Compositional Analysis of Authentication Protocols*

Michele Bugliesi, Riccardo Focardi, and Matteo Maffei

Dipartimento di Informatica, Universita Ca’ Foscari di Venezia,
Via Torino 155, I-30172 Mestre (Ve), Italy
{michele,focardi,maffei}@dsi.unive.it

Abstract. We propose a new method for the static analysis of entity authentication
protocols. We develop our approach based on a dialect of the spi-calculus as the
underlying formalism for expressing protocol narrations. Our analysis validates
the honest protocol participants against static (hence decidable) conditions that
provide formal guarantees of entity authentication. The main result is that the
validation of each component is provably sound and fully compositional: if all
the protocol participants are successfully validated, then the protocol as a whole
guarantees entity authentication in the presence of Dolev-Yao intruders.

1 Introduction

Security protocols are designed to provide diverse security guarantees in possibly hostile
environments: typical guarantees include the secrecy of a message exchange between two
trusted entities, the freshness and authenticity of a message, the authenticity of a claimed
identity, . .. and more. The presence of hostile entities makes protocol design complex
and often error prone, as shown by many attacks to long standing protocols reported
in the literature (see, e.g., [TOIT31201Z526]). In most cases, such attacks dwell on flaws
in the protocols’ logic, rather than on breaches in the underlying cryptosystem. Indeed,
even when cryptography is assumed as a fully reliable building-block, an intruder can en-
gage a number of potentially dangerous actions, notably, intercepting/replaying/forging
messages, to break the intended protocol invariants. Formal methods have proved very
successful as tools for protocol design and validations. On the one hand, failures to
model-check protocols against formal specifications have lead to the discovery of sev-
eral attacks (see, e.g., [24126]). On the other hand, static techniques, based on type
systems and control-flow analyses have proved effective in providing static guarantees
of correctness [12I5316/17].

Overview and main results. Static analysis is also at the basis of our present technique:
we target the analysis of (shared-key) entity authentication protocols, i.e. protocols
that enable one entity to prove its presence and claimed identity to a remote party
[14\22]. Our approach is based on a new tagging mechanism for messages that we
introduce to support an analysis of the role that certain message components play in
the authentication protocol. Based on that, and drawing on our earlier work in [§]], we
formulate a set of decidable conditions on the protocols’ executions that imply formal

* Work partially supported by MIUR project ‘Modelli formali per la sicurezza’ and EU Contract
IST-2001-32617 ‘Models and Types for Security in Mobile Distributed Systems’ (MyThS).

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 140-[[34] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Compositional Analysis of Authentication Protocols 141

guarantees of entity authentication for a large class of protocols. Interestingly, such
conditions may be checked by means of a static, and fully compositional, analysis that
inspects the protocol participants and the structure of the tagged messages they exchange.
The analysis is carried out in isolation on each participant: each validated principal is
decreed locally correct. Our main result, then, is a safety theorem stating that protocols
composed of locally correct principals are safe, i.e., immune to attacks mounted by
any protocol intruder]. The safety theorem relies critically on the assumption that the
messages exchanged in the protocol are tagged: hence our tags play a static as well a
dynamic role, and the safety theorem assumes that the semantics of protocols is itself
tagged. While this may be seen as a limitation, our tagging mechanism turns out to be
less demanding than those employed to resolve message ambiguities in many existing
protocol implementations (cf. §6).

We formalize our technique in a new process calculus, named p-spi, that we use to
specify the authentication protocols of interest: p-spi is a dialect of the spi-calculus [2]]
and includes a set of authentication-specific constructs inspired by the process calculus
Lysa [3]. Our approach appears interesting in several respects:

(i) The compositional nature of the analysis makes it applicable for validating un-
boundedly many protocol sessions: a safety proof for one protocol session is also
a safety proof for an unbounded number of sessions;

(ii) The only human effort needed for the analysis is the encoding of the protocol
narration in p-spi, which in turn requires one to identify the correct tags for the
ciphertext components. On the one hand, this is a relatively straightforward task; on
the other hand, we argue that stating the purpose of message components explicitly
in the tags represents a good practice for the design of robust protocols.

(#it) Even though we focus on shared-key authentication protocols, our approach is
fairly general and can easily be extended to deal with a wider class of authentication
protocols (e.g. based on public-key cryptography).

Structure of the paper. {2l motivates and illustrates our mechanism for the tagging of
messages. J3lintroduces p-spi and its operational semantics. §dlgives a formal description
of our static analysis, and its main properties. §3lillustrates the analysis with a simple
example. §6]concludes the presentation with final remarks.

2 Tagged Messages

A typical source of flaws in security protocols, and specifically in authentication pro-
tocols, is a poor interpretation of messages, by which certain messages are believed to
convey more guarantees than they actually do. Prudent protocol engineering principles
[3]] suggest instead that “every message should say what it means, i.e., its interpretation
should depend only on its content”. A simple instance of a message exchange that fails
to comply with this principle is the one-step protocol A — B : {M}k,,. Here Alice
is sending to Bob the message M encrypted with a long-term key shared between them.

!'We implicitly appeal to a Dolev-Yao intruder model [I1]]: intruders may intercept, reply and
forge new messages, but never decrypt messages without knowing the corresponding keys.

142 M. Bugliesi, R. Focardi, and M. Maffei

When Bob receives the message, he could be misled into believing that the message has
been generated by Alice since it is encrypted with a key that only Alice (besides Bob
himself) knows. However, this is not true if Bob previously ran the same protocol with
Alice (with exchanged roles). In that case, the following, well-known, reflection attack
could be exploited by an intruder E:

a) B = E(A) : {M}k,, b) E(A) = B:{M}xk,,

In the first run a, F pretends to be A (denoted with E(A)) and intercepts the message
sent by Bob; in the second run b, F(A) replays the same message back to Bob. As a
consequence, B erroneously interprets his own message as sent by Alice. The problem
is that Bob is assuming that the message has been generated by Alice without that
being explicitly indicated in the message. A simple solution is to provide this additional
information within the message, asin A — B : {A, M}k, ,, where the first component
now signals that A is the ‘claimant’ of the protocol. Our approach is best understood as

a generalization of this idea: we envision a tagging mechanism for messages that makes
the interpretation of certain, critical message components unambiguous. The untagged
part of a message forms the message’s payload, while the tagged components include
entity identifiers, tagged with Id, session keys, tagged with Key, and nonces (quantities
generated for the purpose of being recent, or fresh). Nonce tags are more elaborate,
as they convey information on the role that nonces play in the authentication protocol:
Claim, in messages authenticating a claimant, Verif, in messages specifying an intended
verifier, or Owner in messages authenticating a session key.

To motivate, consider a message { A, N, M } k. encrypted under a long-term key
Kpgs shared by a principal B and a server S. A naive tagging of this message, such
as one signaling that A is an identifier, NV a nonce, and M the payload would still
leave several, reasonable, interpretations of the function of this message: (i) B is asking
S to authenticate with A; (i7) S is telling B that A wants to authenticate with him;
and (7i¢) S is telling B that M is or contains a fresh session key shared with A. Our
nonce tags eliminate such ambiguity: the tagging {A : Id, N : Claim, M } i, enforces
interpretation (7), while the taggings {A : Id, N : Verif, M}k, and {A : Id,N :
Owner, M : Key} k. enforce interpretations (i¢) and (i), respectively.

3 The p-Spi Calculus

The p-spi calculus derives from the spi calculus [2]], and inherits many of the features
of Lysa, a version of the spi calculus proposed in [55] for the analysis of authentication
protocols. p-spi differs from both calculi in several respects: it incorporates the notion of
tagged message exchange from [8], it provides new authentication-specific constructs,
and primitives for declaring process identities and (shared) long-term keys.

Syntax. The syntax of the calculus is presented in Table[Il We presuppose two countable
sets: NV, of names and V of variables. We reserve a, b, k, m, n for names and x, y, z for
variables. Both names and variables can be tagged, noted n : C' and x : C, respectively.
Tags, denoted by C, are a special category of names and include roles (the three special
names Claim, Owner, Verif), the identity tag Id and the session key tag Key. Identities

Compositional Analysis of Authentication Protocols 143

Table 1. The syntax of p-spi calculus.

Notation: d ranges over untagged names and variables, I over identity labels, D over, possibly tagged, names and variables

P, Q ::= Processes S := Sequential processes

I>S (principal) 0 (nil)

IS (replication) in(D1,...,Dy).S (input)

PlQ (composition) out(D1,...,Dmn).S (output)

let k = key(I1, I).P (key assignment) new(n).S (restriction)
decryptz as {D1,... , Dy, }q.S (decryption)
encrypt {D1,... ,D;, }q as x.S (encryption)
run(ly,12).S (run)
commit(/1,12).S (commit)

7D are a subset of names, further partitioned into principals Zp, ranged over A and B,
and rrusted third parties (TTPs) Z7, ranged over by T'.

Processes (or protocols), ranged over by P, () are formed as parallel composition
of principals. To allow the sharing of long-term keys among principals, we provide p-
spi with let-bindings as in let k& = key(I, I2).P to declare (and bind) the long-term
key k shared between I; and I5 in the scope P. Each principal is a sequential process
with an associated identity, noted I > S. The replicated form /1>!S indicates an arbitrary
number of copies of S associated with identity 1.

Sequential processes may never fork into parallel components: this assumption helps
assign unique identities to (sequential) processes, and involves no significant loss of
expressive power as protocol principals are typically specified as sequential processes,
possibly sharing some long-term keys. The sequential process 0 is the null process that
does nothing, as usual. Process new(n).S generates a fresh name n local to S. The
constructs for input, output and decryption are essentially the same as in the calculus
Lysa. In particular, we presuppose a unique (anonymous) public channel, the network,
from/to which all principals, including intruders, read/send messages. Similarly to Lysa,
our input and decryption constructs may test part of the message read (decrypted),
by pattern-matching. The pattern matching mechanism is so defined as to ensure that
untagged patterns only match untagged messages, while tagged patterns only match
tagged messages (provided that the tags also match). Accordingly, the pattern x matches
the message n (and binds z to n) but it does not match n : Claim (as x is untagged,
while n : Claim is tagged). Similarly, : Claim matches n : Claim but does not match
n : Verif.

Distinctive of p-spi is the presence of an explicit construct for encryption: pro-
cess encrypt {D1,...,Dy}tq @s x.S binds variable = to the encrypted message
{D1,...,Dp}q in the continuation S. The syntactic structure of p-spi requires all
the encrypted messages to be explicitly formed in an encryption prefix, and forbids ci-
phertexts to be sent directly on the output channel. These restrictions are useful for our
analysis, as they ease the reasoning based on the structural inspection of the encrypted
messages of a protocol. Finally, the process forms run(/y,15).S and commit(/y,/5).S
declare that the sequential process [; is starting, respectively committing, a protocol
session with I5. These constructs are used to check the correspondence assertions as

done in [16]].

144 M. Bugliesi, R. Focardi, and M. Maffei

Table 2. A sample protocol narration p-spi

Protocol let kap = key(A, B)(A > Initiator(A, B) | B > Responder(B, A))

Initiator(A,B) new(m).in(z).run(A, B).encrypt{z, m}y , 5 as y.out(y)

> > >

Responder(B, A) = new(ng).out(np).in(y).decrypty as {np, 2} 4 5 -commit(B, A)

We use a number of notation conventions. The restriction operator is a binder for
names, while the input and decryption prefixes are binders for the variables that occur
in components D;; in all cases the scope of the binders is the continuation process. The
notions of free/bound names and variables arise as expected.

Example 1. We illustrate p-spi with a simple (flawed) authentication protocol:
DB — A:ng 2)A — B:{ng,mli,

We assume k45 to be known only by A and B and np to be a fresh nonce generated
by B. The intention of the protocol is to give guarantee to B that the last message has
been (recently) generated by A as only A should be able to encrypt the freshly generated
nonce np. This protocol can be formalized in our calculus as shown in Table[2l. Process
Initiator, generates a fresh message m € A, After receiving x, it signals the start of a
new authentication run with B, encrypts = and m with the long term key % 4 5, and then
sends out the encrypted message. Similarly, Responder generates a fresh nonce np and
sends it out. Then, it reads y from the net and decrypts it with the long term key k45,
checking the nonce n g (through the pattern-matching mechanism of decryption). If the
match is successful, the variable z gets bound to a message (from A) and the principal
commits through commit(B, A). Notice that we are only modeling one protocol session.
However, as we will see, multiple sessions can be easily achieved by just replicating the
Initiator and Responder processes.

Operational Semantics. We define the operational semantics of p-spi in terms of traces,
after [6]], and formalize it by means of a transition relation between configurations, i.e.,
pairs (s, P), where s € Act* isatrace, Pisa(closed) process. Each transition (s, P) —
(s :: o, P") simulates one computation step in P and records the corresponding action in
the trace. The transitions involving a sequential process preserve the identity identifiers
associated with the process, as in (s, I > 7.5) — (s :: , [> S), where « is the action
corresponding to the prefix 7. The transitions, in Table B, are mostly standard. As in
companion transition systems, see, e.g. [7l], we identify processes up to renaming of
bound variables and names, i.e., up to a-equivalence. Moreover we assume two infinite
sets of bound names and free names so that bound names are distinct from free names
and not touched by substitutions. The INPUT rule requires that any messages read by a
process must be computable using the output generated so far using the available keys.
The rules for message manipulation formalize the power of a Dolev-Yao intruder. Rule
ENv provides the environment with the power of generating a new bound name not
occurring in the trace.

Compositional Analysis of Authentication Protocols 145

Table 3. Transition System for p-spi

Transition rules: P[M /z] is the result of substituting M for all the free occurrences of x in P, and define P[M :

C/xz : C] & P[M/z]; the category M of Messages is defined by the following productions: M = z | n |
{Mi,... ,Mu}n | M : C;bn(s)is the set of bound names in s; the symmetric rule of PAR is omitted.
Par RES
REPLICATION (s,P) — (s, P") n ¢ bn(s)

(s, Ip!S)y — (s, 1> S|I>!S)

(s, P|Q) — (s',P'|Q) (s,I>new(n).S)— (s::I>new(n),I>S)

Run CommiIT
(s, A>run(A, B).S) — (s :: run(A, B), A>S) (s, A>commit(A, B).S) — (s::commit(A, B), A> S)

INPUT

Vi=1,...,m sk M; D; matches M;
(s,16in(D1,...,Dm).S) — (s Ioin(My,...,Mp),I>S[Mi/Ds,... My /Dml)
OuTPUT
(s, I>out(My,... ,My).S) — (s Ivout(My,... ,My),I>S)
KEY

k ¢ bn(s)
(s,letk =key(I1,12).P) — (s :: key(k,I1,1I2), P)
DECRYPTION

Vi=1,...,m D; matches M; key(M,I1,I2) € s=1¢€ {I1,I>}
(s, Ivdecrypt{ My, ... , My, }pras{D1,... , Dy }r.S) — (st Iddec{M1,... ,My}rr, I>S[M;/D;])
ENCRYPTION
key(M,I1,I2) € s = I € {I, 12}

(s, I>encrypt{ My,... ,Mp}rasxz.S) — (s Ivenc{My,... ,Mp}n,I>S[{My,..., Mu}r/z])

Message manipulation rules: required by rule INPUT.

AXx TAG UNTAG Env
I > out(Mi,... ,My,)€s s M skEM:C n ¢ bn(s)
sEM; Il=1...m skEM:C sk M skn
DEc ENc
sE{My,... , Mun}m sk M sEM; 1=1,...,m sk M
sEM; I=1...m sE{My,... , Mn}nm

Definition 1 (Traces). The set T'(P) of traces of process P is the set of all the traces
that may be generated by a finite sequence of transitions from the configuration (e, P).
Formally, T(P) = {s | 3P’ s.t. (¢, P) —* (s, P")}

The notion of safety is standard (cf. [[16]) and based on correspondence assertions. We
say that a trace is safe if every commit(B, A) is preceded by a distinct run(A, B).

Definition 2 (Safety). A trace s is safe if and only if whenever s = s; =
commit(B, A) :: so, then s1 = s} 2 run(A, B) == s/, and s] :: s} :: sy is safe.
A process P is safe if, Vs € T'(P), s is safe.

146 M. Bugliesi, R. Focardi, and M. Maffei

Example 2. We look again at the protocol of Example [Tl and now consider a multiple-
session version of the protocol, with A and B running both as Initiator and as Responder:
the new version of the protocol is subject to the following, well-known, reflection attack.

la) B — E(A) :np 2.8) B — E(A) : {m,np}i,ps
1.b) E(A) = B:np 2b) E(A) = B:{m,np}tr,ps

We show that the attack is captured by our notion of safety. As we mentioned earlier, we
can model multiple sessions, directly by replication. For the protocol in question, this
amounts to analyzing the following process:

Protocols & let kap = key(A, B). (A p!Initiator(A, B) |A > Responder(A, B))|
B >!Responder(B, A) | B > ! Initiator(B, A))

where A and B run both as Initiator and as Responder (the two processes
Initiator(B, A) and Responder(A, B) model B running as Initiator and A running as
Responder, respectively). Consider now the following trace for Protocols:

key(kam, A, B) :: Benew(m) :: B>new(ng) :: Brout(ng) :: Brin(ng) :: run(B, A) ::
Brenc{ng,m}i,, : Brout({ng,mtr,,) s Brin({ng, m}lr,,) =
B dec {np,m}k, :: commit(B, A)

where B is running as initiator instead of A (as pointed out in bold font). The trace is
easily seen to be unsafe, as commit(3, A) is not matched by any run(A, B). Indeed, B
is running the protocol with himself while A is doing nothing. Interestingly, the unsafe
trace corresponds to the attack displayed above.

4 A Compositional Proof Technique

The proof technique we propose applies to protocol narrations that may be coded
as p-spi terms of the form keys(kq,...,k,).(I1>!Sy | ... | L,>!Sy,), where
keys(ki, ..., k,) represents a sequence of let binding for the long-term keys k1, . . . , k.
As we noted earlier, the protocols of interest may directly be represented as pro-
cesses in the above form: hence there is no significant loss of expressive power in
our choice of a specific process format. The analysis proceeds by examining each pro-
cess keys(ki,...,ky,).I; > S;, and attempts to validate S; under the key assignment
determined by keys(k1, ..., k).

4.1 Proof Rules

The proof rules (tablesEand[3) derive judgments of the form I; I'; IT - S validating the
sequential process S relative to the identity I and the two environments I and I7. The
history environment /7 traces the ordered list of encryptions, decryptions, run and key
assignment events performed by the party in question. The nonce environment /" holds
the nonces that the party generates. A nonce is first included in I" as unchecked, when
it is introduced by a new prefix. Subsequently, the nonce may be checked by pattern
matching, and marked as such: the proof rules are so defined as to ensure that each
nonce may be checked at most once, as desired. We make a few, important, assumptions

Compositional Analysis of Authentication Protocols 147

Table 4. Local correctness: Principal and TTP rules

II(z) = enc{...}q indicates that z +— enc{...}q € II, and similarly for the other entries. We write IT7(e) =
enc{. .. }q4 to mean that there exists « such that IT(z) = enc{. .. }q4.

Claimant and Verifier Rules.

AUTHENTICATE CLAIM
A; I'yn : checked; IT = S II(e) = dec{B :1d,n : Claim, ...}, I (k) € {key(A,T), key(A, B)}

A; I';n : unchecked; IT = commit(A, B).S

AUTHENTICATE OWNER
A; I'yn : checked; IT = S II(e) = dec{B : 1d,n : Owner,y : Key, ... } II(k) = key(A,T)
II(e) = dec{D1,... ,Dpm}y (I1(e) = enc{D}, ..., D;n}y/ implies 34 s.t. D} does not match D;)
A; I',n : unchecked; IT = commit(A, B).S

CLAIMANT
A; 51T, B — run,y — enc{A : Id,z : Claim}, - S II(k) = key(A, B)

A;T';IT, B — run b encrypt{ A : Id, z : Claim, ...}, as y.S

'VERIFIER
A; T 11, B — run,y — enc{B : Id, z : Verif},, - S II(k) = key(A,T)

A;I'; I, B — run b encrypt{ B : Id, x : Verif,...}, as y.S

OWNER
A; T3 I1, B — run,y — enc{D1,... ,Dn}as B S RuN
II1(e) = dec{B : Id,n : Owner, x : Key, ... }i II(k) = key(A,T) A; I I, B — run bt S
A; T I1, B — run b encrypt{ D1, ... , Dy, }, as y.S A; T IT Hrun(A, B).S
TTP Rules.

Ttp FORWARD & CHECK
T;I'yn : checked; I,y + enc{A : Id,z : Claim}, 5. = S
II(e) = dec{B :Id,n : Verif, ... }; , 1. II(kpr) = key(B,T) II(kar) = key(A,T)

T; I',n : unchecked; IT = encrypt {A : Id, z : Claim, ... }x 5. as y.S

TTP FORWARD
T; 5,y = enc{A :Id,x : Claim}y . = S
II(e) = dec{B : Id, = : Verif, ...}, II(kpr) = key(B,T) II(kar) = key(A,T)
T; ;I Fencrypt {A 2 Id, z : Claim, ... }x 5 @8 y.S

TTpP DISTRIBUTE
T;I';I,y — enc{A :Id,z : Owner, k; : Key}, - S

T;I';I1+ encrypt {A :Id,z : Owner, ks : Key, ...}, as y.S

which we leave implicit in the rules to avoid cluttering the notation. The environments I’
and /7 may contain at most one binding for each name (key, nonce) or variable in their
domain: this may require alpha renaming on the processes being analyzed. In addition,
all the output or encrypted tuples as well as all the tuples of input or decryption patterns
occurring in the rules are assumed to contain at most one component with tag Id, at most
one component with tag R € {Claim, Verif, Owner} and at most one component with
tag Key. The relative order among the encrypted elements is immaterial.

148 M. Bugliesi, R. Focardi, and M. Maffei

Table 5. Local Correctness: Generic Rules

NiL NEw
I; I';n : unchecked; IT - S n freshin I”
I; I+ 0 I; I'; I + new(n).S
INpPUT OuTPUT
LIS ;IS
I; ;I Fin(...).S I; ' IT - out(...).S
ENCRYPTION
;0 Iy — enc{di,... ,dm}a S
II(e) =dec{... ,d: Key,...}implies IT = IT'.B + run.z + enc{...}q, 1"
I; I'; IT + encrypt{dy, ... ,dm }a asy.S
DECRYPTION
;I I,y — dec{D1,... ,Dy}a b S
I; I'; IT = decrypty as {D1,... , D }a.S

The first two rules in Tables [4] formalize the two possible ways for a principal A
to authenticate another principal B. Specifically, rule (AUTHENTICATE CLAIM) states
that A may legally commit (hence authenticate) B only if A has previously generated a
nonce n and decrypted a message {B : Id,n : Claim ...}, (with the same nonce) with
k shared either with 7" or with B. Rule (AUTHENTICATE OWNER), in turn, states that A
may commit B if she has decrypted (¢) a message {B : Id,n : Owner,y : Key, ...},
encrypted by a TTP and including a fresh session key y owned by B and nonce n that
A previously generated; and (i) at least one message {D;, ... , D,, }, that she did not
generate. The first decryption guarantees that the session key y is fresh and shared by
A and B; then, with the second decryption she is guaranteed that the message comes
from B. Since the encryption key is fresh, so must be the message, and A may safely
authenticate B.

The authentication guarantees we just discussed require a very careful use of the
role tags attached to the encrypted message components. In particular, the message
{B :1d,n : Claim, ... }; should be generated only if B is indeed willing to authenticate
with A; similarly, {B : Id,n : Owner, kg : Key, ... }\ should only be generated if k; is
a fresh session key shared between A and B. This intended use of role tags is enforced
by the remaining rules in Table d which we comment below.

Rules (CLAIMANT), (VERIFIER) and (OWNER) formalize the ways in which A may
declare her willingness to authenticate with B. In particular, in rule (CLAIMANT), A
may request B to authenticate herself as claimant by sending a message {4 : Id, z :
Claim, ...}, directly to B using a long-term key k she shares with B. In an ideal
protocol run, x is intended to be a nonce sent as a challenge by B, that B will check with
(AUTHENTICATE CLAIM). On the other hand, rule (CLAIMANT) in itself does not impose
any condition on x as it is B, rather than A, which is in charge of checking the nonce
for the purpose of authentication.

In rule (VERIFIER), A may request a TTP 7" to authenticate herself with B as verifier,
by sending a message {B : Id, z: : Verif, ...}, to T using a long-term key & shared with

Compositional Analysis of Authentication Protocols 149

T'. The role Verif informs 7" about A’s intention of authenticating with someone else
(B), while z is again meant to represent the challenge, originated by 7'.

Inrule (OWNER), A may send a message { D1, . .. , Dm}y to confirm to have received
the fresh session key y, provided that (7) she has previously decrypted a message {B :
Id,n : Owner,y : Key, ... } originated by a TTP T and declaring that y is a fresh key
shared with B, and (7) she has previously performed a run with B.

The three rules all validate the start of new runs. Correspondingly, they all require A
to have previously marked the start of a run by issuing run(A, B), with rule (RuN). The
run event must be the last action performed, to guarantee that these rules are applied
only once for each protocol run.

Rules (Ttp FOorRwarRD & CHECK), (TTP FORWARD) and (TTP DISTRIBUTE) govern
the behavior of TTPs. In rule (TTP FORWARD & CHECK), T' generates a message {A :
Id,z : Claim,...}g,, if it has previously decrypted (and checked the nonce n of) a
message of the form {B : Id, n : Verif, ... }i ., with ka7 and kpr shared with A and
B respectively.

In rule (TTpP FORWARD), T' may generate a message {A : Id,z : Claim,... }x,,
if it has previously decrypted (without checking the nonce) a message of the form
{B:Id,x : Verif,... };,, (again kar and kpr are shared with A and B); notice that
x is forwarded to B so that B can check the freshness of the first message.

Finally, in rule (TTp DISTRIBUTE), T" declares new session keys through messages of
the form {A : Id, z : Owner, ks : Key, ... }.

The rules in Table B] complete the axiomatization. Rules (NEw), (OuTpUT), (KEY)
and (INpuUT) are standard. Rules (DECRYPTION) and (ENCRYPTION) handle the cases of
the corresponding constructs in which none of the rules in Table @ apply. In fact, the rule
(ENcrYPTION) does overlap with (OWNER) in case of encryptions with session keys: this
is safe only if the start of the authentication session has previously been asserted (with
a run event), in which case (OWNER) must have previously been applied for another
encryption with the same session key. The safety check is implemented by requiring
that the two consecutive bindings A — run(B).z — enc{... }4 be part of the history
environment /7.

4.2 Safety Theorem

The safety proof for a protocol requires further hypotheses on the way that long-term and
session keys are circulated among principals and trusted third parties. Specifically, given
a process keys(ky, ..., ky).I > S, we make the following assumptions: (a) long-term
keys are never circulated in clear or within encrypted messages; (b) only principals (not
TTP’s) may receive session keys, without leaking them; and (¢) fresh session keys are
only distributed by TTP’s at most to two parties, only once. When these assumptions are
satisfied, we say that I > S'is {k1, ..., k, }-safe.

Definition 3 (Local Correctness). Let P be the process keys(k1, ..., k,).I > S, with
k; shared between I; and J;. We say that P is locally correct iff I > S is {kq,...,
K, }-safe and the judgment I; &; ITy, ., b S is derivable, for ITy, p, = ki —
key(I1,J1), ..., kn — key(Iy,, Jp).

n n

150 M. Bugliesi, R. Focardi, and M. Maffei

Table 6. A variant of the ISO Two-steps Unilateral Authentication Protocol

Protocoljso 2 letkap = key(A, B).(A > Initiatoriso(kap, A, B) |B > Responderiso(kag, B, A))

Initiatorrso(kap, A, B) 2 Responderrso(kap, B, A) £

new(m). NEW new(ng). NEw
in(z). N out(ng). Out
run(A, B). RUN in(y). IN
enc.{A :Id, z : Claim,m}y , , asy. CLam dec.y as {A :1d,np : Claim, 2} , 5. DEC
out(y) Our commit(B, A) AuTH CLAIM

A protocol is correct if all of its sequential components are locally correct. For-
mally, the process keys(k1,...,k,).(I1 >!S1 | -+ | Ln > Sn). is correct if for all
i € {1,...,m} the process keys(k1,...,k,).I; > S; is locally correct. Our safety
theorem states that correct processes are safe: hence, the local correctness of the protocol
participants is a sufficient condition for the safety of the protocol as a whole (the proof,
worked out in the full version of the paper, is omitted here for the lack of space).

Theorem 1 (Safety). Ler P = keys(ky, ..., kn).(I1>!S1 | -+ | Ln> ! Sy). If Pis
correct, then it is safe.

5 An Example

We illustrate the analysis on the p-spi specification of the protocol in Table 2] As dis-
cussed in Example[] the protocol is subject to attacks when running in multiple sessions:
with our analysis the flaw is unveiled by a failure to validate the responder, as we il-
lustrate showing that the principal let kap=key(kap, A, B).B > Responder(B, A)
is not locally correct. To see that, note that for B; I'; IT —= commit(B, A) to be deriv-
able, by rules (AUTHENTICATE CLAIM) and (AUTHENTICATE OWNER), there must exists
y such that II(y) = dec{A : Id,ny : R,...}k,,, with R € {Claim, Owner}. On
the other hand, the only decryption in S is decrypt y as {ng, z}x,,, which implies
B; I'; IT ¥ commit(B, A). The failure of local correctness persists when we add a role
R € {Claim, Owner} to the ciphertext. In fact, even in that case, the hypotheses of the
two authentication rules do not hold because the ciphertext is still missing the identity
label A. Interestingly, the attack presented in Section Blexploits precisely this flaw. The
reflection attack is prevented in the ISO Two-Pass Unilateral Authentication Protocol
[21]] which fixes the problem by including the identity label A in the ciphertext sent by
A (in fact the original version from [2T] includes B instead of A in the ciphertext).

DB — A:ng 2)A — B:{Ang,m}ti.p

The specification of the new protocol in p-spi is given in Table [6] The only non-obvious
aspect of the specification is in the choice of the claimant role for the label A in the
encrypted message. Given this choice the protocol is easily proved correct, as we outline
next. The second and fourth columns in Table[@refer to the rules applied for verifying lo-
cal correctness of the two principals. In particular, for A; @; ITy, , , = Initiatorrso(kap

Compositional Analysis of Authentication Protocols 151

, A, B), the hypotheses of the rules (NEw), (INPUT), (RUN) and (OUTPUT) are trivially
verified. The only interesting case is rule (CLAIMANT), which is applied in the proof of

A; {m : unchecked}; IT4 - encrypt{ A : Id, 2 : Claim,m},, as y.out(y)

Rule (CLAIMANT) requires [Ty = IT’y.B — run and I14(kap) = key(A, B), which
are both true. As for Responder;so(kag, B, A), proving B; I'g; Il g = commit(B, A)
is straightforward. The hypotheses for rule (AUTHENTICATE CLAIM) hold since [T (o) =
dec{A : ld,np : Claim, 2}k, 5, I'5(ny) = unchecked, and ITg(kap) = key(A, B).
Now one derives B; @; ITy, , , - Responderiso (kap, B, A),routinely, by rules (NEW),
(OuTtpuT), (INPUT) and (DECRYPTION).

Finally, both principals handle keys safely, as they use no session keys and never
send long term keys on the net or encrypted. By Theorem [[l we know that every trace

of Protocol;go is safe, hence the protocol is immune to authentication attacks.
The specification can easily be generalized to an arbitrary number m of entities,
acting both as initiator and as responder and arbitrarily replicated.
Protocol;so —m £ let]",_, . ki; = key(I;, I;).
(‘;yszlyi#]‘Ii > !Initiatorjso(kij, I;, I])lll > IRSSpO’rLdeT‘Iso(k)ij, I;, IJ)))

Here k;; represents a long term key shared between entities /; and /;. We assume that
ki; = kj;; (and correspondingly define the key assignment only for keys k;; with ¢ < 7).
The correctness proof for this version of the protocol derives directly, by composition-
ality, from the correctness proof we just outlined.

6 Conclusion

We have proposed a new, compositional, analysis of entity authentication protocols,
based on a new tagging mechanism for encrypted messages. The impact of the tagging
mechanism is twofold. On one hand, it is a specification tool: stating the purpose of mes-
sage components explicitly leads to more robust protocol design. On the other hand, it is
directly useful as an implementation technique which allows a non-ambiguous interpre-
tation of messages, as other tagging techniques employed in protocol implementations,
while at the same time supporting formal correctness proofs.

The analysis is appealing for its relative simplicity: verifying the conditions of local
correctness is intuitive and easily implemented by an automatic tool. We have conducted
various (hand written) tests on authentication protocols from the literature, some of which
are given in Table[7} for all the correct versions of the protocols the analysis admits safety
proofs, while it consistently fails to validate the flawed versions.

The authentication patterns we have investigated are certainly not exhaustive, but
fairly general. Also, the framework is scalable, as new patterns may be added, as needed.
Desirable extensions include new patterns needed to validate, e.g, protocols based on
public-key encryption and other kinds of nonce-challenges [I8[T9]. Our current work
shows that the approach fits very well these extensions.

Related Work. Tagging is not a new idea and it is proposed and used for verification
purposes in [34IT6/1720]]. Typically, tagging amounts to add a different label to each

152 M. Bugliesi, R. Focardi, and M. Maffei

Table 7. Case Studies

Protocols Correct Flawed

Iso Symmetric Key Two-Pass Unilateral Authentication Protocol X
Iso Symmetric Key Three-Pass Mutual Authentication Protocol X

Andrew Secure RPC Protocol X
Needham Schroeder Protocol X
Needham Schroeder Amended Version X
Otway and Rees Protocol X
Carlsen’s Secret Key Initiator Protocol X
Wide Mouthed Frog Protocol,Nonce Based Version X
Woo and Lam Protocol X
Woo and Lam Amended Version X

encrypted protocol message, so that ciphertexts cannot be confused. Our tagging is less
demanding, as we do not require that every message is unambiguously tagged since
we tag only certain components. In particular, for protocols implemented with stronger
tagging techniques, our tags can be safely removed without compromising the protocols’
safety. Our tagging seems also well suited for multi-protocol systems. In [23]], Syverson
and Meadows observe that “problems can arise when a protocol is interacting with
another protocol that does not use a tagging scheme, or tags data in a different way”.
Our tagging does not require that different protocols use different tags, since it is related
to the security informations conveyed by a ciphertext. If it was uniformly applied in
every protocol the safety result would scale up to the parallel composition of different
authentication protocols.

In [TO/T7] Gordon and Jeffrey define a type system for the analysis of authentication
protocols (with symmetric and asymmetric encryption) expressed in a dialect of the spi
calculus. Their approach is related to our work in several aspects. As ours, their authen-
tication analysis is a safety analysis based on correspondence assertions. Also, as in our
approach, the reasoning is guided by a tagging mechanism for messages that provides
enough redundancy for the analysis to identify and distinguish different messages. There
are, however, important differences. Their tags are applied uniformly, so as to distin-
guish any pair of encrypted messages, and are used by a dependent type system to form
traces of dependent effects which are then inspected to verify protocols by checking
a correspondence assertion property similar to ours. Their type analysis is inherently
compositional, as ours, but the safety result requires a further inspection of the effects
associated with a complete protocol trace. Moreover the human effort required for the
type definitions is relevant, while our tags range on a finite set and their definition is
simple and relatively mechanical.

The recent work by Bodei ez al. on a control-flow analysis for message authentication
in Lysa [3] is also strongly related to our present approach. The motivations and goals,
however, are different, since message authentication concerns the origin of a message,
while entity authentication also provides guarantees about the presence of a given entity
during an authentication session. Indeed, our analysis provides a strong form of entity
authentication guarantee [22l28]: not only the presence of the claimant is analyzed, but
also its intention to authenticate itself with the verifier.

Further related work is based on employing belief logics , like, e.g., BAN [9], GNY
[T5]], as formal tools for reasoning about authentication guarantees provided by messages.
The main difference with these papers is that we do not have any kind of protocol

Compositional Analysis of Authentication Protocols 153

idealization. Indeed, we reason about ‘concrete’ execution traces, directly connected to
the structure of ciphertexts. An interesting paper that goes in the direction of eliminating
the idealization step in analyses based on (belief) logics is [12]] by Durgin, Mitchell
and Pavlovic. They propose a logic for security protocols which is designed around a
process calculus derived from Strand Spaces [19/27]], and built on top of an asymmetric
encryption system. As in our framework, the semantics of the calculus is formalized
in terms of a trace semantics. The formalization of authentication is, however, largely
different, and not easily comparable to ours.

References

1

2.

11.

12.

13.

14.

15.

16.

17.

M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theor. Comput.
Sci., 298(3):387-415, 2003.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1-70, 1999.

. M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE

Transactions on Software Engineering, 22(1):6—15, 1996.

. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces termi-

nation. Proceedings of Foundations of Software Science and Computation Structures, pages
136-152, 2003.

. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic validation of

protocol narration. In In proceedings of 16th IEEE Computer Security Foundations Workshop
(CSFW 16), pages 126140, June 2003.

. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of ICALP

01, volume 2076, pages 667-681. LNCS 2076, Springer Verlag, 2001.

. M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic processes. In

Logic in Computer Science, pages 157-166, 1999.

. M. Bugliesi, R. Focardi, and M. Maffei. Principles for entity authentication. In Proceedings

of 5th International Conference Perspectives of System Informatics (PSI 2003), volume 2890,
pages 294-307, July 2003.

. M. Burrows, M. Abadi, and R. Needham. “A Logic of Authentication”. Proceedings of the

Royal Society of London, 426(1871):233-271, 1989.

. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0.

http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz, November 1997.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Infor-
mation Theory, 29(2):198-208, 1983.

N. Durgin, J. Mitchell, and D. Pavlovic. A compositional logic for proving security properties
of protocols. Journal of Computer Security, 11, 2003.

R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of cryptographic
protocols. In Proceedings of ICALP 00, pages 354-372. Springer LNCS 1853, July 2000.
D. Gollmann. “What do we mean by Entity Authentication”. In Proceedings of the 1996
Symposium on Security and Privacy, pages 46-54. IEEE Computer Society Press, 1996.

L. Gong, R. Needham, and R. Yahalom. Reasoning About Belief in Cryptographic Protocols.
In Deborah Cooper and Teresa Lunt, editors, Proceedings 1990 IEEE Symposium on Research
in Security and Privacy, pages 234-248. IEEE Computer Society, 1990.

A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In 14th IEEE
Computer Security Foundations Workshop (CSFW-14),pages 145-159, June 2001.

A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols. In 15th
IEEE Computer Security Foundations Workshop — CSFW’01, pages 77-91. IEEE Computer
Society Press, 24-26 June 2002.

154

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Bugliesi, R. Focardi, and M. Maffei

J. Guttman. Security protocol design via authentication tests. In /5th IEEE Computer Security
Foundations Workshop — CSFW’01, pages 92—103, Cape Breton, Canada, 24-26 June 2002.
IEEE Computer Society Press.

Joshua D. Guttman and F. Javier Thayer. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333-380, 2002.

J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security proto-
cols. In 13th IEEE Computer Security Foundations Workshop — CSFW’00, pages 255-268,
Cambridge, UK, 3-5 July 2000. IEEE Computer Society Press.

ISO/IEC. “Entity Authentication Using Symmetric Techniques”. Report ISO/IEC
JTC1.27.02.2 (20.03.1.2), June 1990.

G. Lowe. “A Hierarchy of Authentication Specification”. In Proceedings of the 10th Computer
Security Foundation Workshop, pages 31-44. IEEE press, 1997.

C. Meadows and P. Syverson. Formal specification and analysis of the group domain of
intrepretation protocol using npatrl and the nrl protocol analyzer, 2003. to appear in Journal
of Computer Security.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using
mur¢. In Proceedings of the 1997 IEEE Symposium on Research in Security and Privacy,
pages 141-153. IEEE Computer Society Press, 1997.

R M Needham and M D Schroeder. Authentication revisited. ACM SIGOPS Operating
Systems Review, 21(1):7-7, 1987.

L. C. Paulson. Relations between secrets: Two formal analyses of the yahalom protocol.
Journal of Computer Security, 9(3):197-216, 2001.

J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols correct.
Journal of Computer Security, 1999. 15.

T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. I[EEE Computer, 25(3):39—
51, 1992.

	Introduction
	Tagged Messages
	The $rho $-Spi Calculus
	A Compositional Proof Technique
	Proof Rules
	Safety Theorem

	An Example
	Conclusion

