
On Recognizable Timed Languages�

Oded Maler1 and Amir Pnueli2,3

1 cnrs-verimag, 2 Av. de Vignate, 38610 Gières, France
Oded.Maler@imag.fr

2 Weizmann Institute of Science, Rehovot 76100, Israel
3 New York University, 251 Mercer St. New York, NY 10012, USA

Amir.Pnueli@cs.nyu.edu

Abstract. In this work we generalize the fundamental notion of recognizability
from untimed to timed languages. The essence of our definition is the existence of a
right-morphism from the monoid of timed words into a bounded subset of itself.We
show that the recognizable languages are exactly those accepted by deterministic
timed automata and argue that this is, perhaps, the right class of timed languages,
and that the closure of untimed regular languages under projection is a positive
accident that cannot be expected to hold beyond the finite-state case.

1 Introduction

Let Σ∗ be the free monoid generated by a finite set Σ. A set (language) L ⊆ Σ∗

is recognizable if there exists a finite deterministic automaton A = (Q, δ, q0, F) that
accepts it. The automaton sends words into states via the mapping δ̂A : Σ∗ → Q
defined as δ̂A(ε) = q0 and δ̂A(w · a) = δ(δ̂A(w), a). A language L is recognizable if
L =

⋃
q∈F δ̂

−1
A (q) for some automaton A.

There are two common ways to express these notions more algebraically. One is to
speak of a monoid morphism ϕ from Σ∗ to a finite monoid M satisfying ϕ(w · w′) =
ϕ(w) · ϕ(w′). The disadvantage of this approach is that the object under study is not
anymore the “action” of a wordw on the initial state, but rather the whole transformation
it induces on Q. This object is a much less intuitive (and typically exponentially larger)
than the automaton. An alternative, mentioned briefly in [E74], is to speak of right
modules and of a module morphism from the free module (Σ∗, Σ) to the finite module
(Q,Σ).

For the purpose of this paper we define an equivalent variation on this notion that will
allow us to extend it easily to timed languages. Our definition is inspired by automaton
learning theory [G72,A87] where every state of the automaton is identified with (one of)
the first words1 that reach it from q0. The standard prefix partial-order on Σ∗ is defined
as u ≺ u · v for every u, v ∈ Σ∗. A language is prefix-closed if it includes the prefixes

� This work was partially supported by a grant from Intel, by the European Com-
munity Projects IST-2001-35304 AMETIST (Advanced Methods for Timed Systems),
http://ametist.cs.utwente.nl and by the CNRS project AS 93, Automates, modèles
distribués et temporisés.

1 That is, a word that reaches the state via a cycle-free run.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 348–362, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Recognizable Timed Languages 349

of all its elements. The immediate exterior of a prefix-closed language P is defined as
ext(P) = P ·Σ − P , i.e. the first words that go outside P .

Definition 1 (Recognizable Languages). A language L is recognizable if there exists
a finite prefix-closed subset P ⊆ Σ∗, a “right”-morphism ϕ : Σ∗ → P satisfying

ϕ(w) = w if w ∈ P ϕ(w · w′) = ϕ(ϕ(w) · w′)

and a subset F ⊆ P such that L =
⋃

w∈F

ϕ−1(w).

As an example let us look at the deterministic automaton of Figure 1 and one of
its spanning trees. The prefix-closed set P = {ε, b, ba, bb, baa, bbb, bbbb} contains one
representative for each of the states {q0, . . . , q7}. The choice of P is not unique and may
depend on the spanning tree chosen. For example, we could replace ba and baa by bba
and bbaa as representatives of q2 and q4, respectively. The morphism from Σ∗ to P is
defined, for elements outside P , via rewriting rules (“relations” in the algebraic jargon)
that mimic the “non-spanning” transitions in the transition graph. Such a rewriting rule
is defined for every element in ext(P). In our example the rules are a = ε, bba = ba,
bab = ε, bbba = ba, baaa = baab = baa, bbbbb = baa and bbbba = bbbb. These
rewriting rules can be applied only at the left of a word, that is, the rule bba = a
corresponds to the family bbaw = aw for every w ∈ Σ∗.

The recognition of a word by this structure proceeds like reading the word by an
automaton: a wordw is scanned until a prefix u ∈ ext(P) is detected, such thatw = uv.
Than the rewriting rule u = u′ is applied, reducing w to w′ = u′v with u′ = ϕ(u) ∈ P
and the process is continued with w′ until w is reduced to a word in P which is tested
for membership in F (in our example F = {bb}).

a

q1

q2

q4

q6

a

ba

b

bq0

q3

q5

a

b

a
a

b b

a

q1

q2

q4

a

ba

bq0

q3

q5

a

a
b b

b

(a) (b) (c) (d)

a, b

a

q1

q2

q4

q6

a

ba

b

bq0

q3

q5

a

b

a
a

b b

a;b a;b

a

q1

q2

q4

a

ba

bq0

q3

q5

a

a
b b

b
a;b

Fig. 1. (a) A deterministic automaton; (b) A spanning tree of the automaton (the solid lines); (c)
A minimal automaton for the language accepted by the automaton in (a); (d) A spanning tree for
the minimal automaton.

For untimed languages this exercise seems nothing more than a fancy formulation of
acceptance by a finite automaton, yet it emphasizes the fundamental property of finite-
state systems and languages: the ability to distinguish between a finite number of classes

350 O. Maler and A. Pnueli

of input histories. Before adapting this notion for timed languages let us recall some
known facts about minimal automata and the notion of a state in a dynamical system.

Every L ⊆ Σ∗ admits a unique canonical automaton AL (not necessarily finite-
state) that accepts it. Any other automaton accepting L can be reduced to AL by an
automaton homomorphism (merging of states). This automaton is defined using the
syntactic right-congruence2 relation induced by L on Σ∗

u ∼ v iff ∀w uw ∈ L ⇐⇒ vw ∈ L

The states of the minimal automaton for L are the equivalence classes of ∼. This is
the Nerode part of the Myhill-Nerode characterization of regular languages as those for
which ∼ has a finite index. A language like anbn can be proved non-recognizable by
showing that an 	∼ am for every n 	= m and hence ∼ has an infinite index and no finite
set of representatives of its congruence classes exists.

By choosing proper representatives for each class we can have a setP of minimal size.
Figure 1-(c) shows a minimal automaton for our example. The corresponding algebraic
object is obtained from the non-minimal one by removing bbbb from P , removing the
rules bbbbb = baa and bbbba = bbbb and adding the rule bbbb = baa.

2 Timed Languages

We consider timed languages as subsets of the time-event monoid T = Σ∗
 R+,
the free product (shuffle) of the free monoid (Σ∗, ·, ε) and the commutative monoid
(R+,+, 0). This monoid has been introduced in [ACM02] as an alternative semantic
domain for timed behaviors, where elements of Σ indicate events and elements of R+
denote passage of time. Elements of T can be written as timed words of the form

t0 · a1 · t1 · a2 · t2 · · · an · tn (1)

with ti ≥ 0 and ai ∈ Σ ∪ {ε} for every i. Such a word indicates passage of t0 time,
followed by the occurrence of a1, followed by passage of t1 time, etc. The reader may
find in [ACM02] more precise details, examples and a definition of a canonical form to
which two equivalent timed words can be reduced. For example, a ·0 ·a′ can be reduced
to a · a′ and t · ε · t′ reduces to t + t′. The prefix partial-order relation on T is defined
as u u · v for any u, v ∈ T . Note that, in particular, w · t w · t′ whenever t ≤ t′.

A timed word w of the form (1) can be projected onto Σ∗ and R+, respectively,
via the following two morphisms: The untime function, µ(w) = a1 · a2 · · · an and the
duration function λ(w) = t0 + t1 + · · · + tn. For an untimed word u, |u| indicates its
logical length (number of letters). These functions are lifted naturally from individual
words to sets of words.

It is clear that the notion of finite recognizability is useless for timed languages. It
suffices to look at the singleton language {5 · a}, consisting of the word where a occurs
at time 5, and see that it has an uncountable number of Nerode classes as t 	∼ t′ for every

2 A right-congruence relation of Σ∗ is an equivalence relation such that u ∼ v implies uw ∼ vw
for every w.

On Recognizable Timed Languages 351

t 	= t′ where t, t′ < 5. We believe that the suitable notion for timed languages is that of
boundedness (which implies finiteness for discrete systems). Intuitively this means that
one can distinguish between a finite number of classes of (qualitative) histories and in
each of these classes it is possible to distinguish between durations taken from a bounded
set.

Definition 2 (Bounded Timed Languages). A timed language L ⊆ T is bounded if
µ(L) is finite and λ(L) is bounded in the usual sense of R+.

We want to generalize Definition 1 to timed languages using a bounded prefix-closed
subset P of T and a morphism to it. Before giving a formal definition let us illustrate
the idea using the language

{t · a · w : t ∈ [1, 5], w ∈ T }

consisting of all timed words that have no letters until1 and an occurrence ofa somewhere
in [1, 5]. The set P should contain all the time prefixes t with t ∈ [0, 5]. All the words
of the form t · a with t < 1 are Nerode equivalent (they accept nothing) and can be
represented by a and the same holds for all twith t > 5. Likewise, the words of the form
t · a with t ∈ [1, 5] are equivalent (they accept everything) and hence can be represented
by 1 · a. So for this language we have

P = {t : t ∈ [0, 5]} ∪ {a} ∪ {1 · a}, F = {1 · a}

The immediate exterior of P contains all the a-continuations of P which are outside
P , namely the words t · a with t ∈ (0, 1) ∪ (1, 5] as well as a · a and 1 · a · a. The
immediate exterior via time passage is harder to define due to the density of (R,≤). In
general, given a timed word w, one cannot3 characterize its “first” time continuation.
One solution would be to take an arbitrarily small positive ε and let the exterior of w be
{w · t : t ∈ (0, ε)}. We will use the notation w · t for that, and denote the corresponding
elements of ext(P) by a ·t, 1 ·a ·t, and 5 ·t. The morphism is defined using the following
rewriting rules:

{t · a = a : t ∈ [0, 1)} {t · a = 1 · a : t ∈ [1, 5]}

a · a = a · t = a 1 · a · a = 1 · a · t = 1 · a 5 · t = a

A discrete-time interpretation of this object appears in Figure 2. As one can see, we
need a formalism to express parameterized families of words belonging to P and F as
well as parameterized families of rewriting rules. The choice of this formalism depends
on the type of dense-time automata whose expressive power we want to match. In this
work we concentrate on timed automata and before doing so let us give an example of
a non-recognizable timed language,

Lbad = T · {a · t1 · a · t2 · · · tn · a : n ∈ N ∧
n∑

i=1

ti = 1}. (2)

3 Perhaps a definition can be given using non-standard analysis with infinitesimals, or by taking
limits on a sequence of discretizations with decreasing time steps.

352 O. Maler and A. Pnueli

This language, which can be “accepted” by a non-deterministic timed automaton, was
introduced by Alur [A90] to demonstrate the non-closure of timed automata under com-
plementation. It is not hard to see that for every n

a · t1 · a · · · tn · a 	∼ a · t1 · a · · · tn · a · tn+1 · a

whenever 0 <
∑n+1

i=1 ti < 1 and hence for any P , µ(P) should contain the infinite
language {an : n ∈ N} and P cannot be bounded.

a a a a a

a; t

a; t
a

1 2 3 4 5 a0

1a

t t t t t t

Fig. 2. An acceptor for a discrete time interpretation of [1, 5]·a·T . Transitions labeled by t indicate
passage of one time unit. Dashed arrows indicate non-spanning transitions that correspond to the
rewriting rules.

3 Timed Automata

We considerΣ-labeled timed automata as acceptors of subsets of T . Timed automata are
automata operating in the dense time domain. Their state-space is a product of a finite
set of discrete states (locations) and the clock-space R

m
+ , the set of possible valuations

of a set of clock variables. The behavior of the automaton consists of an alternation
of time-passage periods where the automaton stays in the same location and the clock
values grow uniformly, and of instantaneous transitions that can be taken when clock
values satisfy certain conditions and which may reset some clocks to zero.

The interaction between clock values and discrete transitions is specified by condi-
tions on the clock-space which determine what future evolution, either passage of time
or one or more transitions, is possible at a given part of the state-space. The clocks allow
the automaton to remember, to a certain extent, some of the quantitative timing informa-
tion associated with the input word. This ability is bounded due to the finite number of
clocks and due to the syntactic restrictions on the form of the clock conditions, namely
comparisons of clock values with a finite number of rational constants. This, combined
with the monotonicity of clock growth, means that a clock becomes “inactive” after its
value crosses the value of the maximal constant κ and it cannot distinguish in that state
between time duration of length κ and of length κ+ t for any positive t.

Let X = {x1, . . . , xm} be a set of clock variables. A clock valuation is a function
x : X → R+. We use 1 to denote the unit vector (1, . . . , 1) and 0 for the zero vector
(0, . . . , 0).

Definition 3 (Clock and Zone Constraints). A clock constraint is either a single clock
constraint x � d or a clock difference constraint xi − xj � d, where �∈ {<,≤,=
,≥, >} and d is an integer. A zone constraint is a conjunction of clock constraints.

On Recognizable Timed Languages 353

Definition 4 (Timed Automaton).
A timed automaton is A = (Σ,Q,X, q0, I,∆, F) where Q is a finite set of states
(locations),X is a finite set of clocks, I is the staying condition (invariant), assigning to
every q ∈ Q a zone Iq, and ∆ is a transition relation consisting of elements of the form
(q, a, φ, ρ, q′) where q and q′ are states, a ∈ Σ∪{ε}, ρ ⊆ X andφ (the transition guard)
is a rectangular zone constraint. The initial state is q0 and the acceptance condition F
is a finite set of pairs of the from (q, φ) where φ is a zone constraint.

A configuration of the automaton is a pair (q, x) consisting of a location and a clock
valuation. Every subset ρ ⊆ X induces a reset function Resetρ on valuations which
resets to zero all the clocks in ρ and leaves the other clocks unchanged. A step of the
automaton is one of the following:

– A discrete step: (q, x) δ−→ (q′, x′), for some transition δ = (q, a, φ, ρ, q′) ∈ ∆, such
that x satisfies φ and x′ = Resetρ(x). The label of such a step is a.

– A time step: (q, x) t−→ (q, x + t1), t ∈ R+ such that x + t′1 satisfies Iq for every
t′ < t. The label of a time step is t.

A run of the automaton starting from the initial configuration (q0, 0) is a finite sequence
of steps

ξ : (q0, 0) s1−→ (q1, x1)
s2−→ · · · sn−→ (qn, xn).

A run is accepting if it ends in a configuration satisfying F . The timed word carried by
the run is obtained by concatenating the step labels. The timed language accepted by a
timed automaton A consists of all words carried by accepting runs and is denoted by
LA.

A timed automaton is deterministic if from every reachable configuration every event
and “non-event” leads to exactly one configuration. This means that the automaton cannot
make both a “silent” transition and a time passage in the same configuration.

Definition 5 (Deterministic Timed Automaton). A deterministic timed automaton is
an automaton whose guards and staying conditions satisfy:

1. For every two distinct transitions (q, a, φ1, ρ1, q1) and (q, a, φ2, ρ2, q2), φ1 and φ2
have an empty intersection (event determinism).

2. For every transition (q, ε, φ, ρ, q′) ∈ ∆, the intersection of φ with Iq is, at most, a
singleton (time determinism).

In deterministic automata any word is carried by exactly one run. We denote the class
of timed languages accepted by such automata by DTA.

Before defining the recognizable timed languages let us present a particular atomic
type of zones called regions, introduced in [AD94], which play a special role in the
theory of timed automata. Intuitively a region consists of all clock valuations that are
not (and will not be) distinguishable by any clock constraint. A region constraint is a
zone constraint where for every x it contains a constraint of one of the following forms:
x = d, d < x < d + 1 or κ < x and for every pair of clocks — either xi − xj = d or

354 O. Maler and A. Pnueli

d < xi − xj < d+ 1. The set of all regions over m clocks with a largest constant4 κ is
denoted by Gm

κ .
Regions are the elementary zones from which all other zones can be built. Two clock

valuations that belong to the same region satisfy the same guards and staying conditions.
Moreover, by letting time pass from any two such points, the next visited region is the
same. Finally, any reset of clocks sends all the elements of one region into the same
region. This motivates the definition [AD94] of the “region automaton”, a finite-state
automaton whose state space is Q × Gm

κ and its transition relation is constructed as
follows. First we introduce a special symbol τ which indicates the passage of an under-
specified amount of time, and connect two regions R and R′ by a τ -transition, denoted by
(q,R) τ−→ (q,R′) if time can progress in (q,R) and R′ is the next region encountered
while doing so. Secondly, for every transition (q, a, φ, ρ, q′) and every R which satisfies
φ we define a transition (q,R) a−→ (q′,R′) if R′ is the result of applying Resetρ to
R. As an example consider the deterministic automaton and its corresponding region
automaton appearing on Figure 3. The automaton accepts any word with 3 a’s such that
the second occurs 1 time after the beginning and the third — 1 time after the first.5

4 Recognizable Timed Languages

Let Tn = {t0, . . . , tn} be an ordered set of non-negative real variables. A contiguous
sum over Tn is Sj..k =

∑k
i=j ti and the set of all such sums over Tn is denoted by Sn.

A timed inequality on Tn is a condition of the form Si..j ∈ J where J is an interval with
natural endpoints. A timed condition is a conjunction of timed inequalities.

A timed language L is elementary if µ(L) = {u} with u = a1 · · · an and the set
{(t0, . . . tn) : t0 · a1 · · · an · tn ∈ L} is definable by a timed condition Λ. We will
sometime denote elementary languages by a pair (u,Λ). The immediate exterior ext(L)
of an elementary language L = (u,Λ) consists of the following sets: for every a ∈ Σ,
exta(L) is the set (u · a, Λa) where Λa = Λ ∪ {tn+1 = 0}. The immediate exterior via
time passage is extt(L) = (u,Λt) whereΛt is obtained fromΛ as follows. IfΛ contains
one or more equality constraints of the form Sj..n = d, these constraints are replaced
by constraints of the form d < Sj..n. Otherwise, let j be the smallest number such that a
constraint of the form Sj..n < d appears in Λ. This constraint is replaced by Sj..n = d.

Definition 6 (Chronometric Subset). A subset P of T is chronometric if it can be
written as a finite union of disjoint elementary languages.

4 There are some simplifications in the description in order to avoid a full exposition of the theory
of timed automata. In particular, if some clock x > κ in some region, we do not care anymore
about its comparisons with other clocks. This way the region automaton has just one terminal
state in which all the clocks are larger than κ. Readers interested in all the subtle details may
consult [B03].

5 Note that the existence of two transitions leaving q2, one labeled with x = 1 and one with
x = 1, a, is not considered a violation of determinism. A word 1 · t for an arbitrarily small t
will take the former and the word 1 · a will take the latter.

On Recognizable Timed Languages 355

Fig. 3. A timed automaton with 2 clocks and its region automaton. Solid arrows indicate time
passage and ε transitions while dashed arrows are a transitions. The a-labeled self-loops from all
regions associated with q4 and q5 are depicted in a StateChart style. The regions are detailed in
Table 1.

Definition 7 (Chronometric Relational Morphism). Let P be bounded and prefix-
closed subset of T . A chronometric (relational) morphism Φ from T to P is a relation
definable by a finite set of tuples (u,Λ, u′, Λ′, E) such that each (u,Λ) is an elementary
language included in ext(P), each (u′, Λ′) is an elementary language contained in P ,

andE is a set of equalities of the form
∑n

i=j ti =
∑n′

i=k t
′
i, where n = |u| and n′ = |u′|.

It is required that all (u,Λ) are disjoint and their union is equal to ext(P). For every
w = t0 · a1 · · · an · tn and w′ = t′0 · b1 · · · bn′ · t′n′ , (w,w′) ∈ Φ iff there exists a tuple

356 O. Maler and A. Pnueli

(u,Λ, u′, Λ′, E) in the presentation of Φ such that w ∈ (u,Λ), w′ ∈ (u′, Λ′) and the
respective time values for w and w′ satisfy all the equalities in E. The definition of Φ
for words outside ext(P) is done via the identity Φ(u · v) = Φ(Φ(u) · v).

As an example of a component (u,Λ, u′, Λ′, E) of a chronometric morphism let

(u, Λ) = (t0 · a · t1 · a , {0 < t0 < 1, 0 < t1 < 1, 0 < t0 + t1 < 1}),

(u′, Λ′) = (r0 · a · r1 · a · r2 , {0 < r0 < 1, r1 = 0, 0 < r2 < 1, 0 < r0 + r1 + r2 < 1})

and
E = t0 + t1 = r0 + r1 + r2.

This component corresponds to the non-spanning transition R8 · a = R17 in the region
automaton of Figure 3.
The relation Φ is said to be well formed if the following holds for each tuple
(u,Λ, u′, Λ′, E) in Φ:

– For every w ∈ (u,Λ), there exists w′ ∈ (u′, Λ′) such that (w,w′) ∈ Φ.
– For every w′ ∈ (u′, Λ′), there exists w ∈ (u,Λ) such that (w,w′) ∈ Φ.

A relation Φ is said to be compatible with a chronometric subset F if for every
(u,Λ, u′, Λ′, E) in Φ, either (u′, Λ′) ⊆ F or (u′, Λ′) ∩ F = ∅.
Remark: From a well formed relational chronometric morphism Φ one can derive a
(functional) chronometric morphism ϕ : T → P by letting ϕ(w) be some w′ such that
(w,w′) ∈ Φ. From the relation described above we can derive functional morphisms
such asϕ(t0 ·a ·t1 ·a) = t0 ·a ·a ·t1, orϕ(t0 ·a ·t1 ·a) = a ·a ·(t0+t1). While functional
morphisms follow more closely the spirit of classical theory, relational morphisms are
more suitable for the proofs in this paper.

Definition 8 (Recognizable Timed Languages). A timed languageL is recognizable if
there is a chronometric prefix-closed set P , a chronometric subset F of P and a chrono-
metric relational morphism Φ : T → P compatible with F such that L =

⋃

w∈F

Φ−1(w).

4.1 From Deterministic Automata to Recognizable Languages

We are now ready to prove the first result, stating that every language accepted by a DTA is
recognizable, by assigning timed words to reachable configurations. The correspondence
between values of clock variables in the automaton and values of time variables in an
input word of length n is done via a clock binding over (X,Tn), a function β : X → Sn

associating with every clockx a contiguous sum of the formSj..n. Recall that a region is a
conjunction of single clocks constraints and clock difference constraints. By substituting
β(x) for x, the former become timed inequalities and the latter become inequalities on
Sj..n − Sk..n = Sj..k and, hence, timed inequalities as well.

Claim 1 (DTA ⇒ REC) From every deterministic timed automaton A one can con-
struct a chronometric prefix-closed subset P of T and a morphism Φ : T → P such
that if (w,w′) ∈ Φ then w and w′ lead to the same configuration from the initial state.

On Recognizable Timed Languages 357

Sketch of Proof: Build the region automaton for A and pick a spanning tree in which
each region is reached via a simple path. Starting from the root we associate with every
region an elementary timed language in a prefix-closed manner. More precisely with
every region R of the automaton we associate the triple (u,Λ, β) where (u,Λ) is an
elementary timed language with |u| = n and β is a clock binding on (X,Tn). We
decompose Λ into two sets of timed inequalities Λ− and Λ+ where Λ− consists of the
“anachronistic” inequalities not involving tn and Λ+ — of “live” constraints involving
tn. Note that transitions may change the binding and move some inequalities from Λ+
to Λ−.

For the initial region R0 = (q0, 0), u = ε, Λ = Λ+ is t0 = 0 and all clocks
are bound to t0. Consider now the inductive step. Given a region R with (u,Λ, β) we
compute (u′, Λ′, β′) for its successor (via a spanning transition) R′. There are two cases:

1. R′ is a simple time successor of R: in this case u′ = u and β′ = β. We letΛ′
− = Λ−

and obtain Λ′
+ from the region formula ψ′ by replacing every clock x by β(x).6

2. R′ is a transition successor of R via an a-labeled7 transition: in this case u′ =
u · a · tn+1, we have a new time variable tn+1 and the (Tn+1, X) binding β′ is
derived from β and from the corresponding transition as follows. If a clock x is not
reset by the transition then β′(x) = Si..n+1 whenever β(x) = Si..n. If x is reset
then β′(x) = tn+1 (note that x = 0 in R′). To compute Λ′

− we add to Λ− the
substitution of β(x) for x in ψ and let Λ′

+ be the substitution of β′(x) in ψ′.

From this construction it is easy to see that the union of the obtained languages is prefix-
closed (we proceed by concatenation and by respecting past timing constraints) and
chronometric and that all reachable configurations are covered by words.

Next, we construct the relation Φ based on transitions which correspond to back-
or cross-edges in the spanning tree. Consider a non-spanning transition leading from
region R with characteristic (u,Λ, β) into region R′ with characteristic (u′, Λ′, β′).
Let (u′′, Λ′′, β′′) be the language and binding associated with the successor of R ac-
cording to the previously described procedure. This transition contributes to Φ the tuple
(u′′, Λ′′, u′, Λ′, E). For each clock x which is not reset by the transition, E contains
the equality β′(x) = β′′(x). If x is reset by the transition, then E contains the equality
β′(x) = 0.

Table 1 shows the correspondence between the regions of Figure 3 and elementary
languages. The numbering of the regions is consistent with the chosen spanning tree.

4.2 From Recognizable Languages to Deterministic Automata

We will now prove the other direction by building a deterministic timed automaton for a
given recognizable language. To facilitate the construction we will use an extended form
of timed automata, proposed in [SV96], where transitions can be labelled by assignments

6 Note that Λ+ and Λ′
+ are very similar consisting of almost identical sets of inequalities

differing from each other only by replacing one or more inequalities of the form Si..n = d by
d < Si..n < d + 1, etc.

7 The special case where the transition is not labeled is resolved by introducing a new time
variable tn+1 such that the word can be written as t0 · · · an · tn · ε · tn+1.

358 O. Maler and A. Pnueli

of the form x := 0 and x := y (clock renaming). As shown in [SV96] such automata
can be transformed into standard timed automata (see also [BDFP00]).

Claim 2 (REC ⇒ DTA) From every chronometric subsetP of T and a chronometric
morphism Φ : T → P one can build a DTA A such that if two timed words lead to the
same configurations in A then (w,w′) ∈ Φ.

Sketch of Proof: The construction of the automaton starts with an untimed automaton
(with a tree structure) whose set of states is µ(P) with ε as the initial state and a
transition function such that δ(u, a) = u · a whenever u · a is in µ(P). We then decorate
the automaton with staying conditions, transition guards, and resets as follows. With
every transition we reset a new clock so that for every word t0 · a1 · · · an · tn, the value
of clock xi at any state a1 · · · aj , i ≤ j is bound to Si..j .

For every state u = a1 · · · an ∈ µ(P) let

Λ(u) = {(t0, . . . , tn) : t0 · a1 · · · an · tn ∈ P}.

By decomposingΛ(u) into anachronistic (Λ−) and live (Λ+) constraints and substituting
xi instead of every Si..n in Λ+, we obtain the staying condition for state u.

For every u and a such that u · a is in µ(P) let

Hu,a = {(t0, . . . , tn) : t0 · a1 · · · an · tn · a ∈ P}.

Without loss of generality we assume that Hu,a is definbable by a timed condition.8

Hence every expression Si..j in it can be replaced by xj − xi and the whole condition
can be transformed into a zone constraint that will serve as the guard of the transition
between u and u · a. This way we have an automaton in which every element of P
reaches a distinct configuration.

Consider an element (u · a, Λ, u′, Λ′, E) ∈ Φ, such that (u · a, Λ) ∈ exta(P), with
|u| = n and |u′| = n′. Such an element introduces into the constructed automaton an
a-labeled transition from u to u′. For every constraint of the form Sj..k ∈ J included
in Λ, we include in the transition guard the constraint xj − xk ∈ J . For every equality
S′

j..n′ = Sk..n included in E, we add to the reset function the assignment xj := xk.
Likewise every (u,Λ, u′, Λ′, E) ∈ Φ such the (u,Λ) ⊆ extt(P) induces a timed

transition from u to u′ with a guard and a reset function similar to the previous case.

Corollary 1 (REC=DTA). The recognizable timed languages are those accepted by a
deterministic timed automaton.

5 Discussion

Ever since the introduction of timed automata and the observation that their languages are
not closed under complementation, researchers were trying to find a well-behaving sub-
class of languages.9 Among the proposals given, we mention the event-clock automata of

8 In general it could be definable by a finite union of timed conditions and we should make several
transitions from u to u · a.

9 The question whether a non-deterministic timed automaton can be determinized is undecidable,
see [T03].

On Recognizable Timed Languages 359

Table 1. Correspondence between regions in the automaton of Figure 3 and timed words.

R q ψ u β Λ

1 q1 0 = x2 = x1 t0 x1 = t0 t0 = 0
x2 = t0

2 q1 0 < x2 = x1 < 1 t0 x1 = t0 0 < t0 < 1
x2 = t0

3 q1 x2 = x1 = 1 t0 x1 = t0 t0 = 1
x2 = t0

4 q2 0 = x2 = x1 t0at1 x1 = t0 + t1 t0 = t1 = 0
x2 = t1

5 q2 0 < x2 = x1 < 1 t0at1 x1 = t0 + t1 t0 = 0 0 < t1 < 1
x2 = t1

6 q2 x2 = x1 = 1 t0at1 x1 = t0 + t1 t0 = 0 t1 = 1
x2 = t1

7 q2 0 = x2 < x1 < 1 t0at1 x1 = t0 + t1 0 < t0 < 1 t1 = 0
x2 = t1

8 q2 0 < x2 < x1 < 1 t0at1 x1 = t0 + t1 0 < t0 < 1 0 < t1 < 1 0 < t0 + t1 < 1
x2 = t1

9 q2 0 < x2 < x1 = 1 t0at1 x1 = t0 + t1 0 < t0 < 1 0 < t1 < 1 t0 + t1 = 1
x2 = t1

10 q2 x2 = 0 x1 = 1 t0at1 x1 = t0 + t1 t0 = 1 t1 = 0
x2 = t1

11 q5 x1 > 1 x2 > 1 t0εt1 x1 = t0 + t1 1 < t0 + t1
x2 = t0 + t1

12 q5 x1 = x2 = 0 t0at1at2 x1 = t0 + t1 + t2 t0 = t1 = t2 = 0
x2 = t1 + t2

13 q5 0 < x1 = x2 < 1 t0at1at2 x1 = t0 + t1 + t2 t0 = t1 = 0 0 < t2 < 1
x2 = t1 + t2

14 q5 x1 = x2 = 1 t0at1at2 x1 = t0 + t1 + t2 t0 = t1 = 0 t2 = 1
x2 = t1 + t2

15 q3 x2 = x1 = 1 t0at1at2 x1 = t0 + t1 + t2 t0 = 0 t1 = 1 t2 = 0
x2 = t1 + t2

16 q5 0 = x2 < x1 < 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 t2 = 0
x2 = t1 + t2

17 q5 0 < x2 < x1 < 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2 0 < t0 + t2 < 1

18 q5 0 < x2 < x1 = 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2 0 < t0 + t2 = 1

19 q5 0 < x2 < 1 < x1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2 0 < t0 + t2 > 1

20 q5 0 < x2 = 1 < x1 t0at1at2 x1 = t0 + t1 + t2 t0 = 1 t1 = t2 = 0 t3 = 1
x2 = t1 + t2

21 q3 0 < x2 < x1 = 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 0 < t1 < 1
x2 = t1 + t2 t0 + t1 = 1 t2 = 0

22 q3 0 < x2 < 1 < x1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 0 < t1 < 1
x2 = t1 + t2 t0 + t1 + t2 > 1 0 < t2 < 1 t1 + t2 < 1

23 q3 0 < x2 = 1 < x1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 0 < t1 < 1
x2 = t1 + t2 t0 + t1 + t2 > 1 0 < t2 < 1 t1 + t2 = 1

24 q5 0 < x2 < 1 < x1 = 1 t0at1εt2 x1 = t0 + t1 + t2 t0 = 1 t1 = t2 = 0 0 < t3 < 1
x2 = t1 + t2

25 q3 x1 = 1 x2 = 0 t0at1at2 x1 = t0 + t1 + t2 t0 = 1 t1 = t2 = 0
x2 = t1 + t2

26 q3 0 < x2 < 1 < x1 t0at1at2 x1 = t0 + t1 + t2 t0 = 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2

27 q4 x2 = x1 = 1 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 0 t1 = 1 t2 = 0 t3 = 0
x2 = t1 + t2 + t3

28 q4 1 < x11 < x2 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 1 t1 = 0 t2 = 1 t3 > 0
x2 = t1 + t2 + t3

29 q4 0 < x2 = 1 < x1 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 1 t1 = 0 t2 = 1 t3 = 0
x2 = t1 + t2 + t3

30 q5 x1 = 1 x2 = 0 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 1 t1 = t2 = t3 = 0
x2 = t1 + t2 + t3

[AFH99] where for each letter in the alphabet, the automaton can measure only the time
since its last occurrence. It was shown that these languages admit a deterministic timed
acceptor. Recognizable timed languages take this idea further by allowing the automaton
to remember the occurrence times of a finite number of events, not necessarily of distinct
types.

The ideas of [AFH99] were developed further in [RS97] and [HRS98], resulting in a
rich class of timed languages characterized by a decidable logic. While being satisfactory
from a logical point of view, the automaton characterization of this class is currently
very complicated, involving cascades of event-recording and event-predicting timed

360 O. Maler and A. Pnueli

automata. We feel that our more restricted class of recognizable languages captures the
natural extension of recognizability toward timed languages, namely which classes of
input histories can be distinguished by a finite number of states and a finite number of
bounded clocks.10

Deterministic timed languages have not been studied much in the literature due to
several reasons. The first is a slight confusion about what deterministic means in this
context and between acceptors and generators in general. A transition guarded by a “fat”
condition of the form x ∈ [l, u] is non-deterministic only if it is not labeled by an input
letter. If it is labeled by an input a the transition is deterministic, reacting differently to
t · a and t′ · a for t 	= t′.

Another reason for ignoring deterministic automata is the centrality of the equiva-
lence between DFA and NDFA in the untimed theory which serves to show that regular
languages are closed under projection. Recognizable timed languages are indeed not
closed under projection. The non-recognizable language Lbad (2) can be obtained from
a recognizable language over {a, b} by projecting away b. Not seeing b, the automaton
has to “guess” at certain points, whether b has occurred. When this guessing has to be
done a finite number of times, the Rabin-Scott subset construction can simulate it by
a DFA that goes simultaneously to all possible successors. However when these hid-
den events can occur unboundedly within a finite interval and their occurrence times
should be memorized, finite subset construction is impossible. In this context it is worth
mentioning the result of [W94] about the determinizability of timed automata under a
uniform bounded variability assumption and also to point out that for the same reasons
determinization is always possible under any time discretization.

The closest work to ours, in the sense of trying to establish a semantic input-output
definition of a state in a timed system, is [SV96], motivated by testing of timed automata.
In that paper the authors give an algorithm for semantic minimization of timed automata
and also make useful observations about clock permutations and assignments and about
the relevance of clocks in various states. Similar observations were made in [DY96]
where clock activity analysis was used to reduce the dimensionality of the clock space
in order to save memory during verification.

Another related work is that of [BPT03] which is concerned with data languages,
languages over an alphabet Σ × D where D is some infinite domain. Based on ideas
developed in [KF94], they propose to recognize such languages using automata aug-
mented with auxiliary registers that can store a finite number of data elements but not
perform computations on these values. The results in [BPT03] show that acceptance by
such automata coincides with their notion of recognizability by a finite monoid. These
very general results can be specialized to timed languages by interpretingD as absolute
time and every pair (a, d) ∈ Σ × D as a letter a and a time stamp d. Although the
special nature of time can be imposed via monotonicity restrictions on the d’s, we feel
more comfortable with our more “causal” treatment of time as an entity whose elapse
is consumed by the automaton in the same way input events are. Other investigations of
the algebraic aspects of timed languages are reported in [D01].

10 Note that in the untimed theory recognizability implies decidability but not vice versa, for
example the emptiness problem for push-down automata is decidable.

On Recognizable Timed Languages 361

To summarize, we have defined what we believe to be the appropriate notion of
recognizability for timed systems and have shown that it coincides with acceptance
by a deterministic timed automaton. We believe that this is the “right” class of timed
languages and we have yet to see a useful and realistic timed language which is outside
this class. Our result also makes timed theory closer to the untimed one and opens the
way for further algebraic investigations of timed languages.

Let us conclude with some open problems triggered by this work:

1. What happens if contiguous sums are replaced by arbitrary sums or by linear expres-
sions with positive coefficients? Clearly, the former case corresponds to “stopwatch
automata” and the latter to some class of hybrid automata and it is interesting to see
whether such a study can shed more light on problems related to these automata.

2. Is there a natural restriction of the timed regular expressions of [ACM02] which
guarantees recognizability? Unfortunately, dropping the renaming operation will
not suffice because the language Lbad (2) can be expressed without it.

3. Can our results be used to develop an algorithm for learning timed languages from
examples and for solving other related problems such as minimization and test
generation?

4. Can recognizability be related to the growth of the index of the Nerode congruence
for a discretization of the language as time granularity decreases?

Acknowledgment. This work benefited from discussions and monologues with Eu-
gene Asarin, Stavros Tripakis, Pascal Weil, Yassine Lakhnech, Paul Caspi and Sergio
Yovine, as well as from thoughtful comments from anonymous referees that improved
the correctness and presentation of the results.

References

[A90] R. Alur, Techniques for Automatic Verification of Real-Time Systems, PhD Thesis,
Stanford, 1990.

[AD94] R.Alur and D.L. Dill,A Theory of TimedAutomata, Theoretical Computer Science
126, 183–235, 1994.

[AFH99] R. Alur, L. Fix, and T.A. Henzinger, Event-Clock Automata: A Determinizable
Class of Timed Automata, Theoretical Computer Science 211, 253-273, 1999.

[A87] D. Angluin, Learning Regular Sets from Queries and Counter-Examples, Informa-
tion and Computation 75, 87-106, 1987.

[ACM02] E. Asarin, P. Caspi and O. Maler, Timed Regular Expressions The Journal of the
ACM 49, 172-206, 2002.

[B03] P. Bouyer, Untameable Timed Automata!, Proc. STACS’03, 620-631, LNCS 2607,
Springer, 2003.

[BDFP00] P. Bouyer, C. Dufourd, E. Fleury and A. Petit, Expressiveness of Updatable Timed
Automata, Proc. MFCS’2000, 232-242, LNCS 1893, Springer, 2000.

[BPT03] P. Bouyer, A. Petit, and D. Thérien, An algebraic Approach to Data Languages and
Timed Languages, Information and Computation 182, 137-162, 2003.

[D01] C. Dima, Real-Time Automata, Journal of Automata, Languages and Combina-
torics 6, 3-24, 2001.

362 O. Maler and A. Pnueli

[DY96] C. Daws and S. Yovine, Reducing the Number of Clock Variables of Timed Au-
tomata, Proc. RTSS’96, 73-81, IEEE, 1996.

[E74] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New-
York, 1974.

[G72] E.M. Gold, System Identification via State Characterization, Automatica 8, 621-
636, 1972.

[HRS98] T.A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens, The Regular Real-time Lan-
guages, Proc. ICALP 98, 580-591, LNCS 1343, Springer, 1998.

[KF94] M. Kaminski and N. Francez, Finite-memory Automata, Theoretical Computer
Science 134, 329-363, 1994.

[RS97] J.-F. Raskin and P.-Y. Schobbens, State Clock Logic:A Decidable Real-Time Logic,
in Hybrid and Real-Time Systems (HART), 33-47, LNCS 1201, Springer, 1997.

[T03] S. Tripakis, Folk Theorems on the Determinization and Minimization of Timed
Automata, Proc. FORMATS’03, 2003.

[SV96] J.G. Springintveld and F.W. Vaandrager, Minimizable Timed Automata, Proc.
FTRTFT’96, 130-147, LNCS 1135, Springer, 1996.

[W94] Th. Wilke, Specifying State Sequences in Powerful Decidable Logics and Timed
Automata, Proc. FTRTFT’94, LNCS 863, 694-715, Springer, 1994.

	Introduction
	Timed Languages
	Timed Automata
	Recognizable Timed Languages
	From Deterministic Automata to Recognizable Languages
	From Recognizable Languages to Deterministic Automata

	Discussion

