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Abstract. An important issue in embedded systems design is the size
of programs. As computing devices decrease in size, yet with more and
more functions, better code size optimizations are in greater demand.
For an embedded RISC processor, where the use of compact instructions
(e.g., the ARM Thumb) restricts the number of accessible registers at
the expense of a potential increase in spill code, a significant proportion
of instructions load or store to memory.
In this paper we present a new technique which both identifies sequences
of single load and store instructions for combining into multiple load
and store instructions, and guides the layout of function stack frames,
global storage and register allocation, previously only seemingly done
by opportunistic optimization. We implement this in our SolveMMA

algorithm, similar to Liao’s Simple Offset Assignment algorithm.
We implement our algorithm within the Value State Dependence Graph
framework, describe how the algorithm is specialized for specific proces-
sors, and use the ARM Thumb as a concrete example for analysis.

1 Introduction

With increasing numbers of compact and mobile computing devices, such as
mobile phones, wrist-watches, and automotive systems, comes a growing need
for more effective code-compacting optimizers. One potentially profitable route
to compact code is through the effective use of Multiple Memory Access (MMA)
instructions. These include multiple loads and stores where a set of registers
(typically defined by some range or bitmap representation) are loaded from, or
stored to, successive words in memory. Their compactness comes from expressing
a (potentially large) set of registers with (comparatively) few instruction-word
bits; for example, the ARM LDM instruction uses only sixteen bits to encode up
to sixteen register loads (cf. 512 bits without the use of the LDM instruction).

The ARM Thumb [15] executes a compact version of the ARM instructions.
A hardware translator expands, at runtime, the 16-bit Thumb instructions into
32-bit ARM instructions. A similar approach is taken in the MIPS16 embedded
processor [9]. A disadvantage of this approach is that fewer instruction bits
are available to specify registers. This restriction artificially starves the register
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allocator, resulting in more register spill code (providing more potential sources
of MMA optimization, which is poorly done in existing compilers).

The “load-store” nature of a RISC architecture also gives rise to many ex-
plicit memory access instructions. In contrast, a CISC machine with memory-
access-with-operation instructions can achieve better code size by combining
a load or store operation (especially where the address offset is small) with
an arithmetic operation (e.g. “add EAX,DS:ESI[EBX*4]+Offset” on the Intel
x86 [1]). Restricting the number of accessible registers, as described above, in-
creases the number of memory access instructions: the adpcm benchmark from
MediaBench [11] generates approximately 35% more memory access instructions
for the ARM Thumb than for the ARM.

However, the state of the art in commercial compilers appears1 to be based
on opportunistic peephole-style optimization. The GCC compiler also takes an
ad-hoc approach to MMA optimization2.

This paper explores the use of MMA instructions as a means of compacting
code. Our SolveMMA algorithm identifies profitable memory access sequences
for combining into MMA instructions, and selects stack frame layouts that facil-
itate multiple reads and writes of local variables. Interestingly, it turns out that
array accesses and local variable accesses are best treated separately.

We describe SolveMMA as applied to the Control Flow Graph, and then
show how the less-constrained Value State Dependence Graph provides greater
opportunities for merging multiple load and store instructions. Finally, we spe-
cialize this to the ARM Thumb MMA instructions, and apply our algorithm to
a selection of embedded software benchmarks.

1.1 Related Work

As remarked above there is no directly related work on MMA optimization for
general purpose registers. However, a related area of research is that of optimizing
address computation code for Digital Signal Processors (DSP).

For architectures with no register-plus-offset addressing modes, such as many
DSPs, over half of the instructions in a typical program are spent computing ad-
dresses and accessing memory [16]. The problem of generating optimal address-
computing code has been formulated as the Simple Offset Assignment (SOA)
problem, first studied by Bartley [4] and Liao et al [13], the latter formulating
the SOA problem for a single address register, and then extended to the General
Offset Assignment (GOA) problem for k address registers. Liao et al also show
that SOA (and GOA) are NP-hard, reducing the problem to the Hamiltonian
path problem. Their approximating heuristic is similar to Kruskal’s maximum
spanning tree algorithm.

Rao and Pande [14] generalize SOA for optimizing expression trees to mini-
mize address computation code. An improved heuristic for SOA and GOA was
1 Through literature and private communication with industrial compiler developers.
2 For example, the GCC compiler uses hard registers to enforce a particular register

assignment within the RTL intermediate form.
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proposed by Leupers and Marwedel [12] with a tie-breaking heuristic for SOA
and a variable partitioning strategy for GOA.

DSP-like architectures (e.g., Intel MMX, PowerPC AltiVec and Sun VIS) in-
clude MMA-like block loads and stores. However, these instructions are limited
to fixed block loads and stores to special data or vector registers, not general
purpose registers. A related area to MMA optimization is that of SIMD Within
A Register (SWAR) [6]. The work presented here considers only word-sized vari-
ables; applying the same algorithm to sub-word-sized variables would achieve
additional reductions in code size (e.g., combining four byte-sized loads into a
single word load).

Koseki et al consider the problem of colouring a CFG (where the order of
instructions is fixed) in the presence of instructions which have particular pref-
erences for register assignment [10]. They suggest using these preferences to
guide register assignment to enable the use of MMA instructions. We differ from
their work in two ways: (1) because the VSDG underspecifies the ordering of
instructions in a graph3 we can consider combining loads and stores that are not
adjacent to each other in the CFG into provisional MMA nodes; and (2) we use
the Access Graph during target code generation to bias the layout of the stack
frame for spilled and local variables.

All of the above approaches have been applied to the Control Flow Graph [3],
which precisely specifies the sequence of memory access instructions. By contrast,
the Value State Dependence Graph [8] under-specifies the ordering of most oper-
ations, only specifying sufficient partial ordering to maintain the I/O semantics
(memory reads and writes) of the original program, giving more opportunities
for optimization.

1.2 Paper Structure

The rest of this paper is structured as follows. In Section 2 we summarize
Liao et al ’s SOA algorithm. Section 3 describes our new SolveMMA algo-
rithm in the context of the Control Flow Graph, with Section 4 enhancing the
MMA algorithm for the Value State Dependence Graph. In Section 6 we apply
SolveMMA, implemented within our VSDG compiler framework, to a number
of illustrative examples, and close with concluding remarks (Section 7).

2 Simple Offset Assignment

The Simple Offset Assignment (SOA) algorithm [13] rearranges local variables
within a function’s stack frame in order to minimize address computations.
The target architecture is assumed to have a single address register with word-
oriented auto-increment/decrement addressing modes.

3 We showed previously [8] that the special case of a VSDG with enough serializing
edges to enforce a linear order corresponds to a CFG.
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The input to the algorithm is an instruction-scheduled and register-allocated
program, i.e., a Control Flow Graph (CFG) [3], with a fixed memory access se-
quence. The SolveSOA algorithm constructs an Access Graph (V, E), an undi-
rected graph with vertices V and edges E. Vertices correspond to variables, and
there is an edge e = (p, q) between vertices p and q with weight w(e) if there are
w(e) adjacent accesses to variables p and q.

For our purposes we say that a covering of a graph is a subset of its edges,
and recall that a path is an alternating sequence of vertices and edges, with each
edge connecting its adjacent vertices, and there are no cycles in the path.

The algorithm then covers the Access Graph with one or more maximally-
weighted disjoint paths. Each path specifies an ordering of the variables in the
path on the stack, thereby minimizing the number of address computations
through the use of auto-increment/decrement addressing. The number of ad-
dress computations is then given by the sum of the weights of the uncovered
edges.

Finding an optimal path covering is a formulation of the Maximum Weight
Path Covering (MWPC) problem, which has been shown [13] to be in NP. Liao
et al propose a greedy algorithm (similar to Kruskal’s maximum spanning tree
algorithm [2]) which iteratively chooses the edge with the greatest weight to add
to the path while preserving the properties of the path (if two or more edges
have the same weight the algorithm non-deterministically chooses one of them).
It terminates when either no further edges can be added to the solution, or there
are no more edges. An example of SOA is shown in Figure 1.

c = a + b;
f = d + e;
a = a + d;
c = d + a;
b = d + f + a;

a b

c

de
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2
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2

2
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1
1

1
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a b c d e f a d a d a c d f a b b c d a f e
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Fig. 1. Example illustrating SOA. In (a) is a short code sequence, accessing variables
a–f. The access sequence (b) describes the sequence of read or write accesses to the
variables (for illustration we assume variables in expressions are accessed in left-to-right
order). This leads to the Access Graph shown in (c), where the edge weights correspond
to the number of times a given sequence occurs in (b). We then cover the graph using
the MWPC algorithm, with covered edges shown in bold. The result is the stack frame
layout shown in (d).
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Computing this approximate MWPC can be done in O(|E| log |E|+|L|) time,
where |E| is the number of edges in the Access Graph, and |L| the number of
variable accesses. Liao et al showed that for large programs the Access Graphs
are generally quite sparse.

The General Offset Assignment (GOA) algorithm extends SOA to consider
k address registers (consider SOA as a special case of GOA, with k = 1). The
SolveGOA algorithm grows an Access Graph, adding vertices to it if adding
an additional address register to the graph would likely contribute the greatest
reduction in cost. The decision of which variables to address is left as a heuristic.

3 Multiple Memory Access on the Control Flow Graph

In this section we describe our SolveMMA algorithm in the context of the
Control Flow Graph (CFG) [3]. Similar to Liao et al ’s SolveSOA algorithm,
we construct an Access Graph from the input program and then find a covering
which maximizes provisional MMA instructions and biases register assignment
to enable as many of these as possible to become real.

The SolveMMA algorithm is different to SolveSOA in two distinct ways.
Firstly, the goal of SolveMMA is to identify groups of loads or stores that can
be profitably combined into MMA instructions. And secondly, SolveMMA is
applied before instruction scheduling, when it is easier to combine loads and
stores into provisional MMA instructions and to give hints to the register as-
signment phase.

3.1 Generic MMA Instructions

For discussion purposes we use two generic MMA instructions—LDM and STM—
for load-multiple and store-multiple respectively. The format of the LDM (and
STM) instruction is:

LDM Addr, { reglist }

where Addr specifies some address computation (e.g., register or register+offset)
containing the address from which the first word is read, and the registers to be
loaded are specified in reglist. As in the ARM instructions, the only constraint
on the list of registers is that they must be sorted in increasing numerical order.
See Section 5 for specific details of addressing modes and other target-specific
details.

The SolveMMA algorithm is applied twice to the flow graph. The first
pass transforms global variables whose address and access ordering is fixed in
the CFG4, while the second pass transforms local and spill variables, whose
addresses are not fixed, and can in more cases be re-ordered.

4 But note Section 4 where using the VSDG instead allows only essential (programmer-
required) ordering to be fixed.
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3.2 Access Graph and Access Paths

We define Access Graph and Access Paths as a framework in which to formulate
the problem and the SolveMMA algorithm.

Definition 1. Let α(p) be the set of instructions which access variable p and
op(i) be the operation (load or store) of instruction i. Then the Access Graph
is a weighted directed graph AG = (V, E), consisting of vertices V, one for each
variable, and edges E ⊆ V × V such that there exists an edge (p, q) ∈ E between
vertices p and q iff (1) i ∈ α(p) and j ∈ α(q) are in the same basic block;
(2) op(i) = op(j); (3) j is scheduled after i; and (4) j is not data-dependent on i.

Vertices in V are tagged with the direction property dir ∈ {UND ,HEAD ,TAIL}
to mark undecided, head and tail vertices respectively. Initially, all nodes are
marked UND . For some access sequences the direction of accesses must be
enforced (e.g., accesses to memory-mapped hardware registers), while in others
the sequence is equally valid if traversed in either direction. The direction prop-
erty marks explicit directions, while deferring the final direction of undefined
access sequences to the covering algorithm. Our use of a directed Access Graph
is in contrast to SOA’s undirected Access Graph.

Definition 2. The Weight w(e) of an edge e = (p, q) ∈ E is given by
w(e) = |{(i, j)|i ∈ α(p), j ∈ α(q), i is before j in the same basic block, and only
arithmetic operations between them }|.

It is possible that some pairs of vertices are accessed in both combina-
tions (p, q) and (q, p). Some of these edge pairs are likely to have differing
weights, due to explicit preferences in the program (e.g., a pair of stores). Such
edges are called unbalanced edges:

Definition 3. An Unbalanced Edge is an edge e = (p, q) ∈ E where either
there is an opposite edge e′ = (q, p) ∈ E such that w(e) �= w(e′), or where such
an opposite edge does not exist.

The definition of the access path follows from the above definition of the
Access Graph.

Definition 4. An Access Path C = (VC ⊆ V, EC ⊆ E) where |EC | = |VC | − 1,
is a sequence of vertices {v1, v2, . . . , vm} where (vi, vi+1) ∈ EC and no vi

appears more than once in the sequence.

An Access Graph can be covered by two or more disjoint access paths:

Definition 5. Two paths CA = (VA, EA) and CB = (VB , EB) are disjoint if
VA ∩ VB = ∅.
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Note that SolveSOA does not consider the type of access operation. In contrast,
SolveMMA combines instructions of the same operation, so path covering must
be sensitive to access operations. Consider the access sequence of three local
variables:

arbrcwbrarbw

where the subscript r denotes read and w denotes write. It may be that a, b and
c are placed in contiguous locations, but the write to c prevents the construction
of a single MMA access path {a, b, c}, whereas SOA would place all three in
a path. When SolveMMA is applied to the VSDG (Section 4), which would
not specify the order of the reads of a and b, then either {a, b} or {b, a} can be
normalised to the other, subject to any restrictions imposed by target-specific
MMA instructions.

3.3 Construction of the Access Graph

The Access Graph is constructed in a single pass over the input program, as
directed by Definition 3.2. The first two criteria restrict merging to access in-
structions of the same operation (load or store) and that both are within the
same basic block (this maintains the ordering of memory accesses in the CFG).
The third criterion ensures that there are no intervening load or store instruc-
tions that might interfere with one or the other instructions (e.g., for two loads,
an intervening store to the same address as the second load).

Vertices in the Access Graph represent variables whose address can be stati-
cally determinable and are guaranteed not to alias with any other vertex5. While
this restriction may seem harsh, it supports global variables, local (stack-based)
variables, including compiler-generated temporaries, and register-plus-constant-
offset (indexed array) addressing. In these cases we can statically determine if
two memory accesses do not alias to the same address.

3.4 SolveMMA and Maximum Weight Path Covering

We follow the approach taken in SolveSOA of a greedy MWPC algorithm
(Section 2). The algorithm (Figure 2) is greedy in that on each iteration it
selects the edge with the greatest weight (if two or more edges have the same
weight the algorithm non-deterministically chooses one of them).

In the following definitions let AG be an Access Graph (Definition 3.2) with
vertices V and edges E.

Definition 6. A partial disjoint path cover of a weighted Access Graph AG is
a subgraph C = (V ′ ⊆ V, E′ ⊆ E) of AG such that ∀v ∈ V ′, degree(v) ≤ 2 and
there are no cycles in C; an orphan vertex is a vertex v ∈ V \V ′.

5 Aliasing may produce loops in the access path. For instance, consider the path a-
b-c-d; if c is an alias for b, after addresses have been assigned the resulting offset
sequence would be, say, 0-4-4-8. MMA instructions can only access contiguous mem-
ory locations, neither skipping nor repeating addresses, and thus this sequence of
accesses is not possible.
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Applying the SolveMMA algorithm to the Access Graph produces a partial
covering of the graph. It is partial in that some vertices in the graph may not
be covered by an access path. An orphan vertex identifies a variable that cannot
be profitably accessed with an MMA instruction.

// Take program P , construct its Access Graph (V, E) return a covering
// Access Graph (V ′, E′).

1. procedure SolveMMA ( P :CFG ): AccessGraph
2. (V, E)← ConstructAccessGraph(P );
3. Esort ← SortDescendingOrder(E); // Sort E by weight.
4. V ′ ← V, E′ ← ∅;
5. while |E′| < |V | − 1 and Esort �= ∅ do
6. e← greatest edge in Esort ;
7. Esort ← Esort − {e};
8. if e does not cause any vertex in V ′ to have degree > 2 and
9. e does not cause a cycle in E′ and
10.+ head(e).dir ∈ {UND ,TAIL} and
11.+ tail(e).dir ∈ {UND ,HEAD} then
12. E′ ← E′ + {e};
13.+ e′ ← reverse-edge ∈ E of e;
14.+ if e′ = ∅ or weight(e′) �= weight(e) then
15.+ walk from head(e) ∈ V ′ marking UND vertices as HEAD ;
16.+ walk from tail(e) ∈ V ′ marking UND vertices as TAIL;
17.+ endif
18. else
19. discard e;
20. endif
21. endwhile
22. return (V ′, E′);
23. endproc

Fig. 2. The SolveMMA algorithm. The steps additional to the SolveSOA algorithm
(marked with a ‘+’) are lines 10 and 11, which ensure that we never add edges that
violate the direction of directed paths, and lines 13–17 which convert undirected paths
into directed paths if e is an unbalanced edge (Definition 3.2).

The first step of the SolveMMA algorithm (Figure 2) constructs the Access
Graph (V, E) from the input program P . The set of edges E is then sorted in de-
scending order by weight, a step which simplifies the operation of the algorithm.
We initialise the output Access Graph (V ′, E′) with V ′ = V , and no edges.

The main body of the algorithm (lines 5–21) processes each edge, e, in Esort
in turn until either there are just enough edges in the solution to form one long
path (at which point we can add no further edges to E′ that would satisfy the
criteria on lines 8 or 9), or there are no more edges in Esort . We remove e from
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Esort and then decide whether it should be added to C. To do so, it must meet
the following four criteria:

1. the edge must not cause a cycle in E′;
2. the edge must not cause any vertex in V ′ to have degree > 2, i.e., no edge

can connect to an internal vertex within a path;
3. the head of the edge can only connect to a vertex that is either the tail of a

directed path, or the end of an undirected path; and
4. the tail of the edge can only connect to a vertex that is either the head of a

directed path, or the end of an undirected path.

If all four criteria are satisfied we add e to E′.
Initially, all vertices (and hence paths constructed from them) are marked

UNDecided, reflecting no preference in the access order. However, it is very likely
that in (V, E) there will be some sequences of access that are more favourable
than others (e.g., if there was one instance of (p, q) and two instances of (q, p)).
This is reflected in a difference between the weights of the edges (p, q) and (q, p).
Indeed, there may not even be a matching reverse edge (line 13).

The remaining lines, 15 and 16, handle the case of e being unbalanced, mark-
ing all the vertices from the head of e with HEAD , and all the vertices from the
tail of e with TAIL. Note that this can happen at most once per path, as any
subsequent addition to the path must respect its direction (lines 10 and 11).
This simple heuristic works well in practice and has low runtime cost.

3.5 The Phase Order Problem

An important problem encountered by compiler designers is the phase ordering
problem, which can be phrased as “in which order does one schedule two (or
more) phases to give the best target code?”. Many phases are very antagonistic
towards each other; two examples being code motion (which may increase register
pressure) and register allocation (which places additional dependencies between
instructions, artificially constraining code motion).

If SolveMMA is applied before register allocation then any subsequent
spill code generated by the register allocator would not be considered by
SolveMMA, and additional constraints specified by the semantics of a given
target’s MMA instructions would be imposed on the operation of the register
allocator. If SolveMMA is applied after the instruction scheduling phase then
the scheduler might construct a sequence that prevents several memory access
instructions becoming a single MMA instruction.

3.6 Scheduling SolveMMA within a Compiler

We now describe the order in which MMA optimizations are applied to a CFG
in our implementation. While this order does not produce optimal code for all
programs, early indications are that this order is generally good.

The first pass of MMA Optimization takes in a scheduled CFG, where the
order of instructions (especially loads and stores) is fixed. At this stage the only
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Fig. 3. Scheduling MMA optimization with other compiler phases.

memory accesses are to global variables (fixed addresses) and local arrays and
structs (fixed offsets from a base address)6. The access graph constructed during
this pass identifies provisional MMA instructions, albeit in a fashion which we
can undo later.

The second phase is Register Allocation. This inserts spill code (compiler-
generated loads and stores to temporaries placed on the stack) into the CFG
where there are insufficient physical registers to be able to colour a register.

The third phase is another MMA Optimization pass, but now concerned with
loads and stores introduced by register spilling. We add the spill temporaries and
their access sequences to the the Access Graph of the first pass.

Phase four—Offset Assignment—assigns stack offsets to spilt locals and tem-
poraries, guided by the access paths generated in the previous phase.

Finally, Register Assignment maps the virtual registers onto the physical
registers of the target architecture. Again, we use the access paths to guide
the assignment of registers to the MMA instructions, since most target MMA
instructions enforce some order on the register list.

The output of this chain of phases is a CFG from which target code can
be emitted. Where the register assigner has been unable to comply with the
constraints of the given target’s MMA instruction register ordering, we decom-
pose a single provisional MMA instruction back into a number of smaller MMA
instructions, or even single loads or stores.

3.7 Complexity of Heuristic Algorithm

SolveMMA processes each edge in E ⊆ V × V , which is potentially quadratic
in the number of variables in the program. Thus we require SolveMMA to be
an efficient algorithm else it will be too costly for all but trivial programs. Here,
we show that SolveMMA has similar complexity to SolveSOA.

Lemma 1. The running time of SolveMMA is O(|E| log |E| + |L|), where E
is the number of edges in the Access Graph, and L is the number of variable
accesses in the given program.
6 We assume that local user variables have been mapped to virtual registers, except

in the case of address-taken variables, which are turned into one-element arrays.
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Proof. SolveMMA is derived from SolveSOA, whose complexity has
been shown to be O(|E| log |E| + |L|). Thus we only consider the additional
complexity introduced in the construction of the MMA Access Graph and in
lines 10–11 and 13–16 of Figure 2. For every variable access l ∈ L there can be
at most 1 adjacent variable access. Lines 10, 11 and 14 incur a constant cost
per edge, as does line 13 in a well-implemented program. Lines 15–16 together
walk paths to convert them into directed paths. A path can be converted from
undirected to directed at most once. The total complexity is then O(|E| log |E|+
|E| + |E| + |E| + |L|), i.e., O(|E| log |E| + |L|). �	

Using path elements [13] the test for whether an edge e forms a cycle in C
is reduced to testing whether the head and tail vertices of e are common to a
single path element. This test can be performed in constant time.

4 Multiple Memory Access on the VSDG

The previous section applied MMA optimization to a program in CFG form. The
transformations that are possible are constrained by the precise ordering speci-
fied by the CFG. In this section we apply MMA optimization to the Value State
Dependence Graph, which has fewer constraints on the ordering of instructions.

4.1 The Value State Dependence Graph

The Value State Dependence Graph (VSDG) [8] G = (N, EV , ES , �, N0, N∞) is
a directed graph of a single procedure (as for the CFG) consisting of operation,
loop (θ) and merge (γ) nodes N , special entry (N∞) and exit (N0) nodes, node
labelling function �, and value (EV )- and state (ES)-dependency edges.

Value dependency edges indicate the flow of values between nodes, and must
be preserved during register allocation and code motion.

State dependency edges represent the essential sequential dependency re-
quired by the original program. These edges both fix an issue in the Value
Dependence Graph (VDG) [17], and are useful for other purposes (e.g., our
Combined Register Allocation and Code Motion (RACM) algorithm [8]).

The VSDG inherits from the VDG the property that a program is implicitly
represented in Static Single Assignment (SSA) form [5]: a given operator node,
n, will have zero or more value-dependent-successors using its value.

Figure 4 shows the VSDG of the example program from Figure 1, showing
memory load, memory store and add nodes, with value- and state-dependency
edges, together with the resulting Access Graph and memory layout.

4.2 Modifying SolveMMA for the VSDG

The VSDG under-specifies the ordering of instructions. Thus we can reformulate
the four criteria of Definition 3.2 to “(1) i ∈ α(p) and j ∈ α(q) are in the same
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Fig. 4. VSDG of Figure 1. The solid lines in (a) are value dependencies, and the
dashed lines state dependencies (the middle portion of the graph is not shown, but
can be readily constructed). The labels of the memory load ‘ld’ and memory store ‘st’
nodes include the variable name after the period. The Access Graph of (a) is shown in
(b), with the covered edges in bold, resulting in memory layout (c).

γ- and θ-dominated regions7; (2) op(i) = op(j); (3) for loads, j has the same
state-dependent node as i; for stores, j state-depends on i; and (4) j is not
value-dependent on i.”

For example, in “x = v[a + b]” there are three loads—one each for a, b
and the indexed access into array v[]. But the order of the first two loads is
unspecified, and so either can precede the other. This is represented in the Access
Graph by two edges (a, b) and (b, a) of equal weight.

We gain two benefits from using the VSDG. The first is due to the state
dependency edges defining the necessary ordering of loads and stores. For exam-
ple, if a group of loads all depend on the same state, then those loads can be
scheduled in any order; the VSDG underspecifies the order of the loads, allowing
MMA optimization to find an order that benefits code size.

The second benefit is due to the separation of value dependency and state
dependency. Such a separation facilitates a simple method of code motion by
inserting additional serializing edges into the VSDG. For example, we can hoist
an expression from between two stores, allowing them to be combined into a
single MMA store.

The VSDG does not change the SolveMMA algorithm itself, but we argue
that it is a better data structure, and allows greater flexibility in the mixing of
7 These are equivalent to basic blocks in the VSDG.
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phases within the compiler. For example, the register allocation phase [8] can
favour an instruction ordering which allows provisional MMA instructions to
become actual MMA instructions.

5 Target-Specific MMA Instructions

The generic MMA instructions (§3.1) do not specify any addressing mode, since
the underlying algorithm is neutral in this respect. Its purpose is to combine
multiple instructions into a single instruction to reduce code size.

Tailoring the algorithm for a given architecture requires adding constraints
to the code generator and register assigner. For example, the PowerPC’s lmw
and stmw instructions require a contiguous block of registers ending in R31.

The ARM Thumb LDM and STM instructions use a post-incremented register.
Thus we only consider access paths where the address is increasing. Raddr is
updated with the address of the word after the last word accessed by the MMA
instruction. This gives another form of register re-use similar to GOA which we
resolve opportunistically: after an MMA instruction the base register may be
available for re-use later, saving an address computation.

6 Experimental Results

The SolveMMA algorithm has been implemented as a transformation tool
within our VSDG tool chain. The tool chain consists of an ANSI C compiler
(based on LCC [7]), a multi-pass optimizer, an ARM Thumb code generator,
and a combined register allocator and code motion pass (an implementation of
our earlier RACM algorithm [8]).

We chose the ARM Thumb because its MMA instructions (LDMIA and STMIA)
are a subset of those in the full ARM instruction set, so any implementation will
be applicable to both instruction sets, and because there is greater interest in
producing compact code for the Thumb than for the ARM.

6.1 Motivating Example

Our first experiment is shown in Figure 5. It is a function which performs some
operation on a global array, as might be found in network packet processing.
SolveMMA combined all four loads into a provisional LDM instruction, and
similarly for the four stores. However, the code generator found it cheaper (avoid-
ing mov instructions) to undo the provisional LDM and emit four separate load
instructions. Using classical optimizations not yet implemented in our experi-
mental compiler we can remove the four instructions highlighted in Figure 5(b)
by modifying the final add instruction.
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void bufswap(int * array) {
int i;
for ( i = 0; i < 256; i += 4 ) {
int t1, t2, t3, t4;

t1 = array[i];
t2 = array[i+1];
t3 = array[i+2];
t4 = array[i+3];

array[i] = t4;
array[i+1] = t3;
array[i+2] = t2;
array[i+3] = t1;

}
}

bufswap PROC
push {r4-r6,LR}
mov r1, #0

tn_2 cmp r1, #255 **
bgt tn_1 **
lsl r2, r1, #2 **
add r6, r0, r2 **
ldr r5, [r6, #0]
ldr r4, [r6, #4]
ldr r3, [r6, #8]
ldr r2, [r6, #12]
stmia r6!, {r2-r5}
add r1, r1, #4
b tn_2

tn_1 pop {r4-r6,PC}

(a) C source (b) Thumb code (14 instructions)

Fig. 5. An illustrative example of MMA optimization of the function in (a). The out-
put of our compiler (b) shows that we combine the four stores into a single STMIA
instruction. This code compares favourably with that produced by the ARM commer-
cial compiler, which required 17 instructions and one extra register; using classical
optimizations our code gives 10 instructions.

6.2 Discussion of Benchmark Cases

The SolveMMA algorithm performs best on spill-code and global-variable-
intensive code, where a significant proportion of the instructions can be combined
into MMA instructions. Of note is that SolveMMA degrades gracefully—in the
worst case a provisional MMA instruction is decomposed into a corresponding
number of load or store instructions.

We applied our compiler to a number of test cases from MediaBench [11],
which provide opportunities of our algorithm to reduce code size. The results are
shown in Table 1 for individual functions where there was a reduction in code
size. In all other cases, while SolveMMA identified many provisional MMA
instructions, the limitations of the ARM Thumb addressing modes generally
need to combine three instructions to save one instruction. At worst, the code
generator emits a group of single loads or stores which, while not reducing code
size, neither does it increase.

In the first case, Gsm Coder(), the saving was through the use of a multiple
push (a special form of STM using the stack pointer as address register with pre-
decrement) to place two function arguments onto the stack prior to a function
call.

The remaining cases utilise LDM or STM instructions to reduce code size. Fur-
ther examination of the generated ARM code indicates places where provisional
MMA instructions have been decomposed into single instructions during register
allocation.
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Table 1. Measured behaviour of MMA optimization on benchmark functions. Num-
bers indicate instruction counts; both ARM and GCC compilers were run with space
optimization selected.

Source Without With ARM GCC
MMA MMA

code.c::Gsm Coder() 93 92 91 105
decode.c::Gsm Decoder() 86 81 66 82
gsm encode.c::gsm encode() 561 559 430 552
lpc.c::Reflection coeffs() 193 191 211 234

We also compared our compiler to both GCC and the ARM Ltd. commercial
Thumb compiler on the same benchmarks. We achieve almost 13% smaller code
than the GCC compiler, by spilling fewer callee-save registers and using MMA
optimization. In contrast, we produce around 9% more instructions than the
ARM compiler, which uses peephole optimization, a carefully designed register
allocator, narrow sub-word optimizations, and other optimizations which are not
the focus of this work.

7 Conclusions and Further Work

This paper introduces the SolveMMA algorithm as a tool for combining several
memory access instructions into a single MMA instruction. Using a technique
similar to that of Liao’s SolveSOA algorithm, we both identify loads or stores
that can be combined into single MMA instructions and guide stack frame layout.
Implemented as a transformation within our VSDG tool chain targeting the
ARM Thumb processor, we achieve up to 6% code size reduction, and never
increase code size.

One question that remains unanswered is which of the currently available
MMA instructions offers the best results for code compaction. In our choice of
the ARM Thumb we have a single address register and a bitmap to specify
the desired data registers. In contrast the MMA instructions of the PowerPC
support register+displacement addressing and specify the start index of a block
of contiguous registers ending in R31.

The current implementation of SolveMMA takes a simple approach to alias
analysis, considering only loads or stores where we can directly infer their address
relationship from the VSDG. More aggressive alias analysis should identify yet
more opportunities for combining loads and stores into MMA instructions.
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