been able to
eliminate this. In essence this is due to the fact that we were not able to find a
sub-quadratic algorithm for the following problem:

Solving Disjunctive/Conjunctive Boolean Equation Systems 449

Open problem. Given a directed labelled graph G = (V, E, L) of which the set
of nodes is totally ordered. The labeling L : V' — {0, 1} assigns to each node a
value. Determine whether there exist a cycle in G of which the highest node has
label 1.

As we believe that this problem has some interest by itself we provide it here.

Acknowledgements. We thank Michel Reniers for commenting a draft of this
paper. The work of second author was supported by Academy of Finland (project
53695), Emil Aaltonen foundation and Helsinki Graduate School in Computer
Science and Engineering.

References

10.

11.

12.

. H.R. Andersen. Model checking and boolean graphs. Theoretical Computer Sci-

ence, 126:3-30, 1994.

. A. Arnold and P. Crubille. A linear time algorithm to solve fixed-point equations

on transition systems. Information Processing Letters, 29:57-66, 1988.
A. Arnold and D. Niwinski. Rudiments of p-calculus. Studies in Logic and the
foundations of mathematics. Volume 146, Elsevier, 2001.

. J. Bradfield and C. Stirling. Modal Logics and mu-Calculi: An introduction. Chap-

ter 4 of Handbook of Process Algebra. J.A. Bergstra, A. Ponse and S.A. Smolka,
editors. Elsevier, 2001.

G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the
modal p-calculus. In Proceedings of the Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science 1055,
pages 107-126, Springer Verlag 1996.

. R. Cleaveland and B. Steffen. Computing Behavioural relations logically. In pro-

ceedings of the 18 International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes Computer Science 510, pages 127-138, Springer Verlag,
1991.

E.A. Emerson, C. Jutla and A.P. Sistla. On model checking for fragments of the
p-calculus. In C. Courcoubetis, editor, Fifth Internat. Conf. on Computer Aided
Verification, Elounda, Greece, Lecture Notes in Computer Science 697, pages 385-
396, Springer Verlag, 1993.

E.A. Emerson, C. Jutla, and A.P. Sistla. On model checking for the p-calculus and
its fragments. Theoretical Computer Science 258:491-522, 2001.

M. Jurdzinski. Deciding the winner in parity games is in U PNco—U P. Information
Processing Letters, 68:119-124, 1998.

D. Kozen. Results on the propositional p-calculus. Theoretical computer Science
27:333-354, 1983.

X. Liu, X, C.R. Ramakrishnan and S.A. Smolka. Fully Local and Efficient Evalua-
tion of Alternating Fixed Points. In B. Steffen, editor, Proceedings of TACAS’98,
Lecture Notes in Computer Science 1384, Springer Verlag, 1988.

A. Mader. Verification of Modal Properties using Boolean Equation Systems. PhD
thesis, Technical University of Munich, 1997.

450

13.

14.

15.

16.

17.

J.F. Groote and M. Keindnen

R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation
Systems. Proceedings of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’2003 (Warsaw, Poland),
volume 2619 of Lecture Notes in Computer Science, pages 81-96. Springer Verlag,
April 2003.

B. Steffen, A. Classen, M. Klein, J. Knoop and T. Margaria. The fixpoint analysis
machine. In I. Lee and S.A. Smolka, editors, Proceedings of the Sixth International
Conference on Concurrency Theory (CONCUR ’95), Lecture Notes in Computer
Science 962, pages 72-87. Springer Verlag, 1995.

R. Tarjan. Depth-First Search and Linear Graph Algorithms. STAM J. Computing,
Vol. 1, No. 2, June 1972.

B. Vergauwen and J. Lewi. A linear algorithm for solving fixed-point equations
on transition systems. In J.-C. Raoult, editor, CAAP’92, Lecture Notes Computer
Science 581, pages 321-341, Springer Verlag, 1992.

B. Vergauwen and J. Lewi. Efficient Local Correctness Checking for Single and
Alternating Boolean Equation Systems. In proc. of ICALP’94.

	Introduction
	Boolean Equation Systems
	Disjunctive/Conjunctive Boolean Equation Systems
	The Algorithm
	Some Experiments
	Discussion and Conclusion

