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Abstract. We show that it is decidable in time complexity 222O(n)

whether the language accepted by an n-state non-deterministic automa-
ton is of star height one, which is the first ever complexity result for the
star height one problem. To achieve this, we introduce distance desert
automata as a joint generalization of distance automata and desert au-
tomata, and show the decidability of its limitedness problem by solving
the underlying Burnside problem.

1 Introduction

This paper is the second one in a series of papers in which we will introduce
new models of weighted automata to solve important decision problems in the
theory of recognizable languages. Our first main result states the first ever com-
plexity bound for the “classic” star height one problem. “Classic” star height
concerns rational expressions with union, concatenation, and iteration in con-
trast to extended star height which also allows intersection and complement.
To achieve this, we introduce distance desert automata as a joint generalization
of K. Hashiguchi’s distance automata [3] and the author’s desert automata [5].
Our second main result is the decidability of the limitedness problem of distance
desert automata which generalizes classic results by K. Hashiguchi, H. Leung,
I. Simon, and the author [3,5,9,16]. We prove the decidability of the limitedness
problem by a reduction to a Burnside problem which is solved by a fusion and
further development of approaches by I. Simon, H. Leung, and the author [5,
9,10,14,16].

2 Overview

2.1 Preliminaries

For sets M , we denote by P(M) the power set of M , and we denote by Pf (M)
(resp. Pne(M)) the set of all finite (resp. non-empty) subsets of M . In the main
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part of the paper, we fix some n ≥ 1 for the dimension of matrices. Whenever
we do not explicitly state the range of a variable, then it ranges over {1, . . . , n},
e.g., a phrase like “for every i, j” is understood as “for every i, j ∈ {1, . . . , n}”.

2.2 Distance Desert Automata

A distance desert automaton (dd-automaton) is a 6-tuple [Q, E, I, F, E∠, E�]
where [Q, E, I, F ] is a non-deterministic finite automaton, E∠ ⊆ E are called
péages and E� ⊆ E are called water transitions. Let A = [Q, E, I, F, E∠, E�]
be a dd-automaton. Its language L(A) is defined as L([Q, E, I, F ]).

Let π be a path in A. We denote by ∆1(π) the number of occurrences of
péages in π. We call π′ a subpath of π if there are paths π1, π2 in A satisfying
π = π1π

′π2. We denote by ∆2(π) the length of a longest subpath of π which does
not contain any water transition. The intuition behind these mappings is that
we imagine π as a path through a desert. We intend to walk along π. Whenever
we came along a péage, we have to pay a coin, i.e., ∆1(π) is the number of coins
which are required. We carry a water tank, but this tank does not last the entire
path. Whenever we come along a water transition, we can fill up the tank, and
the tank has to last until we meet the next water transition. We can understand
∆2(π) as the required capacity of the tank to walk along the path π.

We define ∆(π) = ∆1(π) + ∆2(π). For every word w ∈ Σ∗, let us set
∆(w) = min

{
∆(π)

∣
∣ p ∈ I, q ∈ F, π ∈ p

w
� q

}
, where p

w
� q denotes the set

of all paths from p to q with the label w. A dd-automaton is limited if there is
a d ∈ N such that ∆(w) ≤ d for every w ∈ L(A).

If E� = E, then ∆2(π) = 0 for every path π. In this case, A is a distance
automaton. Consequently, K. Hashiguchi’s distance automata [3] are exactly
the dd-automata with E� = E.

If E∠ = ∅, then ∆1(π) = 0 for every path π, i.e., A is a desert automaton.
Thus, the author’s desert automata [5] are exactly the dd-automata with E∠ = ∅.

A main result of the present paper is the following theorem:

Theorem 1. It is decidable in time complexity 2O(n2) whether an n-state dis-
tance desert automaton is limited.

Theorem 1 includes the decidability of the limitedness problems for distance
automata [3,9,10,16] and for desert automata [5].

In Section 3, we reduce the limitedness problem for dd-automata to a Burn-
side problem. This Burnside problem is a joint generalization of the two Burnside
problems corresponding to the limitedness problems of distance (resp. desert)
automata [10,5]. It is solved in Section 4.

The limitedness problem for dd-automata is PSPACE-hard, because it is
PSPACE-complete (resp. PSPACE-hard) for distance (resp. desert) automata
[11,5]. It is undecidable whether two dd-automata define the same mapping,
because the same problem is already undecidable for distance automata [8].

As an application of Theorem 1, we show in Section 5 the following theorem:
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Theorem 2. It is decidable in time complexity 222O(n)

whether the language of
an n-state non-deterministic automaton is of star height one.

The decidability was shown by K. Hashiguchi in 1982 [4]. However, the com-
plexity which can be estimated from his paper is much larger [12, Annexe B].

3 An Algebraic Framework for the Limitedness Problem

We develop an algebraic framework to show the decidability of the limitedness
problem for dd-automata. Let A = [Q, E, I, F, E∠, E�] be a dd-automaton, let
n = |Q|, and assume Q = {1, . . . , n}.

3.1 Finite Semigroup Theory

We introduce some basic notions from finite semigroup theory. For a deeper
understanding, we refer the reader to, e.g., [13]. Let S be a finite semigroup. An
element 1 ∈ S is called an identity if 1p = p1 = p for every p ∈ S. If there is no
identity in S, then we denote by S1 the semigroup consisting of the set S .∪ 1,
on which the operation of S is extended in a way that 1 is the identity of S1.
If S has an identity, then we define S1 to be S.

Let a, b ∈ S. If a ∈ S1bS1, or equivalently if S1aS1 ⊆ S1bS1, then we write
a ≤J b. If a ≤J b and b ≤J a, or equivalently if S1aS1 = S1bS1, then we write
a =J b. The relation =J is an equivalence. Its equivalence classes are called J-
classes. We call some subset I ⊆ S an ideal if S1IS1 ⊆ S. Every ideal is a union
of J-classes.

Let a, b ∈ S. If a ∈ S1b, or equivalently if S1a ⊆ S1b, then we write a ≤L b.
If a ≤L b, then ac ≤L bc for every c ∈ S. If a ≤L b and b ≤L a, or equivalently
if S1a = S1b, then we write a =L b. We define the relations ≤R and =R in the
straightforward dual way.

An element e ∈ S is called an idempotent if e2 = e. An element a ∈ S is
called regular if there is an idempotent in the J-class of a. The sets of idempotents
(resp. regular elements) of S are denoted by E(S) (resp. Reg(S)).

For every m ≥ 1, we call a1, . . . , am ∈ S a smooth product if we have a1 =J
. . . =J am =J (a1 . . . am) ∈ Reg(S).

We call a mapping � : E(S) → E(S) consistent if we have for every e, f ∈ E(S),
a, b ∈ S satisfying e =J f and f = aeb, f � = ae�b. It is shown in [5] that a
mapping is consistent iff we have for every a, b ∈ S with ab, ba ∈ E(S) (ab)� =
a(ba)�b. It was already observed in [9] that every consistent mapping � admits
an extension to � : Reg(S) → Reg(S) by setting for every e ∈ E(S) and c, d ∈ S
satisfying e =J ced, (ced)� = ce�d.

If a, b ∈ S are a smooth product, then (ab)� = a�b� = a�b = ab� [5].
Let a ∈ Reg(S). There are e, f ∈ E(S) with e =R a =L f , i.e., ea = a = af .

Thus, e�a = a� = af �, and moreover a� ≤L a and a� ≤R a.
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3.2 The Semigroup of Word Matrices

We extend the notion of word matrices from [5]. We consider the alphabet
S = {�,�,∠,�∠}. The symbol � (resp. �, ∠) should be pronounced “water”
(resp. “desert”, “péage”). The words over S represent paths in desert automata.
Consider the semiring S =

(Pf (S+) ∪ {ω}, ∪, ·), where ω is a new element
and ∪ and · are extended from Pf (S+) by setting for every X ∈ S \ {∅},
ω · X = X · ω = ω, ω ∪ X = X ∪ ω = X, and further, ∅ · ω = ω · ∅ = ∅,
∅ ∪ ω = ω ∪ ∅ = ω. The natural ordering on S is set inclusion extended from
Pf (S+) in a way that ω is between the empty set and the singletons, i.e., we
have ∅ ⊆ ω ⊆ X.

We call the matrices over S word matrices and denote by Sn×n the semigroup
of n×n-matrices over S. We use the free semigroup S

+
n×n over Sn×n. We denote

the homomorphism which arises from the identity on letters by α : S
+
n×n → Sn×n.

3.3 On the Semantics of Distance Desert Automata

We give another method to define the semantics of dd-automata using matrices.
We define a mapping θ : E → S, by

θ(e) =






� if e /∈ E�, e /∈ E∠,

� if e ∈ E�, e /∈ E∠,

∠ if e /∈ E�, e ∈ E∠,

�∠ if e ∈ E�, e ∈ E∠.

This mapping extends to a homomorphism θ :
(Pf (E+),∪, ·) → (S,∪, ·). We can

assign every w ∈ Σ+ a matrix θ(w) ∈ Sn×n by setting θ(w)[i, j] = θ(i w
� j).

Clearly, θ : Σ+ → Sn×n is a homomorphism. The distance function ∆ on paths
from Section 2.2 induces a distance function on S+ as

∆(π) = |π|∠ + |π|�∠ + max
{ |π′| ∣∣ π′ ∈ {�,∠}∗, π′ is a subword of π

}

for every π ∈ S+, where |π|∠ (resp. |π|�∠ ) denote the number of occurrences of
∠ (resp. �∠ ) in π and |π′| denotes the length of π′. We extend ∆ to X ∈ S by
setting ∆(X) = min{ ∆(π) |π ∈ X }, if X �= ω and ∆(ω) = ω.

We can give another definition of the semantics of a desert automaton. For
w ∈ Σ+, let ∆(w) = min

{
∆

(
θ(w)[i, j]

) ∣
∣ i ∈ I, j ∈ F

}
. This is equivalent to

the definition in Section 2.2 up to the empty word.

3.4 The Distance Desert Semiring

Let S = {�,�,∠, ω, ∞}. Intuitively, � represents a path with a water transition
but without péage, � represents a path without a water transition and without
péage, and ∠ represents path with a péage, regardless of whether it contains a
water transition. We define on S an operation · as the maximum for the ordering
� 
 � 
 ∠ 
 ω 
 ∞. The operation · corresponds to the concatenation of
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paths, e.g., � · ∠ = ∠ means that the concatenation of a path without a water
transition and without a péage and a path with a péage yields a path with a
péage. Clearly, (S, ·) is a monoid with identity � and zero ∞.

We define min on S for the ordering � ≤ � ≤ ∠ ≤ ω ≤ ∞. The relation ≤
represents something like choice, e.g., � ≤ � means that we rather choose a path
with a water transition but without a péage than a path without water transition
and without péage. The operation · is stable w.r.t. ≤. Moreover, (S,min, ·) is a
semiring with zero ∞ and identity �.

Let Ψ : S → S be the mapping defined by Ψ(�) = �, Ψ(�) = �, and
Ψ(∠) = Ψ(�∠ ) = ∠. It extends to homomorphisms Ψ : (S+, ·) → (S, ·) and
Ψ :

(
S,∪, ·) → (S,min, ·) where Ψ(∅) = ∞ and Ψ(ω) = ω. For every X ∈ S,

Ψ(X) =






� if X contains a word π ∈ {�,�}∗ � {�,�}∗

� if X contains a word π ∈ �+, but X ∩ {�,�}∗�{�,�}∗ = ∅
∠ if X contains a word π ∈ S∗{∠,�∠}S∗, but X ∩ {�,�}+ = ∅
ω if X = ω

∞ if X = ∅.

Clearly, Ψ extends to a homomorphism Ψ : Sn×n → Sn×n.
For technical reasons, we need a more specific distance function on S. For

every X ∈ S and z ∈ {�,�,∠}, let ∆(X, z) = min
{
∆(π)

∣
∣ π ∈ X, Ψ(π) = z

}
.

For every z ∈ {�,�,∠}, we have ∆(ω, z) = ∆(∅, z) = ∞. For X ∈ S \ {∅}, let

∆′(X) =

{
∆

(
X, Ψ(X)

)
if X ∈ S \ {ω}

ω if X = ω

For every X ∈ S\{ω, ∅}, we have ∆(X) = min
{
∆(X, z)

∣
∣ z∈{�,�,∠}} ≤ ∆′(X).

3.5 Strange Limits

We generalize the notion of a Ψ -limit from [5]. A Ψ -limit of some sequence over
S describes in terms of S how the sequence is bounded.

Recall that some sequence (qk)k≥1 is a subsequence of (pk)k≥1 if there is a
strictly increasing mapping f : N → N such that qk = pf(k) for every k ≥ 1.

A sequence (xk)k≥1 ∈ (N ∪ {∞}) is said to be bounded, if there are l, K ≥ 1
such that xk ≤ K for every k ≥ l. It tends to infinity, if for every K ≥ 1 there
is some l ≥ 1 such that for every k ≥ l we have xk ≥ K.

Let (Xk)k≥1 ∈ S be a sequence. We define the Ψ -limit Ψ of (Xk)k≥1.

L1. If there is an l ≥ 1 such that Xk = ∅ for every k ≥ l, then Ψ(Xk)k≥1 = ∞.
In this case, we call (Xk)k≥1 an ∞-sequence.

For every z ∈ {�,�,∠}, we denote the sequence (∆(Xk, z))k≥1 by ∆(Xk, z)k≥1.
Assume that there is some l ≥ 1 such that Xk �= ∅ for every k ≥ l. In this case,
we cannot apply (L1) to (Xk)k≥1, and we define:

L2. Let z ∈ {�,�,∠}. If ∆(Xk, z)k≥1 is bounded, and if for every z′ < z the
sequence ∆(Xk, z′)k≥1 tends to infinity, then Ψ(Xk)k≥1 = z.
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L3. If for every z ∈ {�,�,∠}, the sequence ∆(Xk, z)k≥1 tends to infinity, then
Ψ(Xk)k≥1 = ω.

If we can apply one of these three definitions to a sequence (Xk)k≥1, then we
call (Xk)k≥1 a convergent sequence. Otherwise, Ψ(Xk)k≥1 is not defined. We
denote the set of all convergent sequences by C(S). Every sequence contains a
convergent subsequence. Every constant sequence (Xk)k≥1 is convergent and we
have Ψ(Xk)k≥1 = Ψ(X1). For sequences over S, we define ∪ and · componentwise.

Lemma 1. [6] 1. Every subsequence of a convergent sequence is convergent and
converges to the same Ψ -limit.

2. The set of convergent sequences is closed under componentwise ∪ and ·,
and Ψ : (C(S),∪, ·) → (S,min, ·) is a homomorphism.

The notion of a Ψ -limit and a convergent sequence extends naturally to matrices.
By Lemma 1(2), Ψ : C(Sn×n) → Sn×n is a homomorphism.

For every subset T ∈ Sn×n we denote by Ψ〈T 〉 the set of all Ψ -limits of
all convergent sequences over 〈T 〉. We have Ψ(〈T 〉) ⊆ Ψ〈T 〉. We formulate the
limitedness problem using Ψ -limits.
Proposition 1. [6] Let A = [Q, E, I, F, E∠, E�] be a dd-automaton and denote
T = θ(Σ). The following assertions are equivalent:

1. A is not limited.
2. There is a matrix a ∈ Ψ〈T 〉 such that min

{
a[i, j]

∣
∣ i ∈ I, j ∈ F

}
= ω.

To give an algorithm for the limitedness problem, we need a method to compute
the finite set Ψ〈T 〉 while avoiding to compute the possibly uncountable set C〈T 〉.

4 The Solution of the Burnside Problem

We solve the Burnside problem by showing a method to compute the set Ψ〈T 〉.
We fuse the approaches of H. Leung [10] and the author [5] to the Burnside
problems corresponding to distance resp. desert automata. Several new difficul-
ties arise in this fusion, and our proof is more than just a combination of [10]
and [5]. By following [5,10], we use implicitly ideas from I. Simon. This section
is a composition of ideas from H. Leung, I. Simon, and the author [5,9,10,14,
15,16] together with new ideas.

4.1 Stabilization

We define a mapping � : E(Sn×n) → Sn×n which we call stabilization. For every
e ∈ E(Sn×n) and i, j let

e�[i, j] =






∞ if e[i, j] = ∞ (1)

min
{
e[i, l]·e[l, l]·e[l, j] ∣∣ e[l, l] = �

}
if there is some l
such that e[l, l] = � and
e[i, l], e[l, j] ∈ {�,�,∠} (2)

ω otherwise. (3)

We state some elementary properties of this mapping.
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Remark 1. Let e ∈ E(Sn×n) and i, j, l be arbitrary.

1. Assume e[i, l] = � and e[l, l] = �. Then, e2[i, l] = � but e[i, l] = �, i.e.,
e /∈ E(Sn×n). Thus, such i and l cannot exist, and similarly, it is impossible
that e[l, l] = � and e[l, j] = �.

2. We have e�[i, j] �= � by the definition of e�. Moreover, we have e�[i, j] = ∞
iff e[i, j] = ∞.

3. We have e[i, j] = e3[i, j] ≤ e�[i, j].
4. If e[l, l] = �, then we have e�[l, l] = � by definition.
5. Assume e[i, l] ∈ {�,∠} and e[l, l] = �. Then, e�[i, l] = e[i, l]. Similarly, if

e[l, l] = � and e[l, j] ∈ {�,∠} then e�[l, j] = e[l, j].

Now, we state the main result of Section 4. For subsets M ⊆ Sn×n we define
〈M〉� as least subset of Sn×n which contains M and is closed both under matrix
multiplication and stabilization of idempotent matrices.

Theorem 3. Let T be a finite subset of Sn×n. We have Ψ〈T 〉 = 〈Ψ(T )〉�.

Until Theorem 3 is proved in Section 4.5, we need to establish relations
between stabilization and Ψ -limits.

4.2 Stabilization Is a Consistent Mapping

We establish a first connection between stabilization and Ψ -limits of sequences.

Proposition 2. [6] Let (Ak)k≥1 be a convergent sequence over Sn×n and let
e = Ψ(Ak)k≥1 ∈ E(Sn×n). Then, (Ak

k)k≥1 is convergent and Ψ(Ak
k)k≥1 = e�.

The proof is technically involved. It follows the same strategy as the proof of
the corresponding proposition in [5]. Our next step is to generalize stabilization
from E(Sn×n) to Reg(Sn×n):

Lemma 2. Stabilization � is a consistent mapping.

Proof. Let e ∈ E(Sn×n). Let E ∈ Sn×n with Ψ(E) = e. By Prop. 2 and Lemma 1,
e�e� = Ψ(Ek)k≥1Ψ(Ek)k≥1 = Ψ(EkEk)k≥1 = Ψ(Ek)k≥1 = e�, i.e., e� ∈ E(Sn×n).
Let a, b ∈ Sn×n with ab, ba ∈ E(Sn×n). Let A, B ∈ Sn×n with a = Ψ(A),
b = Ψ(B). Then, (ab)� = Ψ((AB)k)k≥1 = aΨ((BA)k)k≥1 b = a(ba)�b.

Lemma 2 gives a generalization of stabilization to Reg(Sn×n) (cf. Section 3.1).
We show three crucial lemmas about stabilization of regular matrices in Sn×n.

Lemma 3. Let a ∈ Reg(Sn×n) and i, j be arbitrary.

1. If a[i, j] ∈ {ω, ∞}, then a�[i, j] = a[i, j].
2. If a[i, j] = �, then a�[i, j] ∈ {�,∠, ω}.
3. If a[i, j] ∈ {�,∠}, then a�[i, j] ∈ {∠, ω}.

In particular, we have a�[i, j] �= � regardless of a[i, j].

Proof (sketch). Let e ∈ E(Sn×n) with e =L a, i.e., a = ae, a� = ae�. The proof
follows by an examination of the product a e� and Remark 1.
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The following lemma is an easy adaptation of Lemma 3.9 in [10, p. 107].

Lemma 4. [6] Let a, b, c ∈ Sn×n be a smooth product and let i, j such that
(abc)�[i, j] = ∠. There are p, q such that we have a[i, p], c[q, j] ∈ {�,�,∠} and
b[p, q] = b�[p, q] = �. Moreover, we have a[i, p] = ∠ or c[q, j] = ∠.

Lemma 5. Let m ≥ 1, a1, . . . , am ∈ Sn×n be a smooth product. Let i, j be
arbitrary.

1. If (a1 . . . am)�[i, j] = �, then there are i = i0, . . . , im = j, such that for every
1 ≤ l ≤ m, we have al[il−1, il] = a�

l [il−1, il] = �.
2. If (a1 . . . am)�[i, j] = ∠, then there are i = i0, . . . , im = j such that for every

2 ≤ l ≤ m−1, al[il−1, il] = a�
l [il−1, il] = �, and a1[i0, i1], am[im−1, im] ∈

{�,�,∠}. Moreover, if m ≥ 3, then a1[i0, i1] = ∠ or am[im−1, im] = ∠.

Proof. (1) Since � is consistent, (a1 . . . am)� = a�
1 . . . a�

m. By a�
1 . . . a�

m[i, j] = �,
there are i = i0, . . . , im = j such that for every 1 ≤ l ≤ m, a�

l [il−1, il] ∈ {�,�}.
By Lemma 3, a�

l [il−1, il] �= �, i.e., we have for every 1 ≤ l ≤ m, a�
l [il−1, il] = �.

By Lemma 3 in contraposition, we have al[il−1, il] = �.
(2) We assume m ≥ 3, otherwise, the claim is obvious. We apply Lemma 4

to the smooth product a1(a2 . . . am−1)am, and (1) to a2 . . . am−1.

4.3 On the Growth of Entries

We call a word w = A1 . . . A|w| ∈ S
+
n×n a smooth product if Ψ(A1), . . . , Ψ(A|w|)

is a smooth product. We extend the mapping ∆. For a matrix A ∈ S, a word in
S

+
n×n, resp. a finite subset T ⊆ S

+
n×n, ∆ yields the maximum among the values

on every entry of A, of every letter in w of every word w ∈ T except ω and ∞.

1. For A ∈ Sn×n, let ∆(A) = maxi,j, A[i,j] �=∞ ∆(A[i, j]).
2. For w = A1 . . . A|w| ∈ S

+
n×n, let ∆(w) = maxl∈{1,...,|w|} ∆(Al).

3. For T = {w1, . . . , w|T |} ⊆ S
+
n×n, let ∆(T ) = maxl∈{1,...,|T |} ∆(wl).

We extend ∆′ from Section 3.4 in the same way.

Proposition 3. Let w ∈ S
+
n×n be a smooth product and i, j be arbitrary.

1. If Ψ(w)�[i, j]=�, then ∆′(α(w)[i, j]
)≤2∆′(w), i.e., ∆

(
α(w)[i, j]

)≤2∆′(w).

2. If Ψ(w)�[i, j] = ω, then ∆
(
α(w)[i, j]

) ≥
√

|w|
5n2n

− 1.

Proof. We denote w = A1 . . . A|w| and al = Ψ(Al) for every l ∈ {1, . . . , |w|}.
We show (1). By Lemma 5(1), there are i = i0, . . . , i|w| = j satisfying for

every l ∈ {1, . . . , |w|}, al[il−1, il] = �. Thus, every A[il−1, il] contains a πl with
Ψ(πl) = � and ∆(πl) ≤ ∆′(w), i.e., ∆′(α(w)[i, j]

) ≤ ∆(π1 . . . π|w|) ≤ 2 · ∆′(w).

We sketch (2). By contradiction, let π ∈ α(w)[i, j] with ∆(π) <

√
|w|

5n2n
−1. By

various counting arguments, we show some 1 ≤ q < r ≤ |w| and some l such that
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π ∈ α(A1 . . . Aq)[i, l] · α(Aq+1 . . . Ar)[l, l] · α(Ar+1 . . . A|w|)[l, j]. We can choose q
and r such that aq+1 . . . ar is an idempotent. We can factorize π = π1π2π3 such

that π2 ∈ α(Aq+1 . . . Ar)[l, l]. By ∆(π) <

√
|w|

5n2n
− 1, we can choose q and r such

that Ψ(π2) = �, i.e., (aq+1 . . . ar)[l, l] = �. Then, (aq+1 . . . ar)�[l, l] = �, and we
can conclude Ψ(w)�[i, j] ∈ {�,∠}.

In [6], we use Lemma 5(2) to show a corresponding proposition for the case
Ψ(w)�[i, j] = ∠ and we obtain the following corollary.

Corollary 1. [6] Let w ∈ S
+
n×n, |w| ≥ 3 be a smooth product and i, j be arbi-

trary. Let z = Ψ(w)�[i, j].

1. If z ∈ {�,∠}, then there is a path π ∈ α(w)[i, j] satisfying Ψ(π) = z and
∆(π) ≤ 4 ∆′(w).

2. For every π ∈ α(w)[i, j] with Ψ(π) < z, we have ∆(π) ≥
√

|w|
5n2n

− 1.

Note that Ψ(π) < z in (2) is the ordering � < � < ∠ < . . . of S.

4.4 Stabilization of Word Matrices

For matrices A ∈ Sn×n, we define A� if Ψ(A) ∈ Reg(Sn×n). Let a = Ψ(A).

A�[i, j] =






A[i, j] if a[i, j] = a�[i, j]
ω if a[i, j] �= a�[i, j] = ω
{

π ∈ A[i, j]
∣
∣ Ψ(π) = ∠

}
if a[i, j] �= a�[i, j] = ∠.

By Lemma 3, the cases in this definition are complete. Intuitively, the definition
of A� simply means to apply all the changes between a and a� to A. It seems
that we have Ψ(A�) = a�. However, one can construct counterexamples in which
a[i, j] �= a�[i, j] = ∠, but A[i, j] does not contain some word π with Ψ(π) = ∠.
In this case, A�[i, j] = ∅, i.e., Ψ(A�) = ∞ �= ∠ = a�[i, j]. On the other hand,
if a[i, j] �= a�[i, j] = ∠ and A is the result of a smooth product of 3 matrices,
then there is by Corollary 1(1) some π ∈ A[i, j] with Ψ(π) = ∠.

Lemma 6. [6] Let w ∈ S
+
n×n be a smooth product with |w| ≥ 3. We have

Ψ(α(w)�) = Ψ(α(w))�.

We define a relation to compare word matrices. Let K ≥ 1 and X, Y ∈ S.
We write X �K Y if we can transform X into Y by removing words π with
∆(π) > K from X. More precisely, we write X �K Y if we have:

1. If X = ∅, then Y = ∅.
2. If X �= ∅, then X ⊇ Y �= ∅.
3. X and Y “agree in their bounded words”, i.e.,

{
π ∈ X

∣
∣ ∆(π) ≤ K

} ⊆ Y .

If X contains some word, then we do not have X �K ∅, regardless of whether
there are words π ∈ X with ∆(π) ≤ K. However, if X contains some word, but
we have ∆(π) > K for every π ∈ X, then we have X �K ω.

We generalize �K componentwise to matrices in Sn×n. It is easy to show that
�K on S is stable w.r.t. ∪ and ·, i.e., �K on Sn×n is stable w.r.t. multiplication.
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Lemma 7. Let K ≥ 1, and let w ∈ S
+
n×n be a smooth product with

|w| ≥ (
5n2

n(K+2)
)2. We have α(w) �K α(w)�.

Proof. Denote w = A1 . . . A|w|, and let A = α(w) and a = Ψ(A). Let i, j be
arbitrary. We consider the cases in the definition of A�.

If a[i, j] = a�[i, j], then A[i, j] = A�[i, j] and in particular A[i, j] �K A�[i, j].
Assume a[i, j] �= a�[i, j] = ω. Then, A�[i, j] = ω. By Lemma 3, we have

a[i, j] �= ∞, i.e., A[i, j] �= ∅ which shows (1,2) in the definition of �k. In order
to verify (3), we have to show for every π ∈ X, ∆(π) > K. This follows from
Corollary 1(2) and the length assumption on w.

We can deal with the case a[i, j] �= a�[i, j] = ∠ in the same way.

4.5 The Proof of Theorem 3

We show a proposition which allows to transform words in S
+
n×n. We will use

it to transform words in sequences (wk)k≥1 ∈ T+ to examine the Ψ -limit of the
sequence (α(wk))k≥1 in order to show Ψ〈T 〉 ⊆ 〈Ψ(T )〉�.

Proposition 4. Let K ≥ 2. Let T be some finite subset of Sn×n. There is
some xK > K such that for every w ∈ T+ there is a B ∈ Sn×n satisfying
Ψ(B) ∈ 〈Ψ(T )〉�, α(w) �K B, and ∆′(B) ≤ xK .

We should pay some attention to the conditions ∆(B) ≤ xK and α(w) �K B.
Let i, j be arbitrary. If α(w)[i, j] ∈ {ω, ∅}, then α(w)[i, j] = B[i, j].

If we have ∆(α(w)[i, j]) ≤ K, then α(w)[i, j] ⊇ B[i, j] but α(w)[i, j] and
B[i, j] agree in their bounded words (cf. 2, 3 in the definition of �K).

If ∆(α(w)[i, j]) > xK , then α(w) �K B and ∆(B) ≤ xK imply B[i, j] = ω.
However, if K < ∆(α(w)[i, j]) ≤ xK , then we do not know whether we have

∆(B[i, j]) ≤ xK or ∆(B[i, j]) = ω. We avoid this problem by applying Prop. 4
just on words w for which either ∆(α(w)[i, j]) ≤ K or xK < ∆(α(w)[i, j]).

If we cut the assertion ∆′(B) ≤ xK in Prop. 4, then we can prove it by setting
B = α(w) and xK = K. In fact, the proof of Prop. 4 is essentially based on the
idea to define B as α(w) with some adjustments in a way that these adjustments
keep the properties Ψ(B) ∈ 〈Ψ(T )〉� and α(w) �K B.

If we assume in Prop. 4 that w is a long smooth product, then we can prove
it by setting B = α(w)� and xk = 4∆′(T ). By Lemma 6, we achieve Ψ(B) =
Ψ(α(w)�) = Ψ(α(w))� which belongs to 〈Ψ(T )〉� because Ψ(α(w)) ∈ 〈Ψ(T )〉�.
We have α(w) �K B by Lemma 7, and we get ∆′(B) ≤ 4∆′(T ) by Corollary 1(1).

We establish the following lemma to prove Prop. 4.

Lemma 8. Let K ≥ 2 and x ≥ 1 be arbitrary. Let I ′
� I ⊆ 〈Ψ(T )〉� be two

ideals of 〈Ψ(T )〉� such that I \ I ′ is a J-class of 〈Ψ(T )〉�.
There is some x′ ≥ 1 such that for every w = A1 . . . A|w| ∈ S

+
n×n satisfying

A1. Ψ(A1), . . . , Ψ(A|w|) ∈ 〈Ψ(T )〉�,
A2. ∆′(w) ≤ x,
A3. For every 1 ≤ l ≤ |w| − 1, Ψ(AlAl+1) ∈ I,
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there is some v = B1 . . . B|v| ∈ S
+
n×n satisfying α(w) �K α(v) and

C1. Ψ(B1), . . . , Ψ(B|v|) ∈ 〈Ψ(T )〉�,
C2. ∆′(v) ≤ x′,
C3. For every 1 ≤ l ≤ |v| − 1, Ψ(BlBl+1) ∈ I ′.

In particular, this assertion is true for x′ = 2
(
5n2

n(K+2)
)2

x.

At first, note the similarity between the assumptions (A1, A2, A3) and the claims
(C1, C2, C3). This similarity enables us to apply Lemma 8 inductively on a chain
of ideals ∅ � . . . � I2 � I1 ⊆ 〈Ψ(T )〉� to prove Prop. 4. In the first step of the
induction, we simply set x = ∆′(T ) and I = 〈Ψ(T )〉�, and for every w ∈ T+

(A1, A2, A3) are obviously satisfied. In the last step of this induction, I ′ = ∅,
and thus, (C3) implies that v has the length 1, and v is the matrix B which we
require to prove Prop. 4. See [6] for the details of the proof of Prop. 4.

We are not interested in whether A1, . . . , A|w|, B1, . . . , B|v| belong to 〈T 〉, we
just assume resp. show that their images under Ψ belong to 〈Ψ(T )〉�.

Proof (Lemma 8). Let K, x, and w = A1 . . . A|w| ∈ S
+
n×n as in the lemma.

We factorize w into words v1, v2, . . . , vm. If Ψ(A1) ∈ I ′, then let v1 = A1 and
proceed with A2 . . . A|w|. If Ψ(A1) /∈ I ′, then let v1 be the longest prefix of w
satisfying Ψ(v1) /∈ I ′ and proceed with the remaining part of w. If |vl| > 1 for
an 1 ≤ l ≤ m, then Ψ(vl) ∈ I \ I ′, since Ψ(vl) /∈ I ′ by construction and Ψ(vl) ∈ I
by (A3). We get an m ≥ 1 and v1, . . . , vm ∈ S

+
n×n such that

1. A1 . . . A|w| = v1 . . . vm (concatenation of words)
2. Ψ(v1), . . . , Ψ(vm) ∈ 〈Ψ(T )〉�

3. For every 1 ≤ l ≤ m − 1, Ψ(α(vlvl+1)) ∈ I ′. (by construction of vl)
4. For every 1 ≤ l ≤ m with |vl| > 1, we have Ψ(α(vl)) ∈ I \ I ′.

Let 1 ≤ l ≤ m be arbitrary.

Case 1: |vl| < 2(5n2
n(K+2))2

We set Bl = α(vl). Then, α(vl) �K Bl and Bl satisfies (C1). Moreover,
∆′(Bl) ≤ |vl| · ∆′(vl) ≤ 2(5n2

n(K+2))2x = x′, i.e., Bl satisfies (C2).
Case 2: |vl| ≥ 2(5n2

n(K+2))2

We denote vl as vl = V1 . . . V|vl|. We transform vl into a word u. If |vl| is
even, then we set u = α(V1V2)α(V3V4) . . . α(V|vl|−1V|vl|). Otherwise, u =
α(V1V2)α(V3V4) . . . α(V|vl|−2V|vl|−1V|vl|). Clearly, α(vl) = α(u).
We have |u| ≥ (

5n2
n(K+2)

)2. We denote the letters of u by u = U1 . . . U|u|.
Let 1 ≤ k ≤ |u|. By (A3), Ψ(Uk) ∈ I. If Ψ(Uk) ∈ I ′, then Ψ(α(u)) ∈ I ′ and
Ψ(α(u)) = Ψ(α(vl)) ∈ I ′ which contradicts (4), above. Hence, Ψ(Uk) ∈ I \I ′.
Consequently, I\I ′ is a regular J-class of 〈Ψ(T )〉�, and u is a smooth product.
Hence, we can define Bl = α(u)� = α(vl)�.
By Lemma 6, Ψ(Bl) = Ψ(α(u)�) = Ψ(α(u))�. By Ψ(α(u)) ∈ 〈Ψ(T )〉�, we
have Ψ(α(u))� ∈ 〈Ψ(T )〉�. To sum up, we have Ψ(Bl) = Ψ(α(u))� ∈ 〈Ψ(T )〉�.
By Lemma 7, we have α(u) �K α(u)�, i.e., α(vl) �K Bl.
Let i, j be arbitrary. If Bl[i, j] contains some word, then Ψ(Bl)[i, j] ∈ {�,∠}.
By Corollary 1(1), ∆′(Bl[i, j]) ≤ 4∆′(u) ≤ 12∆′(w) ≤ 12x < x′ (C2).
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We show (C3). By (3) above, Ψ(vl)Ψ(vl+1) ∈ I ′ for every l ∈ {1, . . . , m − 1}.
In both case 1 and 2, we have Ψ(Bl) ≤L Ψ(vl) and Ψ(Bl+1) ≤R Ψ(vl+1), i.e.,
Ψ(Bl)Ψ(Bl+1) ≤J Ψ(vl)Ψ(vl+1) ∈ I ′, i.e., Ψ(Bl)Ψ(Bl+1) = Ψ(BlBl+1) ∈ I ′.

In both case 1 and 2, we have seen α(vl) �K α(Bl) for every 1 ≤ l ≤ m. By
the stability of �K w.r.t. matrix multiplication it follows α(w) �K α(v).

Proof (Theorem 3). We show 〈Ψ(T )〉� ⊆ Ψ〈T 〉. We have Ψ(T ) ⊆ Ψ〈T 〉, because
for every A ∈ T , Ψ(A) is the Ψ -limit of (A)k≥1. Moreover, Ψ〈T 〉 is closed under
multiplication (Lemma 1) and stabilization of idempotents (Prop. 1).

We show Ψ〈T 〉 ⊆ 〈Ψ(T )〉�. Let (wk)k≥1 ∈ T+ be some sequence such that
α(wk)k≥1 is convergent. Let a = Ψ(α(wk))k≥1. We have to show a ∈ 〈Ψ(T )〉�.

By subsequence selection arguments, we can assume some bound K ≥ 1 such
that we have for every l ≥ 1, z ∈ {�,�,∠} and every i, j:

1. If a[i, j] = ∞, then α(wl)[i, j] = ∞.
2. If ∆(α(wk)[i, j], z)k≥1 is bounded, then ∆(α(wl)[i, j], z) ≤ K.

Let xK be provided by Prop. 4. There is a word w among (wk)k≥1 such that:

3. If ∆(α(wk)[i, j], z)k≥1 tends to infinity, then ∆(α(w)[i, j], z)k≥1 > xK .

By Prop. 4 on w we obtain some B ∈ Sn×n. We have Ψ(B) ∈ 〈Ψ(T )〉�. In the rest
of the proof, we show a = Ψ(B) and a ∈ 〈Ψ(T )〉� follows. Let i, j be arbitrary.

If a[i, j] = ∞, then we have by α(w)[i, j] = ∞ due to (1) and α(w) �K B
(Prop. 4), B[i, j] = ∞, i.e., Ψ(B[i, j]) = ∞ = a[i, j].

Assume a[i, j] = ∠. Then, ∆(α(wk),∠)k≥1 is bounded. By (2) above, there
is a π ∈ α(w)[i, j] with Ψ(π) = ∠ and ∆(π) ≤ K. By α(w) �K B, π ∈ B[i, j],
i.e, Ψ(B[i, j]) ∈ {�,�,∠}. By contradiction, assume Ψ(B[i, j]) = �. From all
words π ∈ B[i, j] with Ψ(π) = � choose a word π for which ∆(π) is minimal.
By α(w) �K B, π ∈ α(w)[i, j]. Because ∆(α(wk),�)k≥1 tends to infinity, we
have by (3) above ∆(π) > xK , and we can conclude ∆′(B) > xK , which is a
contradiction. Hence, Ψ(B[i, j]) �= �. We can show Ψ(B[i, j]) �= � in the same
way. To sum up, Ψ(B[i, j]) = ∠ = a[i, j].

We deal with the cases a[i, j] ∈ {�,�, ω} in the same way [6].

Proof (Theorem 1). We combine Prop. 1 and Theorem 3.

5 On the Star Height One Problem

Let Σ be an alphabet. Every word w ∈ Σ∗ is a rational expression of star
height 0, i.e., sh(w) = 0. If r and s are rational expressions over Σ∗ , then rs
and r∪s are rational expressions of star height max{sh(r), sh(s)}, but r∗ is of star
height sh(r)+1. The star height of a language L is denoted by sh(L) and defined
as the minimum of sh(r) over all rational expressions r such that L(r) = L.

A language L is of star height 0 iff it is finite. Already for Σ = {a, b}, there
are languages of arbitrary star height [1]. For example, ab∗, ba∗b∗aa ∪ a∗ and
(a∗b)∗ = ε ∪ {a, b}∗b are of star height 1, but (a∗b∗c)∗ is of star height 2.
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The star height 1 problem is to decide whether a given recognizable language
L is of star height one. It was raised in a more general way by L.C. Eggan
in 1963 [2]. Because sh(L) = 0 is easily decidable, the star height 1 problem is
equivalent to the question whether sh(L) ≤ 1. In 1982, K. Hashiguchi showed
that such an algorithm exists [4]. He showed in an involved proof that the lan-
guage of an automaton A is of star height one iff L(A) = L(r) for a rational
expression r of a certain size with sh(r) = 1. The “certain size” is a very large
bound which depends on the number of states of A.

Here, we give a new solution to the star height one problem by a reduction to
the limitedness problem for dd-automata. This provides a much better, although
still very large bound for the complexity.

5.1 Normal Forms of Rational Expressions

Let n ∈ N. A rational expression r is in single string form if r is of the form
r = a1K

∗
1a2K

∗
2 . . . anK∗

n where for every 1 ≤ i ≤ n, ai ∈ Σ and Ki ∈ Σ+ is
finite. We call n the length of r. The length of a longest word in the sets Ki

is called the degree of r and denoted by d(r). The empty word is a rational
expression in string form of length and degree 0. A rational expression s is in
string form if s = s1∪· · ·∪sk for a k ≥ 1 where each si is a rational expression in
single string form. The degree of s is the maximum of the degrees of s1, . . . , sk.

We can transform every rational expression r with sh(r) ≤ 1 into an equiv-
alent expression in string form by using the distributivity of concatenation over
union and inserting ∅∗, e.g., we transform ab{ab}∗a into a∅∗b{ab}∗a∅∗ [6].

For the rest of the paper, let L ⊆ Σ∗ be a language which is recognized
by a deterministic automaton A = [Q, δ, qI , F ]. It is of crucial importance that
δ : Q × Σ → Q is total! We extend δ to δ : P(Q) × Σ∗ → P(Q) as usual.

Let n ≥ 0. A sequence P0, . . . , Pn ∈ Pne(Q) is called a single syntactic ex-
pression from P0 to Pn of length n. Every finite set of single syntactic expression
is called a syntactic expression.

Let d ≥ 1. For every P, R ∈ Pne(Q), let
1. Sd(P ) = {ε}, and
2. Sd(P, R) =

{
a ∈ Σ

∣
∣ δ(P, a) ⊆ R

} {
w ∈ Σ+

∣
∣ δ(R, w) ⊆ R, |w| ≤ d

}∗.

We define Sd(P0, . . . , Pn) = Sd(P0, P1)Sd(P1, P2) . . . Sd(Pn−1, Pn) for every
P0, . . . , Pn ∈ Pne(Q). For every syntactic expression T , let Sd(T ) = ∪t∈T Sd(t).

Let d ≥ 1 and P, R ∈ Pne(Q) be arbitrary. We can easily show Sd(P, R, R) =
Sd(P, R)Sd(R, R) ⊆ Sd

(
P, R). For every single syntactic expression t from P

to R, and every w ∈ Sd(t), we have δ(P, w) ⊆ R.
Let d, n ≥ 1. We denote by �n(A) the union of all single syntactic expressions

from {qI} to subsets of F of a length of at most n. For every w ∈ Sd(�n(A)), we
have δ(qI , w) ∈ F . Because δ is total, we have w ∈ L, i.e., Sd(�n(A)) ⊆ L.

Proposition 5. There are d, n ≥ 1 with L = Sd(�n(A)) iff sh(L) ≤ 1.

Proof (sketch). . . . ⇒ . . . For given d, n ≥ 1, we can easily construct a rational
expression r with sh(r) ≤ 1 such that L(r) = Sd(�n(A)) = L.
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. . . ⇐ . . . We have L = L(r) for an expression r in string form. We consider
the case that r = a1K

∗
1 . . . anK∗

n. Let d be the degree of r. Let P0 = {qI}, and
for 1 ≤ i ≤ n, let Pi = δ(Pi−1, aiK

∗
i ). We have L(r) ⊆ Sd(P0, . . . , Pn). By

L(r) ⊆ L, the inclusion Pn ⊆ F holds. Thus, P0, . . . , Pn belongs to �n(A), and
hence, L = L(r) ⊆ Sd(�n(A)) ⊆ L.

5.2 A Reduction the Limitedness Problem for dd-Automata

We show the decidability of the existence of d, n ≥ 1 with L = Sd(�n(A)). By
following a similar approach as K. Hashiguchi [3,4], we can construct for each
given d ∈ N a distance automaton Ad which is limited iff there is some n such
that L = Sd(�n(A)). Conversely, we can construct for each n ∈ N a desert
automaton A′

n which is limited iff there is some d such that L = Sd(�n(A)).
We construct a dd-automaton A′ which is limited iff there are d, n ≥ 1 with

L = Sd(�n(A)). In [6], we explain this construction for the language (a ∪ b∗c)∗.
Let Q′ = q′

I ∪ (Pne(Q) × Pne(Q)
)
. We define the transitions E′, péages E′∠,

and water transitions E′� as follows. Let a ∈ Σ.

1. For every P, R ∈ Pne(Q),
(
(P, P ), a, (R, R)

)
is a transition of A′ iff P �= R

and δ(P, a) ⊆ R. This transition is both a water transition and a péage.
Moreover, for every R ∈ Pne(Q),

(
q′
I , a, (R, R)

)
is a transition of A′ iff

δ(qI , a) ⊆ R. This transition is both a water transition and a péage.
2. For every P1, P2, R ∈ Pne(Q),

(
(P1, R), a, (P2, R)

)
is a transition of A′ iff

δ(P1, a) ⊆ P2. It is not a péage. It is a water transition iff P2 = R.

This construction is closely related to our notion of syntactic expressions: let
d ≥ 1 and P1, P2 ∈ Pne(Q) with P1 �= P2. Choose some arbitrary w ∈ Sd(P1, P2).
We factorize w according to the definition of Sd(P1, P2). There are some a ∈ Σ,
k ≥ 0, and w1, . . . , wk ∈ Σ+ such that w = aw1 . . . wk. Moreover, we can assume
δ(P1, a) ⊆ P2 and for every 1 ≤ i ≤ k, δ(P2, wi) ⊆ P2 and |wi| ≤ d. The automa-
ton A′ can read a from (P1, P1) to (P2, P2). The transition

(
(P1, P1), a, (P2, P2)

)

is both a péage and a water transition. For every 1 ≤ i ≤ k, A′ can read wi in
a loop at (P2, P2) by visiting only states in Pne(Q) × {P2}. The last transition
is a water transition. In this way, A′ can read w = aw1 . . . wk from (P1, P1) to
(P2, P2) along some path π such that π contains exactly one péage and π does
not contain d consecutive non-water transitions.

Now, let P3 ∈ Pne(Q) with P2 �= P3, and choose some w′ ∈ Sd(P1, P2, P3).
By following the same idea, A′ can read w′ from (P1, P1) to (P3, P3) along some
path π′ such that π′ contains exactly two péages and π′ does not contain d
consecutive non-water transitions.

We complete the definition of A′ by defining the set of accepting states as
F ′ =

{
(R, R)

∣
∣ R ∈ Pne(F )

}
. If ε ∈ L, then q′

I is also an accepting state. We
denote the mapping of A′ by ∆.

Let P1, R1, P2, R2 ∈ Pne(Q). If there is a path from (P1, R1) to (P2, R2)
in A′ with some label w, then δ(P1, w) ⊆ P2. For every w ∈ L(A′), we have
δ(qI , w) ∈ F , and thus, w ∈ L.
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Let w = a1 . . . a|w| ∈ L. There is a successful path in A′ with the label w

from q′
I along the states

({δ(qI , a1 . . . ai)}, {δ(qI , a1 . . . ai)}
)

for 1 ≤ i ≤ |w|.
Hence, w ∈ L(A′). To sum up, L(A′) = L.

Proposition 6. Let d, n ≥ 1 and w ∈ Sd(�n(A)). There is a successful path π
in A′ with the label w and ∆(π) < d + n. In particular, π contains at most n
péages and at most d − 1 consecutive non-water transitions.

Proof (sketch). Let 1 ≤ k ≤ n and P0, . . . , Pk ∈ Pne(Q), P0 = {qI}, Pk ⊆ F
such that w ∈ Sd(P0, . . . , Pk). We can assume that for 2 ≤ i ≤ k, Pi−1 �= Pi. For
1 ≤ i ≤ k, let wi ∈ Sd(Pi−1, Pi) such that w = w1 . . . wk.

Let 2 ≤ i ≤ k. There are an ai ∈ Σ, some ki ≥ 0, and wi,1, . . . , wi,ki such that
wi = aiwi,1 . . . wi,ki , δ(Pi−1, ai) ⊆ Pi, and for every 1 ≤ j ≤ ki, δ(Pi, wi,j) ⊆ Pi

and |wi,j | ≤ d. There is a transition ((Pi−1, Pi−1), ai, (Pi, Pi)) in A′. It is both a
water transition and a péage. For every 1 ≤ j ≤ ki, there is a path πi,j in A′ from
(Pi, Pi) to (Pi, Pi) with the label wi,j . These paths πi,j visit only states of the
form (R, Pi) for some R ∈ Pne(Q). Hence, these paths do not contain any péage,
and the last transition of each πi,j is a water transition. It is possible that (Pi, Pi)
occurs inside the paths πi,j . Hence, it is possible that some path πi,j contains
more than one water transition. Let πi = ((Pi−1, Pi−1), ai, (Pi, Pi)) πi,1 . . . πi,ki .
The label of πi is aiwi,1 . . . wi,ki = wi.

Similarly, we construct a path π1 which starts in q′
I , ends in (P1, P1), and is

labeled with w1. We prove the proposition by setting π = π1 . . . πk.

Proposition 7. Let w ∈ L(A′). We have w ∈ S∆(w)
(
�∆(w)(A)

)
.

Proof (sketch). Let π be a successful path in A′ with the label w and ∆(π) =
∆(w). Let k ≤ ∆(w) be the number of péages in π. We split π into π = π1 . . . πk

such that every path π1, . . . , πk starts with a péage.
Let P0 = {qI}. For every 1 ≤ i ≤ k, the path πi ends in a state of the form

(Pi, Pi) for some Pi ∈ Pne(Q), π1, . . . , πk start with a péage and πk ends in an
accepting state. We have Pk ⊆ F . For every 1 ≤ i ≤ k, one can show that the
label of πi belongs to S∆(w)(Pi−1, Pi). Thus, w ∈ S∆(w)(P0, . . . , Pk). Because
P0, . . . , Pk belongs to �∆(w)(A), we have w ∈ S∆(w)(�∆(w)(A)).

By L = L(A′) and Prop. 5, 6, 7 we obtain the following corollary:

Corollary 2. We have sh(L) ≤ 1 iff A′ is limited.

Proof (Theorem 2). If L is finite, then sh(L) = 0. If L is infinite, then we
construct A′. By Corollary 2, it suffices to decide whether A′ is limited. A total
deterministic automaton for L has at most 2n states. Hence, A′ has at most

42n

+ 1 state. By Theorem 1, we can decide in time complexity 222O(n)

whether
A′ is limited.
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6 Next Research Steps and Open Problems

In a forthcoming paper [7], we generalize the ideas of the present paper to achieve
a new algorithm for the star height n problem.

It is an open question whether the limitedness problem for distance desert
automata is in PSPACE. We do not even know whether the limitedness problem
for desert automata is in PSPACE. Another open question is whether there is
an algorithm for the star height 1 problem with a better complexity.
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