
Canonical Models for Computational Effects

John Power�

School of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, Scotland

ajp@inf.ed.ac.uk

Abstract. Given a signature of basic operations for a computational
effect such as side-effects, interactive input/output, or exceptions, we
give a unified construction that determines equations that should hold
between derived operations of the same arity. We then show how to
construct a canonical model for the signature, together with the first-
order fragment of the computational λ-calculus, subject to the equations,
done at the level of generality of an arbitrary computational effect. We
prove a universality theorem that characterises the canonical model, and
we recall, from a previous paper, how to extend such models to the full
computational λ-calculus. Our leading example is that of side-effects,
with occasional reference to interactive input/output, exceptions, and
nondeterminism.

1 Introduction

Last year, at the Typed Lambda Calculus and Applications conference, I proved
that every category theoretic model of what I defined to be the first-order frag-
ment of Moggi’s computational λ-calculus can be canonically embedded into a
model of the whole calculus, the embedding satisfying an elegant and natural
universal property [20]. After my talk, Carolyn Talcott asked what I regarded,
and continue to regard, as an excellent question. As I understand her question,
she had expected me to discuss computational effects, whereas, as I had pointed
out in the talk, the computational λ-calculus does not actually have computa-
tional effects in it, but rather is a particularly well-designed calculus to which
one can add computational effects. So her question was whether I could say
something directly about computational effects in the context of the talk. This
paper addresses that question.

Over recent years, there has been a concerted attempt, led by Gordon
Plotkin and myself, to develop a unified, elegant theory of computational ef-
fects, with both operational and denotational semantics, a logic, and theorems
relating them, designed to analyse and reason about call-by-value functional
programming languages that extend the simply typed λ-calculus, along the lines
of ML [4,5,6,7,13,14,15,16,17]. Our starting point has typically been Eugenio
Moggi’s computational λ-calculus or λc-calculus, which was introduced in [10,
� This work has been done with the support of EPSRC grants GR/N64571,

GR/R67842/01, and GR/N23141, and EC grant IST-1999-29082.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 438–452, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Canonical Models for Computational Effects 439

11], with four distinct sound and complete classes of category theoretic models
explained in [18], and with further abstract semantic development in [8,19,20,
21]. The ideas surrounding the calculus have been applied extensively by the
functional programming community, albeit typically using the computational
metalanguage rather than the λc-calculus: a recent overview appears as [1].

The heart of Plotkin and my theory of computational effects, and the sense in
which it goes beyond the λc-calculus, has been the study of operations that may
be added as a signature to the λc-calculus: for global state, one wants lookup
and update; for interactive input/output, one wants read and write; for nonde-
terminism, one wants binary ∨; etcetera [14,16]. We have studied signatures of
such operations extensively (see [17] for a recent summary), but we have not yet
given a unified, elegant account, supported by a body of mathematical theory
and by natural computational examples, of what equations should be imposed
on the operations, and how to derive canonical models for the λc-calculus to-
gether with the signature and equations determined by the effect at hand. Those
issues lie at the heart of Carolyn Talcott’s question as I understand it, and this
paper is designed to address them.

Consider the example of global state. We have a signature given by ba-
sic operations lookup and update. These basic operations have arities given by
lookup : V al −→ Loc and update : 1 −→ Loc × V al, where Loc is a finite set
of locations and V al is a countable set of values. To decide what equations the
operations derived from lookup and update should satisfy, one natural way to
proceed is as follows. First define the set State of states to be the set V alLoc

of functions from locations to values. Now model the basic operation lookup by
the function

(State → State)V al −→ (State → State)Loc

determined by composition with the function from Loc × State to V al × State
that, given (loc, σ), “looks up” loc in σ : Loc → V al to determine its value,
and by the projection to State. And model the basic operation update by the
function

(State → State) −→ (State → State)Loc×V al

determined by composition with the function from Loc × V al × State to State
that, given (loc, v, σ), “updates” σ : Loc → V al by replacing the value at loc by
v. This modelling of lookup and update automatically generates a model of any
operation derived from lookup and update. Now put two derived operations of
the same arity equal if and only if they yield the same function on the appropriate
power of State → State. This construction yields exactly the equations that are
commonly agreed by the programming community as natural for global state
(see [14,15] for more analysis of such equations). For instance, one such equation
is given by lookuploc(updateloc,v(x))v = x.

This construction can be generalised: starting with any signature of basic
operations and any choice of model of the basic operations, one can deduce
equations between derived operations. And that construction duly yields the
usual equations one expects in such cases as interactive input/output and ex-
ceptions, as well as side-effects; nondeterminism involves the additional question

440 J. Power

of partiality, as we discuss later. Section 3 of this paper is devoted to giving the
generality of the construction and exhibiting more detail especially in the case
of global state. In all of the examples we know of computational effects, there
are computationally natural choices of such operations and of such models or
sets of models.

Now assume we are given a signature of basic operations together with equa-
tions that they are to satisfy. We seek to construct canonical models of the
λc-calculus together with the signature, subject to the equations. Our use of
the word “model” here is different to our use of it in the previous paragraph:
here, we mean a model of the λc-calculus together with operations and equations,
whereas before, we meant a model of the operations but without modelling the
calculus.

The central point of the paper is that a canonical model for the λc-calculus
together with operations and equations falls out immediately from the mathe-
matics we use to model the operations and equations alone: every signature of
operations and equations we consider naturally forms a countable Lawvere the-
ory L: this is a category with countable products together with structure that
forces it to be generated, in a precise sense, by one object. We observe that the
structure of L yields the structure of a Freyd-category on Lop, and, as we recall
in Section 4, a Freyd-category is exactly what one needs to model the first-order
fragment of the λc-calculus. So Lop gives us a model of the first-order fragment
of the λc-calculus, and it inherently yields a model of the signature subject to
its equations. In fact, Lop does a little more than that: it also canonically models
the obvious extension of the first-order fragment of the λc-calculus to include
sum types and a type of natural numbers; and it is the free model generated by
the operations and equations subject to a condition asserting the existence of
countable sums. Section 5 is devoted to the details.

Finally, combining Sections 3 with 5, we can now say exactly how the various
results relate to last year’s paper [20]. In studying computational effects, one
invariably has a signature of operations one wishes to model. One also invariably
has a natural computational model of the signature. That determines natural
equations to place on the derived operations as in Section 3. The operations and
equations form a countable Lawvere theory L, and Lop is a canonical model of the
first-order fragment of the λc-calculus together with the signature of operations
and its equations (and sum types and a type of natural numbers). That model
satisfies a natural universal property detailed in Section 5. The main result of [20]
shows how to extend that model to a model of the whole λc-calculus (and it can
be adapted to preserve the semantics of the sum types and the type of natural
numbers), giving a universal property that exhibits its definitiveness. A mild
systematic variant of the construction of [20] allows one to recover the standard
models on Set listed by Moggi [10,11].

There is one very substantial omission from the above analysis, and that
is recursion. The λc-calculus does not contain recursion, and nothing we have
written here contains it either. One needs to extend both the calculus and the
models in order to incorporate it. One way to do that involves replacing the =

Canonical Models for Computational Effects 441

predicate of the calculus (see Section 2) by ≤, upon which one must provide
models (see Section 4) of ≤. That seems most elegantly done by use of enriched
categories and enriched Lawvere theories [5,6]. One must extend the analysis even
just to model partiality, as we mentioned above in relation to nondeterminism. In
fact, there are two distinct ways to extend our analysis, and they are related: one
might be seen as equational while the other might be seen as operational; the
relationship between them involves the notion of a discrete enriched Lawvere
theory. We defer the details for later work, but mention that the work here
extends elegantly.

This paper is organised as follows. In Section 2, we describe one version of
the λc-calculus and give a definition of a signature for it. In Section 3, we de-
scribe how, given a signature of basic operations, every model induces equations
between derived operations. In Section 4, we recall the definition of a closed
Freyd-category, providing the sound and complete class of models of the λc-
calculus we need. And in Section 5, we show how every signature of operations
and equations generates a canonical model for the first-order fragment of the
λc-calculus together with those operations and equations.

2 The Computational λ-Calculus and Signatures for It

In this section, we give a succinct formulation of Moggi’s computational λ-
calculus, or λc-calculus, followed by a definition of the notion of signature for
the λc-calculus: the latter is more subtle than one might at first imagine, as one
must make a delicate distinction between constructs that are to be modelled by
effect-free terms and constructs that may be modelled by arbitrary terms. The
work of this section is largely adapted from that of [17], which lists natural ques-
tions to be addressed regarding the λc-calculus, including those of this paper.
We need to include the section here as, in following sections, we study models for
both the λc-calculus together with a signature (in Section 5) and for signatures
alone (in Section 3).

The syntax for the λc-calculus may be taken to be identical to that for the
simply typed λ-calculus [18]. So it has type constructors

σ ::= 1 | σ1 × σ2 | σ → τ

and term constructors

e ::= ∗ | 〈e, e′〉 | πi(e) | λx.e | e′e | x

where x ranges over variables, ∗ is of type 1, with πi existing for i = 1 or 2, all
subject to the evident typing. The λc-calculus has two predicates: an equality
predicate exactly as in the simply typed λ-calculus and a unary predicate (−) ↓
for “definedness” or “effect-freeness”. The rules for the latter say ∗ ↓, x ↓, λx.e ↓
for all e, if e ↓ then πi(e) ↓, and similarly for 〈e, e′〉, and that definedness is closed
under equality. There are two classes of rules for =. The first class say that = is
a congruence. And the second class are rules for the basic constructions and for

442 J. Power

unit, product and functional types. The rules are closed under substitution of
effect-free terms for variables. It follows from the rules for both predicates that
types together with equivalence classes of terms in context form a category, with
a subcategory determined by effect-free terms. It is straightforward but lengthy,
to adapt the formulation of the λc-calculus in [12] to list the = rules.

The only aspect of the λc-calculus that goes beyond the standard simply
typed λ-calculus is the predicate (−) ↓ together with associated sophistication
in the rules for =. The λc-calculus has typically been treated either as an equa-
tional logic or as an higher order intuitionistic logic, both of which were consid-
ered in [10,11]. Here, we do the former. We shall later extend the calculus by
adding sum types and a type of natural numbers. That is a mild extension, such
types existing and being well understood in many call-by-value programming
languages. In later work, we shall further extend the calculus by considering the
predicate ≤ in order to incorporate recursion: as is the case for simply typed
λ-calculus, the λc-calculus does not contain a mechanism for studying recursion.

We now recall the notion of a signature for the λc-calculus [17]. The idea is
that each computational effect is generated by a signature of basic operations,
subject to equations. A full definition of signature necessarily includes further,
less complex, data that we shall describe and for which we shall give an example.

Definition 1. A signature for the λc-calculus consists of (base) types, together
with typed function symbols, predicate symbols for the programming language,
and operation symbols.

The constant, function, and predicate symbols are to be modelled using effect-
free terms in context, while the operation symbols form arbitrary terms that
will not in general be effect-free. In this paper, only the operations are of pri-
mary concern, so we shall restrict our attention almost exclusively to them after
describing our leading example in full.

Example 1. Suppose one wishes to consider an idealised language for the com-
bination of global state with nondeterminism. One might add to the λc-calculus
a type Nat for natural numbers, function symbols 0, succ, and pred, for natural
numbers, and a predicate symbol = 0. Then one adds operation symbols for
nondeterminism and global state such as operation symbols ∨ for binary nonde-
terminism and lookup and update for state. The equational axioms to be added
to the λc-calculus are those generated by the combination of nondeterminism
and global state, as for instance in [14,16]. One can give a systematic account of
the combination of nondeterminism and global state providing one already has a
system of equations appropriate for each of nondeterminism and global state in-
dividually [5,6]. So, in Section 3, we develop a theory for generating equations for
individual computational effects, which may then be combined using the results
of [5,6].

We mention in passing that we have semantic evidence that suggests how to
extend the above-mentioned signature and equations from global state to local
state by adding another operation block subject to natural axioms [14]: the most

Canonical Models for Computational Effects 443

elegant way to achieve that requires further investigation, so although consistent
with the work in this paper, it does not seem to provide an example of the work
we develop here.

We have many examples of such signatures and associated equations in [5,6,
13,14,15,16]. But we have not had a systematic way to generate the equations for
each effect. In principle, we should be able to generate equations from a formal-
isation of the notion of observation, then asserting that two derived operations
should be put equal if they are observationally equivalent.

3 From Operations and a Model to Equations

It is generally clear, given a computational effect, how to choose suitable opera-
tions that generate it. For instance, in modelling nondeterminism, one typically
starts with binary ∨; for global state, one typically chooses lookup and update;
and for interactive input/output, one considers read and write. It is often less
clear what equations to impose as axioms. So we seek a mathematical framework
to guide our choice of equations. The λc-calculus is an equational theory rather
than an inequational one, so we restrict our attention to equational issues here,
deferring partiality and recursion for later work using an enriched version of this
analysis.

Observe that equations typically hold between derived operations rather than
between primitive ones. For instance, to express associativity of ∨, one must be
able to speak of (x ∨ y) ∨ z, which is given by a derived ternary operation. So,
we seek a unified way in which to speak of the derived operations generated by
a signature. There are several equivalent ways to do that, and we shall use the
notion of countable Lawvere theory [5].

Let ℵ1 denote a skeleton of the category of countable sets and all functions
between them. So ℵ1 has an object for each natural number n and an object
for ℵ0. Up to equivalence, ℵ1 is the free category with countable coproducts
on 1. So, in referring to ℵ1, we implicitly make a choice of the structure of its
countable coproducts.

Definition 2. A countable Lawvere theory is a small category L with countable
products and a strict countable-product preserving identity-on-objects functor I :
ℵop

1 −→ L.

Implicit in the definition is the statement that ℵop
1 and L have the same set of

objects. We typically write L for a countable Lawvere theory, with the data given
by I : ℵop

1 −→ L left implicit. Every signature of operations, with arities either
natural numbers or ℵ0, freely generates a countable Lawvere theory, a trivial one
in the sense that it satisfies no non-trivial equations. The arrows with domain n
and codomain 1 in that countable Lawvere theory are exactly the derived n-ary
operations generated by the signature; an arrow with domain n and codomain m
consists exactly of m derived n-ary operations generated by the signature. And
that generalises routinely to ℵ0. Composition of the countable Lawvere theory
is a formulation of the notion of substitution.

444 J. Power

Example 2. A signature for global state is given by lookup : V al −→ Loc and
update : 1 −→ Loc × V al, where Loc is a finite set of locations and V al is a
countable set of values [14,6]. These freely generate a countable Lawvere theory
by identifying the finite set Loc with its cardinality n and by identifying V al
with ℵ0, then freely allowing substitutions applied to instances of lookup and
update. So an arrow in the countable Lawvere theory is a word of finite length
but possibly infinite breadth (see Example 5 for more detail) of copies of lookup
and update. We shall use this countable Lawvere theory, together with a model
of it in Set, to induce natural equations between pairs of such words, yielding
a countable Lawvere theory for side-effects: that will include the operations but
identify any pairs of words that are equal in the canonical model.

Example 3. A signature for interactive input/output is given by read : I −→ 1
and write : 1 −→ O, typically for countable sets I of O of outputs [14,6].
Again, identifying I and O with ℵ0, these operations freely generate a countable
Lawvere theory. In this case, the canonical model does not induce any non-
trivial equations between words. So the countable Lawvere theory for interactive
input/output is precisely the free theory generated by read and write.

Exceptions work much as interactive input/output: the countable Lawvere
theory is freely generated by an operation raise : 0 −→ E for a finite or countable
set of exceptions E, and the canonical model does not subject it to any non-
trivial equations [14,6]. Nondeterminism involves issues of partiality that we
do not treat here, but the heart of it is given by the free countable Lawvere
theory on a binary operation ∨, and the canonical model induces the equations
of associativity, commutativity, and idempotence [6]. Of course, one can also
consider combinations of such effects.

As mentioned in the examples, the equations that are to hold between derived
operations are typically generated by a canonical (observational) model of the
signature.

Example 4. Continuing our investigation of global state from Example 2, let
State be the set V alLoc. The standard semantics of a command is generally
understood to be a state-changing function, i.e., a function of the form

State −→ State

So the operations lookup and update should act on powers of this set. They
are generally deemed to act as follows: the operation lookup is modelled by the
function

(State → State)V al −→ (State → State)Loc

determined by composition with the function from Loc × State to V al × State
that, given (loc, σ), “looks up” loc in σ : Loc → V al to determine its value, and
is given by the projection to State; and the operation update is modelled by the
function

(State → State) −→ (State → State)Loc×V al

Canonical Models for Computational Effects 445

determined by composition with the function from Loc × V al × State to State
that, given (loc, v, σ), “updates” σ : Loc → V al by replacing the value at loc
by v. We wish to set a pair of operations generated by lookup and update equal
precisely when they yield the same functions on powers of State → State.

Similar stories can be given for each of our leading examples. For instance,
where we considered State → State to study side-effects, one would usually
consider the set µY.(O ×Y +Y I +1) in order to study interactive input/output:
this set is the free algebra on 1 generated by read and write. The freeness of the
algebra determines canonical behaviour of read and write. It is routine to verify
that such modelling yields no equations between derived operations. Similarly
for exceptions. One does obtain non-trivial equations for nondeterminism, and
they are the usual ones for idempotence, symmetry and transitivity of ∨.

We can describe the constructions we have given for global state and outlined
for other examples in a unified way in terms of countable Lawvere theories. The
central fact is that one starts with a model of the signature of operations, and
one imposes the equations that are equal in that model. We proceed as follows.

Definition 3. A model of a countable Lawvere theory L is a countable-product
preserving functor M : L −→ Set.

It is routine to verify that if L is freely generated by a signature, to give a model
of L as we have defined it is equivalent to giving a set X, together with a function
Xα −→ X for each operation of arity α in the signature.

Given a model M : L −→ Set, one can factor it uniquely up to isomorphism
as an identity-on-objects full functor followed by a faithful functor, i.e., as

L
m � LM

m′
� Set

where m : L −→ LM is an identity-on-objects functor that is surjective on arrows
and m′ : LM −→ Set is a faithful functor.

Proposition 1. For any model M : L −→ Set of a countable Lawvere theory
L, the category LM is a countable Lawvere theory, the functor m : L −→ LM

is a map of countable Lawvere theories, and the functor m′ : LM −→ Set is a
model of LM .

Proof. One must check that LM has countable products, that m strictly pre-
serves countable products, and that m′ preserves countable products. One can ei-
ther check that by direct calculation or deduce it from the fact that the (bijective-
on-objects,fully faithful) factorisation system on Cat lifts to the category of small
categories with finite products.

The countable Lawvere theory LM is the construction we seek: if we start
with a signature and a model of the signature, the arrows of LM with codomain 1
are exactly equivalence classes of derived operations generated by the signature,
with the equivalence relation given by two derived operations being put equal if
they are equal in the model.

446 J. Power

This construction yields all of the equations generated observationally be-
tween derived operations. For a logic, one would seek a finite presentation of the
equations. Such a finite presentation cannot be generated by a notion of observa-
tional equivalence alone. But the construction does allow us to check whether a
given finite presentation yields all equations that naturally hold observationally.
And that sometimes involves delicate logical notions such as that of Hilbert-Post
completeness.

Example 5. Continuing our investigation of global state from Examples 2 and 4,
the data of Example 4 form the standard model for global state. And Proposi-
tion 1 yields the countable Lawvere theory LS for update and lookup generated
by the standard model. But we have also described a countable Lawvere theory
L′

S for global state in terms of operations and equations in [14] (see also [5])
without reference to a model: the operations were lookup and update, subject to
seven equation schema, which, with lookup corresponding to the logical symbol
l and with update corresponding to u, can be expressed syntactically as

1. lloc(uloc,v(x))v = x
2. lloc(lloc(tvv′)v)v′ = lloc(tvv)v

3. uloc,v(uloc,v′(x)) = uloc,v′(x)
4. uloc,v(lloc(tv′)v′) = uloc,v(tv)
5. lloc(lloc′(tvv′)v′)v = lloc′(lloc(tvv′)v)v′ where loc 	= loc′

6. uloc,v(uloc′,v′(x)) = uloc′,v′(uloc,v(x)) where loc 	= loc′

7. uloc,v(lloc′(tv′)v′) = lloc′(uloc,v(tv′))v′ where loc 	= loc′.

These equations all hold of the standard model, so there is a canonical map
of countable Lawvere theories from L′

S to LS . But LS is non-trivial as not all
parallel pairs of derived operations are equal on State → State, and, as explained
in [14], L′

S is Hilbert-Post complete, i.e., to add any further non-trivial equations
would force the models all to be trivial. So, as LS must validate at least as many
equations as L′

S does but is non-trivial, L′
S is isomorphic to LS . Thus L′

S provides
an equational characterisation of the countable Lawvere theory generated by
lookup and update subject to the equivalence induced by the standard model in
Example 4.

4 Models for the λc-Calculus

In this section, we briefly recall the notions of Freyd-category and closed Freyd-
category as used in [20] to model the first-order fragment of the λc-calculus and
the whole calculus respectively. The λc-calculus is a fragment of a call-by-value
programming language such as ML or the idealised language FPC (see for
instance [3]). For category theoretic models, the key feature is that there are two
entities, expressions and values. So the most direct sound and complete class of
models involves a pair of categories C0 and C1, together with an identity-on-
objects inclusion functor J : C0 −→ C1, leading to the notion of closed Freyd-
category. The first sound and complete class of models was given by Moggi

Canonical Models for Computational Effects 447

in [11], in which he effectively gave a construction of closed Freyd-categories
without defining the notion.

In order to define the notions of Freyd-category and closed Freyd-category,
we must recall the definition of symmetric premonoidal category as introduced
in [21] and further studied in [19]. A symmetric premonoidal category is a gen-
eralisation of the concept of symmetric monoidal category: it is essentially a
symmetric monoidal category except that the tensor need only be a functor of
two variables and not necessarily be bifunctorial, i.e., given maps f : X −→ Y
and f ′ : X ′ −→ Y ′, the evident two maps from X ⊗ X ′ to Y ⊗ Y ′ may differ.

There is a general construction that yields symmetric premonoidal categories:
given a strong monad T on a symmetric monoidal category C, the Kleisli cate-
gory Kl(T) for T is always a symmetric premonoidal category, with the functor
from C to Kl(T) preserving the symmetric premonoidal structure strictly: of
course, a symmetric monoidal category such as C is trivially a symmetric pre-
monoidal category. That construction is fundamental, albeit implicit, in Eugenio
Moggi’s work on monads as notions of computation [12], as explained in [21].

One requires care in the definition of strict symmetric premonoidal functor,
as it involves the notion of a central map, such being a map that, in a precise
sense, is bifunctorial. But subject to that caveat, we can now define the notions
of Freyd-category and closed Freyd-category.

Definition 4. A Freyd-category is a category C0 with finite products, a sym-
metric premonoidal category C1, and an identity-on-objects strict symmetric pre-
monoidal functor J : C0 −→ C1.

Definition 5. A Freyd-category J : C0 −→ C1 is closed if for every object X
of C0 (equivalently of C1), the functor

J(− × X) : C0 −→ C1

has a right adjoint X → −.

The following result is proved but only stated implicitly in [21]; it is stated
explicitly in [8,20].

Theorem 1. To give a category C0 with finite products and a strong monad on
it, such that Kleisli exponentials exist, is equivalent to giving a closed Freyd-
category J : C0 −→ C1.

This all means that the class of closed Freyd-categories provides a sound a
complete class of models for the computational λ-calculus, and, as we shall recall
later from [20], using a reasonable notion of its first order fragment (including let
of course), the class of Freyd-categories is a sound and complete class of models
for its first order fragment.

It is evident how to model types and terms in context in a (faithful) closed
Freyd-category: the type constructors and contexts are modelled directly by
the Freyd-structure, an arbitrary term in context is modelled by an arrow in

448 J. Power

C1, the predicate (−) ↓ is modelled for a term in context by the assertion that
the arrow lies in C0, and = is modelled for two terms in context by the as-
sertion that the two induced arrows are equal. The closed Freyd-categories of
primary interest are faithful, equivalently the corresponding monad satisfies the
“mono requirement”. When that is not the case, one needs a little more subtlety
in understanding models: the assertion that an arrow of C1 lies in C0 involves
extra structure, not just a property; such subtlety in modelling a predicate is
a standard part of the tradition of categorical logic. If C0 is a topos, this in-
terpretation canonically extends to intuitionistic predicate logic, cf Kripke-Joyal
semantics [9]: see [16] for details. One can model classical logic either by restrict-
ing C0 to be Set or by interpreting the predicates using a fibration: the former is
given by extending the situation for intuitionistic logic by the observation that
its modelling in Set is classical; the fibrational view is more complex.

5 Canonical Models for the λc-Calculus with
Computational Effects

Given any closed Freyd-category and any signature of operations for the λc-
calculus, together with equations between derived operations, one can interpret
the operations in the Freyd-category, then check whether or not the equations
are validated. But here we ask a different question: given operations and equa-
tions, can we construct a canonical closed Freyd-category together with an in-
terpretation of the operations that satisfies the equations? Ideally, such a con-
struction should satisfy a natural universal property.

In fact, if the arities of the operations are all countable (including the possi-
bility of finiteness), as they are in all our leading examples, we can do that, and
for what one might reasonably call the first-order fragment of the λc-calculus, it
is remarkably simple, subject to some thought into exactly what one means by
an interpretation of the operations.

Recall from Section 3 that the category ℵ1 has countable coproducts. These
are used in the definition of countable Lawvere theory, as the latter is defined
to consist of a category L with countable products together with a countable-
product preserving functor I : ℵop

1 −→ L. Trivially, to give the countable-product
preserving functor I is equivalent to giving a countable-coproduct preserving
functor J : ℵ1 −→ Lop. The category ℵ1 not only has countable coproducts but
also has finite products: these are given by finite products of countable sets. The
category Lop generally does not have finite products, and the finite products of
ℵ1 are generally not preserved by J . But one can routinely check the following
result:

Theorem 2. For any countable Lawvere theory L, the category Lop together
with the functor Iop : ℵ1 −→ Lop canonically support the structure of a Freyd-
category.

Proof. Given a countable (possibly finite) set α and given a map in L, say
f : β −→ γ, we must define a map α ⊗ f in L from α × β to α × γ. The set

Canonical Models for Computational Effects 449

α × β is the sum of α-many copies of β, and similarly for α × γ. The category
Lop has countable sums, and countable sums are preserved by Iop. So we define
α ⊗ f : α × β −→ α × γ to be the sum in Lop of α copies of f : the domain and
codomain of this sum are as desired because Iop preserves countable sums. This
determines the rest of the data for a Freyd-structure, and it is routine to verify
that the Freyd-category axioms all hold.

This result suggests a definition of the first-order fragment of the λc-calculus,
yielding a canonical model of the first-order fragment together with operations
subject to equational axioms.

By the first-order fragment of the λc-calculus, we mean type constructors

σ ::= 1 | σ1 × σ2

and term constructors

e ::= ∗ | 〈e, e′〉 | πi(e) | let x = e in e′ | x

where x ranges over variables, ∗ is of type 1, with πi existing for i = 1 or 2,
all subject to the evident typing. We still have the two predicates: = and (−) ↓
for effect-freeness. The rules for the latter say ∗ ↓, x ↓, if e ↓ then πi(e) ↓, and
similarly for 〈e, e′〉, and that definedness is closed under equality. The rules for =
say that = is a congruence, together with rules for the basic constructions and
for unit and product types. The rules are closed under substitution of effect-
free terms for variables. It follows from the rules for both predicates that types
together with equivalence classes of terms in context form a category, with a
subcategory determined by effect-free terms.

The let constructor is derivable in the full λc-calculus as (λx.e′)e. The class
of Freyd-categories provides a sound and complete class of models for the first-
order fragment of the λc-calculus just as that of closed Freyd-categories provides
a sound and complete class of models for the full calculus. We can thus deduce
the following from Proposition 2:

Corollary 1. For any countable Lawvere theory L, the category Lop together
with Iop : ℵ1 −→ Lop is a model of the first-order fragment of the λc-calculus.

We shall call the countable Lawvere theory of the corollary the canonical
model determined by the computational effect associated with L: we shall next
show that the operations can be interpreted canonically in it, and that that
interpretation respects the equations. We shall further give a universal property
of the construction.

Consider exactly what one might mean by an interpretation of the operations
of a signature. In previous work, we have investigated three main ways to inter-
pret operations [15]. When considered in the context of a closed Freyd-category,
all three are equivalent; in the absence of closedness, we can define two of those
notions of interpretation, and they are still equivalent to each other. The dif-
ficulty for the third notion arises because when S is countable, S → (X × S)
is uncountable even when X = 1 [15]. Here, we focus on the notion that most
directly yields our canonicity result. It uses the idea of a generic effect.

450 J. Power

Definition 6. Given a signature of typed basic operations and given a semantics
for each type, an interpretation of an operation of type σ → τ in a Freyd-
category J : C0 −→ C1 is a map M(τ) −→ M(σ) in C1, where M(σ) and M(τ)
are the interpretations of the types σ and τ .

Example 6. Consider the usual interpretation of side-effects in the Kleisli cate-
gory Kl(S → (− × S)) for the monad S → (− × S) on Set, where S = V alLoc.
The operation lookup : V al −→ Loc is interpreted by the function

Loc −→ (S → (V al × S))

taking (loc, σ) to (v, σ), where v is given by looking up loc in σ. To give a function
from Loc to (S → (V al × S)) is to give a map in Kl(S → (− × S)) from Loc to
V al. The operation update : 1 −→ Loc × V al is interpreted by the function

Loc × V al −→ (S → S)

sending (loc, v, σ) to the state that updates σ by replacing the value at loc by
v; and that is a map in Kl(S → (− × S)) from Loc × V al to 1. This way of
modelling operations as generic effects has proved particularly useful [15,5,6]
and is consistent with Example 4 here. If we restrict from the λc-calculus to its
first-order fragment, we can restrict the interpretation to land in the full sub-
Freyd-category of Kl(S → (−×S)) determined by (a skeleton of) countable sets.
This latter Freyd-category is exactly the canonical Freyd-category for global
state determined by Corollary 1.

One can similarly use the notion of interpretation as we have defined it here
to give canonical interpretations of ∨ for nondeterminism, read and write for
interactive input/output, raise for exceptions, etcetera [15], all respecting the
appropriate equations. One has the following trivial abstract proposition:

Proposition 2. Every signature of operations of countable (possibly finite) ar-
ity has a canonical sound interpretation in the canonical model: an arity α is
modelled by the object α, and a basic operation op : α −→ β is modelled by the
corresponding map from β to α in Lop.

Moreover, as the category ℵ1 includes the object ℵ0 as a coproduct of count-
ably many copies of 1, we can model all the types, function symbols, and constant
symbols in the signature of Example 1 in the canonical model. In particular, the
natural numbers Nat is canonically modelled in the canonical model.

The canonical model also suggests a natural definition of what it means for
an arbitrary Freyd-category to have finite coproducts.

Definition 7. A Freyd-category J : C0 −→ C1 has finite coproducts if C0 has
and J preserves finite coproducts.

Proposition 3. For any closed Freyd-category J : C0 −→ C1, if C0 has finite
coproducts, so does J .

Canonical Models for Computational Effects 451

This in turn suggests an extension of the first-order fragment of the λc-
calculus to include sum types: by the first-order fragment of the λc-calculus
with sum types, we mean type constructors

σ ::= 1 | σ1 × σ2 | 0 | σ1 + σ2

and term constructors

e ::= ∗ | 〈e, e′〉 | πi(e) | let x = e in e′ | 0 | inl(e) | inr(e) | cases(e1, e2) | x

subject to evident typing rules and an extension of the rules for the predicates
= and (−) ↓ to make the class of Freyd-categories J : C0 −→ C1 with finite
coproducts a sound and complete class of models.

There is more flexibility here than might first appear. If a cartesian closed
category C has finite coproducts, it follows that, for every object X of C, the
functor −×X : C −→ C preserves them, i.e., product distributes over sum. But
if C only has finite products without being closed, − × X might not preserve
finite coproducts. But there is a strong argument that one should insist upon such
preservation, yielding the notion of a distributive category (see, for instance, [2]).
The same issue arises for Freyd-categories: it is possible we should ultimately
emphasise the (obvious) notion of distributive Freyd-category, which in turn
would imply further axioms on an extension of the λc-calculus to include sum
types. Here, we need to define a notion of countable distributivity anyway.

Definition 8. A Freyd-category J : C0 −→ C1 is countably distributive if C0
has and J strictly preserves countable coproducts, and finite products distribute
over countable coproducts in C0.

It follows immediately from the definition of countable Lawvere theory that if L
is a countable Lawvere theory, the Freyd-category Iop : ℵ1 −→ Lop is countably
distributive. This notion allows us to characterise the canonical model by a
universal property.

Theorem 3. The canonical model is the generic countably distributive Freyd-
category, i.e., for any countably distributive Freyd-category J : C0 −→ C1 and
any sound interpretation of the signature in J that respects the coproduct struc-
ture of the arities, there is, up to coherent isomorphism, a unique countable
coproduct preserving Freyd-functor from Iop to J that respects the interpreta-
tions.

Theorem 3 can now be combined with the work of [20], which shows how to
generate a canonical model of the whole λc-calculus from a model of its first-
order fragment. A variant of the latter construction, involving preservation of
countable coproducts, is needed to give a smooth extension of the operations:
that must, for space reasons, be deferred, but we mention in passing that it also
allows one to recover Moggi’s models of all the examples we have investigated
here.

452 J. Power

References

1. N. Benton, J. Hughes, and E. Moggi, Monads and effects, in Advanced Lectures
form International Summer School on Applied Semantics, LNCS, Vol. 2395, pp.
42–122, Berlin: Springer-Verlag, 2002.

2. A. Carboni, S. Lack, and R. F. C. Walters, Introduction to extensive and distribu-
tive categories, J. Pure Appl. Algebra, Vol. 84, pp. 145–158, 1993.

3. M. Fiore, G. D. Plotkin, and D. Turi, Abstract syntax and variable binding, in
Proc. LICS 99, pp. 214–224, Washington: IEEE Press, 1999.

4. M. Hyland, P. B. Levy, G. D. Plotkin, and A. J. Power, Combining continuations
with other effects, submitted.

5. M. Hyland, G. D. Plotkin, and A. J. Power, Combining computational effects:
commutativity and sum, in Proc. IFIP Conf. On Theoretical Computer Science,
pp. 474–484, Kluwer, 2002.

6. M. Hyland, G. D. Plotkin, and A. J. Power, Combining computational effects: sum
and tensor, submitted.

7. Y. Kinoshita and A. J. Power, Data Refinement in Call-by-Value Languages, in
Proc. CSL ’99, LNCS, Vol. 1683, pp. 562–576 Berlin: Springer-Verlag, 1999.

8. P. B. Levy, A. J. Power, and H. Thielecke, Modelling environments in call-by-value
programming languages, Information and Computation, Vol. 185, pp. 182–210,
2003.

9. S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Berlin: Springer-
Verlag, 1992.

10. E. Moggi, Computational lambda-calculus and monads, in Proc. LICS ’89, pp.
14–23, Washington: IEEE Press, 1989.

11. E. Moggi, Notions of computation and monads, Inf. and Comp., Vol. 93, No. 1,
pp. 55–92, 1991.

12. E. Moggi, A Semantics for Evaluation Logic, Fundamenta Informaticae, Vol. 22,
1995.

13. G. D. Plotkin and A. J. Power, Adequacy for Algebraic Effects, in Proc. FOSSACS
2001, LNCS, Vol. 2030, pp. 1–24, Berlin: Springer-Verlag, 2001.

14. G. D. Plotkin and A. J. Power, Notions of Computation Determine Monads,
in Proc. FOSSACS 2002, LNCS, Vol. 2303, pp. 342–356, Berlin: Springer-Verlag,
2002.

15. G. D. Plotkin and A. J. Power, Algebraic Operations and Generic Effects, in Proc.
MFCSIT 2000, Applied Categorical Structures, Vol. 11, No. 1, pp. 69–94, 2003.

16. G. D. Plotkin and A. J. Power, Computational Effects and Operations: an
Overview, in Proc. Domains 2002, ENTCS, Vol. 73, 2002.

17. G. D. Plotkin and A. J. Power, Logic for Computational Effects, in Proc. Inter-
national Workshop on Formal Methods 03, to appear.

18. A. J. Power, Models of the Computational λ-calculus, in Proc. MFCSIT 2000,
ENTCS, Vol. 40, 2001.

19. A.J. Power, Premonoidal categories as categories with algebraic structure, Theo-
retical Computer Science, Vol. 278, pp. 303–321, 2002.

20. A. J. Power, A Universal Embedding for the Higher Order Structure of Computa-
tional Effects, in Proc. TLCA 2003, LNCS, Vol. 2701, pp. 301–315.

21. A. J. Power and E. P. Robinson, Premonoidal categories and notions of computa-
tion, in Proc. LDPL 96, Math Structures in Computer Science, Vol. 7, pp. 453–468,
1997.

	Introduction
	The Computational $lambda $-Calculus and Signatures for It
	From Operations and a Model to Equations
	Models for the $lambda _c$-Calculus
	Canonical Models for the $lambda _c$-Calculus with Computational Effects

