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Abstract. This paper presents a systematic consideration of the major issues in-
volved in translation of executable design level software specification languages
to directly model-checkable formal languages. These issues are considered under
the framework of integrated model/property translation and include: (1) transla-
tor architecture; (2) semantics translation from a software language to a formal
language; (3) property specification and translation; (4) transformations for state
space reduction; (5) translator validation and evolution. Solutions to these issues
are defined, described, and illustrated in the context of translating XUML, an ex-
ecutable design level software specification language, to S/R, the input formal
language of the COSPAN model checker.

Introduction and Overview

Model checking [[TJ2] has major potential for improving reliability of software systems.
Approaches to software model checking can be roughly categorized as follows:

1.

2.

Manually creating a model of a software system in a directly model-checkable formal
language and model checking the model in lieu of the system;

Subsetting a software implementation language and directly model checking pro-
grams written in this subset;

. Subsetting a software implementation language and translating this subset to a di-

rectly model-checkable formal language;

. Abstracting a system implemented in a software implementation language and trans-

lating the abstraction into a directly model-checkable formal language;

. Developing a system in an executable design level software specification language

and translating the design into a directly model-checkable formal language;

. Model checking a property on a system through systematic testing of the execution

paths associated with the property.
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Categories 3, 4, and 5 cover a large fraction of the approaches to software model
checking, such as [BI2516718], all of which require translation from a software language
or an abstraction specification language to a directly model-checkable formal language.
Translation helps avoid the “many models” problem: as a system evolves, models of
the system are manually created and may contain errors or inconsistencies. Translation
also enables application of state space reduction algorithms by transforming the designs,
implementations, and abstractions being translated. There has, however, been little sys-
tematic consideration of issues involved in translating software specification languages
used in software development to directly model-checkable formal languages.

This paper identifies and formulates several major issues in translating executable
design level software specification languages to directly model-checkable formal lan-
guages. Solutions to these issues are defined, described, and illustrated in the context of
developing the translator [8] from xUML [9], an executable design level specification
language, to S/R [[10], the input language of the COSPAN model checker. (Another
translator [[11]], which translates SDL to S/R, is also referred to as we discuss issues
related to reuse of translator implementation.)

Model checking of a property on a software system via translation only requires
that the behaviors of the system related to the property be preserved in the resulting
formal model. The artifact to be translated consists of a model of a software system
and a property to be checked. This integrated model/property translation provides a
natural framework for generating a formal model that preserves only the behaviors
required for model checking a given property and has a minimal state space. Under
this framework, the following issues in translation of executable design level software
specification languages have been identified and formulated in developing the xXUML-
to-S/R translator:

Translator architecture. The architecture of translators should simplify imple-
mentation and validation of translation algorithms and transformation algorithms
for state space reduction, and also enable reuse of these algorithms.

— Semantics translation from a software language to a formal language. Model
checking of software through translation requires correct semantics translation from
a software specification language to its target formal language. The semantics of the
source software language and the semantics of the target formal language may differ
significantly, which may make the translation non-trivial.

— Property specification and translation. Effective model checking of software re-
quires specification of properties on the software level and also requires integrated
translation of these properties into formal languages with the system to be checked.

— Transformations for state space reduction. Many state space reduction algorithms
can be implemented as source-to-source transformations in translators.

— Translator validation and evolution. Translators must be validated for correctness.

They must be able to adapt to evolution of source software languages and target

formal languages, and incorporation of new state space reduction algorithms.

These issues arise generally in translation of software specification languages for
model checking. We have chosen executable design level software specification lan-
guages as our representations for software systems for the following reasons:



326 Fei Xie et al.

— These languages are becoming increasingly popular in industry and development
environments for these languages are commercially available.

— These languages have complete execution semantics that enable application of test-
ing for validation and also enable application of model checking for verification.

— A design in these languages can be compiled into implementation level software
specification languages and also can be translated into directly model-checkable
formal languages. This establishes a mapping between the implementation of the
design and the formal model of the design that is model checked, which avoids the
“many models” problem.

— These languages require minimal subsetting to enable translation to directly model-
checkable formal languages.

The balance of this paper is organized as follows. In Sections 2, 3, 4, 5, and 6, we
elaborate on these issues and discuss their solutions in the context of the xUML-to-
S/R translator. We summarize several case studies using the XUML-to-S/R translator in
Section 7, discuss related work in Section 8, and conclude in Section 9.

2 Translator Architecture

This section presents a general architecture for translators from software specification
languages to directly model-checkable formal languages and briefly discusses the func-
tionality of each component in this architecture. The emphasis is on the Common Ab-
straction Representation (CAR), the intermediate representation of the translation pro-
cess. Many of the important functionalities of translators are implemented as source-to-
source transformations on the software model to be translated or on the CAR.

2.1 A General Architecture for Translators

A general architecture for translators is shown in Figure [Il A notable feature of this
architecture is that the software model and the property to be checked on the model are
processed in an integrated fashion by each component. The frontend of the translator not
only constructs the Abstract Syntax Tree (AST) of the software model, but also transforms
the AST with respect to the property by applying source-to-source transformations such
as the loop abstraction [[13]. These transformations are partially guided by directives
written in an annotation language to be discussed in Section[3.1l Functionalities of other
components are discussed in Section[2.2]after we introduce the CAR.

2.2 Common Abstraction Representation (CAR)

A CAR is acommon intermediate representation for translating several different software
languages. It captures abstract concepts of the basic semantic entities of these languages
and is designed to be a minimal representation of the core semantics of these languages.
A CAR has been derived for the development of the xXUML-to-S/R and SDL-to-S/R
translations. The basic entities in this CAR include a system, a process, a process buffer,
a message type, a message, a variable type, a variable, and an action. A process entity is
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Fig. 1. Translator architecture

structured as a graph whose nodes are states, conditions, and actions and whose edges
are transitions. Actions are input, output, assignment, and etc.

Entities in a CAR may have parameterized definitions. Semantics of such entities
can be exactly specified only by referring to a specific source language. For instance,
in an xUML process, actions are associated with states while in a SDL process, actions
are associated with transitions. For translation of a specific source language, a profile
of the CAR is defined. The profile is a realization of the CAR which includes the CAR
entities necessary for representing the source language and realizes the CAR entities
with parameterized definitions according to the semantics of the source language. Each
model in the source language is represented by an instance of the CAR profile. The
CAR profile thus inherits its semantics from the source language. This semantics is
mapped to the semantics of a target language by a translator backend. CAR profiles for
different source languages require different translation backends to a target language.
These backends share translation procedures for a CAR entity if the entity has the same
semantics in the corresponding source languages. Semantic entities of a source language
that are not in the CAR are either reduced to the entities that are in the CAR or included
as extensions in the CAR profile for the source language. Having a CAR and different
CAR profiles for different source languages offers the following benefits:

— A CAR profile only contains the necessary semantic entities for a source language.
Therefore, it is easier to construct and validate the translation from the CAR profile
to the target language than the direct source-to-target translation.

— The simplicity of the CAR profile simplifies the implementation and validation of
transformations for state space reduction.

— The CAR enables reuse of the translation algorithms and the transformation algo-
rithms for the semantic entities shared by different profiles of the CAR.

There is often a significant semantics gap between a source language and a target
language, which makes a single-phase direct translation difficult. Having a CAR allows
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us to divide the translation from a source language to a target language into three phases:
(1) the CAR instance construction phase, (2) the CAR instance transformation phase,
and (3) the farget language code generation phase.

In the CAR instance construction phase, a model in the source language is scanned,
parsed, and transformed, and a CAR instance is then constructed. Complex semantic
entities in the model are reduced to basic semantic entities in the CAR. For instance, in
xUML, there are several different loop structures in the action language such as a for
loop, a while loop, and a do loop. All these loop structures are reduced to a simple loop
structure composed of a condition, the loop body, and goto actions. Implicit semantic
entities are made explicit in the CAR instance. For instance, there is an implicit message
buffer for each class instance in an XUML model, which is not explicitly represented in
the xXUML model. To be translated, such buffers are made explicit.

In the CAR instance transformation phase, the CAR instance is transformed by
source-to-source transformations for state space reduction. CAR provides a common
representation on which transformations for state space reduction such as static partial
order reduction [[14] can be implemented. Since the CAR profiles for different source lan-
guages share semantic entities, transformations implemented on these semantic entities
may be reused in translation of different source languages.

In the target language code generation phase, a model in the target language is
generated from the transformed CAR instance. For each semantic entity in the CAR, a
code generation procedure is defined. As the AST of a CAR instance is traversed, if a
semantic entity is identified, the corresponding code generation procedure is invoked to
emit codes in the target language. An entity in the CAR may have different semantics
when used in translation of different source languages. Therefore, the code generation
procedures for translating this entity may be different for different source languages. For
instance, in XUML each class instance has a message buffer while in SDL each process
has a message buffer. However, in XUML and SDL the message buffers have different
semantics. In XUML, a class instance can consume, discard, and throw an exception on
a message in its message buffer. In SDL, a process can save a message in its buffer and
consume it in the future. The translation procedures for translating an XUML message
buffer and an SDL message buffer are, therefore, different.

3 Semantics Translation
from Software Language to Formal Language

To translate a software language for model checking, a proper target formal language
must be selected. After selection of the target language, a translatable subset of the
software language is derived. This subset is mapped to the CAR by reducing complex
semantic entities in the source language to simple semantic entities in the CAR. The
simplified semantics of the source language is then simulated with the semantics of the
target language. We discuss these steps in the context of the xXUML-to-S/R translation.

3.1 Selecting Target Formal Language

There are many directly model-checkable formal languages. Promela [15], SMV [16],
and S/R [[10] are among the most widely used. These languages have various semantics.
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Their corresponding model checkers, SPIN [15], SMV [[I6], and COSPAN [10], support
different sets of search algorithms and state space reduction algorithms. Appropriate
selection of a target formal language should consider three factors: application domain,
semantics similarity, and model checker support. These three factors were considered
synergistically in selecting the target language for translating xXUML.

— Application domain. While this paper is concerned only with translation of a soft-
ware design, the ultimate goal of this project is hardware/software co-verification.
xUML is widely used in development of embedded systems which often requires
hardware/software co-design and co-verification. Such a system, at least on different
levels of abstraction, may exhibit both hardware-specific (tighter synchronization)
and software-specific (looser synchronization) behaviors.

— Semantics similarity. The asynchronous interleaving semantics of xXUML is close
to the semantics of Promela, which would simplify the translation, while both SMV
and S/R have synchronous parallel execution semantics.

— Model checker support. In practical model checking, especially in co-verification,
the widest range of search algorithms and state space reduction algorithms is de-
sired since it is not clear that any of these algorithms is superior for a well-identified
class of systems. A system that has both software and hardware components may
often benefit from symbolic search algorithms based on BDDs and SAT solvers
which are not available in SPIN. SMV provides BDDs and SAT based symbolic
search algorithms. However, Depth-First Search (DFS) algorithms with explicit state
enumeration, which have demonstrated their effectiveness in verification of many
software-intensive systems, are not available in SMV. COSPAN offers both symbolic
search algorithms and DFSs with explicit state enumeration. In addition, COSPAN
supports a wide range of state space reduction algorithms such as localization reduc-
tion [[10], static partial order reduction [[14], and a prototype implementation of
predicate abstraction.

Based on the above, we selected S/R as the target language at the cost of a non-trivial
xUML-to-S/R translation.

3.2 Subsetting Software Language

Software languages such as XUML may have multiple operational semantics and may
also have semantic entities not directly translatable to the selected target language. For
model checking purposes, a subset of the software language must be derived for a
given application domain. This subset must have a clean operational semantics suitable
for the application domain. Semantic entities that are not directly translatable, such
as continuous data types, must be either excluded from the subset or discretized and
simulated by other semantic entities. Infinite-state semantic entities may be directly
translated or be bounded and then translated depending on whether the target language
supports infinite-state semantic entities or not. If a target formal language permits some
infinite-state semantic entities, necessary annotations may also need to be introduced for
the subset so that infinite-state semantic entities in the subset can be properly translated.

In the xUML-to-S/R translation, we adopt an asynchronous interleaving semantics
of XUML (see Section B4) while XUML has other semantics such as asynchronous
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parallel. Continuous data types such as float can be simulated by discrete data types
such as integer if such a simulation does not affect the model checking result. Since
S/R does not support infinite semantic entities, infinite data types and infinite message
queues must be bounded implicitly by convention or explicitly by user annotations.

3.3 Mapping Source Software Language to CAR

After the translatable subset of the source software language is derived, a CAR profile
is identified accordingly. The CAR profile only contains the basic entities necessary for
representing the source language subset. A mapping is then established from the source
language subset to the CAR profile. Complex semantic entities in the source language are
reduced to simple semantic entities in the CAR. For instance, in XUML a state action can
be a collection action that applies a sub-action to elements of a collection in sequence.
The collection action is reduced into a loop action with a test checking whether there
still are untouched elements in the collection, and with the sub-action as the loop body.
After the mapping is established, the semantics of the CAR profile is decided by the
semantics of the source language and the mapping.

3.4 Simulating Source Semantics with Target Semantics

The mapping from the source language to the CAR profile removes complex semantic
entities from the source semantics. To complete the translation from the source language
to the target language, only this simplified form of the source semantics must be simulated
with the target semantics. We first sketch the semantics of XUML and S/R, then discuss
how the asynchronous semantics of xUML is simulated with the synchronous semantics
of S/R and how the run-to-completion requirement of xXUML is simulated.

Background: Semantics of xXUML and S/R. xUML has an asynchronous interleaving
message-passing semantics. In xXUML, a system consists of a set of class instances. Class
instances communicate via asynchronous message-passing. The behavior of each class
instance is specified by an extended Moore state model in which each state may be
associated with a state action. A state action is a program segment that executes upon
entry to the state. In an execution of the system, at any given moment only one class
instance progresses by executing a state transition or a state action in its extended Moore
state model. S/R has a synchronous parallel semantics. In S/R, a system consists of a
set of automata. Automata communicate synchronously by exporting variables to other
automata and importing variables from other automata. The system progresses according
to a logical clock. In each logical clock cycle, each automaton moves to its next state
according to its current state and the values of the variables it imports.

Simulation of Asynchrony with Synchrony. The asynchronous interleaving execution
of an xXUML system is simulated by the synchronous parallel execution of its corre-
sponding S/R system as follows. Each class instance in the xUML system is mapped
an automaton in the S/R system. An additional automaton, scheduler, is introduced in
the S/R system. The scheduler exports a variable, selection, which is imported by each
S/R automaton corresponding to an XUML class instance. At any given moment, the
scheduler selects one of such automata through setting selection to a particular value.
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Only the selected automaton executes a state transition corresponding to a state transi-
tion or a state action in the corresponding xXUML class instance. Other automata follow
a self-loop state transition back to their current states.

The asynchronous message-passing of XUML is simulated by synchronous variable-
sharing of S/R through modeling the message queue of a class instance as a separate S/R
automaton. Let automata I P; and I P, model two class instances and automata () P; and
@ P> model their corresponding private message queues. The asynchronous passing of
a message, m, from I P; to I P, is simulated as follows: [1: TP, — QP,] I P, passes
m to () P, through synchronous communication; [2: Buffered] () P> keeps m until I P,
is ready for consuming a message and m is the first message in the queue modeled by
QPs. [3: QP — IP5] QP passes m to I P, through synchronous communication.

Simulation of Run-to-Completion Execution. A semantic requirement of XUML is
the run-to-completion execution of state actions, i.e., the executable statements in a state
action must be executed consecutively without being interleaved with state transitions
or executable statements from other state actions. This run-to-completion requirement is
simulated as follows. An additional variable, in-action, is added to each S/R automaton
corresponding to an XUML class instance. All in-action variables are imported by the
scheduler. When an automaton is scheduled to execute the first statement in a state action,
it sets its in-action to true. When the automaton has completed with the last statement
in the state action, it sets its in-action to false. The scheduler continuously schedules the
automaton until its in-action is set to false.

4 Property Specification and Translation

Since the entire translation process is property-dependent, properties must be specified
at the level of and in the name space of software systems. Additionally, software level
property specification enables software engineers who are not experts in model checking
to formulate properties. We discuss software level property specification and translation
of software level properties in terms of xXUML and a linear-time property specification
language, but the arguments carry over for other software specifications and temporal
logics. Two issues related to property specification and translation: (1) automatic gen-
eration of properties and (2) translation support for compositional reasoning, conclude
this section.

4.1 Software Level Property Specification

An xUML level property specification language, which is linear-time and with the ex-
pressiveness of w-automata, has been defined. This language consists of a set of property
templates that have intuitive meanings and also rigorous mappings into the FormalCheck
property specification language [[18] which is written in S/R. The templates define pa-
rameterized automata. Additional templates can be formulated in terms of the given
ones, if doing so simplifies the property specification process. A property formulated
in this language consists of declarations of propositional logic predicates over semantic
entities of an xXUML model and declarations of temporal predicates. A temporal pred-
icate is declared by instantiating a property specification template: each argument of
the template is replaced by a propositional logic expression composed from previously
declared propositional predicates.
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To further simplify property specification, for an application domain, frequently used
property templates and customized property templates are included in a domain-specific
property template library based on previous verification studies in the domain. These
property templates are associated with domain-specific knowledge to help software en-
gineers select the appropriate property templates. A similar pattern-based approach to
property specification was proposed by Dwyer, Avrunin, and Corbett in [I9].

4.2 Property Translation

To support the integrated model/property translation, once the property specification
language is defined, semantic entities for representing properties are introduced as ex-
tensions to the CAR profile for the source software language. A model and a property
to be checked on the model are integrated in an instance of the CAR profile. In the
xUML-to-S/R translation, properties are translated by a module of the translator. Since
a property refers to semantic entities in the xXUML model to be checked, this module
conducts syntax and semantic checking on a property by referring to the abstract syntax
tree constructed from the model. For each property template, a translation procedure is
provided, which maps an instance of the template to the corresponding semantic entity
in the CAR profile and ultimately to a property in S/R for use by COSPAN.

4.3 Automatic Generation of Properties

Certain types of properties, such as safety properties that check buffer overflows, can be
automatically generated during translation. Translators can apply static analysis tech-
niques that identify implicit buffers and generate properties for checking possible over-
flows of these buffers. For instance, in xXUML, every class instance has an implicit
message buffer, which has the risk of buffer overflow. The xXUML-to-S/R translator au-
tomatically generates a safety property for each message buffer. When the resulting S/R
model is model checked, the safety property will catch any buffer overflow related to
the message buffer being monitored. Automatically generated properties are integrated
into translation in the same way as user-defined properties.

4.4 Translation Support for Compositional Reasoning

Another application of the software level property specification language is in construct-
ing abstractions of components to be used in compositional reasoning [20] where model
checking a property on a system is accomplished by decomposing the system into com-
ponents, checking component properties locally on the components, and deriving the
property of the system from the component properties. A property of a component is
model-checked on the component by assuming that a set of properties hold on other
components in the system. These assumed properties are abstractions of other compo-
nents in the system and are used to create the closed system on which the property of
the target component to be verified is model checked. These properties are formulated
in the software level property specification language. The assumed properties on other
components are called the environment assumptions of the target component. To sup-
port compositional reasoning, the translator is required to support translation of a closed
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system that consists of a component of a system and the environment assumptions of
the component. This is in contrast to model checking without compositional reason-
ing where the translator is only required to support translation of a closed system that
consists purely of entities specified in the software language, xUML in our case.

5 Transformations for State Space Reduction

The ultimate goal of integrated model/property translation is to generate a formal model
which preserves only the behaviors of the source software model required for model
checking a specific property and which has a minimal state space. Many state space re-
duction algorithms can be implemented as source-to-source transformations in the trans-
lation. This section describes model transformations implemented in the xXUML-to-S/R
translation and a model annotation language used to specify some types of transforma-
tions. Similar transformations will surely be applied in translation from most software
specification languages to directly model-checkable formal languages.

5.1 Model Annotation Languages

There is often domain-specific information that is not available in a software model, but
can facilitate transformations for state space reduction, for instance, bounds for variables
in the software model. Software engineers can introduce such information by annotating
the model with an annotation language before the model is translated. Such annotations
are introduced in an xXUML model as comments with special structures so that they will
not affect other tools for xXUML, for instance, xUML model execution simulators. The
annotations must be updated accordingly as the model is updated.

Variable bounds are introduced in an XUML model as annotations associated with
the variables or the data types of the variables. Annotation-based variable bounding
indirectly enables symbolic model checking with COSPAN and also directly reduces
state spaces. If tight bounds can be provided for variables in a software model, it can often
significantly reduce the state space of the resulting formal model that is to be explored
by either an explicit state space enumeration algorithm or a symbolic search algorithm.
Model checking guarantees the consistency among variable bounds by automatically
detecting any possible out-of-bound variable assignments. The annotation language is
also used to specify directives for guiding the loop abstraction [13].

Model annotations not only enable transformations, but also are indispensable to
translation of continuous or infinite semantic entities in a software model. For instance,
in the xUML-to-S/R translation, the information about how to discretize a float type and
about the bounds for message buffers of class instances is also provided as annotations.

5.2 Transition Compression

A sequence of transitions in a software model can often be compressed and translated
into a single transition in the formal model if verification of the property does not require
intermediate states in the sequence. A transition compression algorithm can be generic,
i.e., can be applied to many software languages, or can be language-specific, i.e, utilizes
language-specific information to facilitate transition compression.
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Generic Transition Compression. We use a simple example to illustrate generic tran-
sition compression. Suppose a simple program segment is of the formz = 1; z = x4 1.
If a property to be checked is not relevant to the interleavings of the two statements with
statements from other program segments, to the interim state between the two statements,
or to the variable, x, the program segment can be compressed into a single statement
x = 2 without affecting the model checking result. Similar transition sequences appear
in almost all programs in various software specification languages. Detailed discussions
on generic transition compression algorithms can be found in [21]].

Language-Specific Transition Compression. There will be language-specific opportu-
nities for transition compression in most software specification languages. An illustration
of language-specific transition compression in the XUML-to-S/R translation is the iden-
tification and translation of self-messages. A self-message is a semantic feature specific
to XUML and some other message-passing semantics: a class instance can send itself a
message so that it can move from its current state to some next state according to a local
decision. (It is assumed that self-messages have higher priority than other messages.)
Sending and consuming of a self-message can be translated in a similar way as how
sending and consuming of common messages among class instances are translated. This
straightforward translation results in several S/R state transitions that simulate sending
and consuming of a self-message. We developed a static analysis algorithm that identi-
fies self-messages and translates sending and consuming of a self-message to a single
S/R state transition.

5.3 Static Partial Order Reduction (SPOR)

Partial order reduction (POR) [2212324] is readily applicable to asynchronous interleav-
ing semantics. POR takes advantages of the fact that in many cases, when components
of a system are not tightly coupled, different execution orders of actions or transitions
of different components may result in the same global state. Then, under some con-
ditions [22)23124]], in particular, when the interim global states are not relevant to the
property being checked, model checkers need only to explore one of the possible exe-
cution orders. This may radically reduce model checking complexity.

The asynchronous interleaving semantics of xXUML suggests application of POR.
POR is applied to an xXUML model through SPOR [14], a static analysis procedure that
transforms the model prior to its translation into S/R by restricting its transition structure
with respect to a property to be checked. For different properties, an xXUML model may
be translated to different S/R models if SPOR is applied in translation. Application of
symbolic model checking to an S/R model translated from an xXUML model transformed
by SPOR enables integrated application of POR and symbolic model checking.

5.4 Predicate Abstraction

Predicate abstraction [23] maps the states of a concrete system to the states of an abstract
system according to their evaluation under a finite set of predicates. Predicate abstraction
is currently applied in model checking of software designs in xXUML by application of the
predicate abstraction algorithms proposed in [17] to the S/R models translated from these
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designs. It should be possible, however, to implement some forms of predicate abstraction
as transformations in translation. Research on application of predicate abstraction to
software system designs as they are translated is in progress.

6 Translator Validation and Evolution

Correctly model checking a software model through translation depends on correctness
of (1) the conceptual semantics mapping from the source software language to the tar-
get formal language, (2) the translator that implements the semantics mapping, and (3)
the underlying model checker that checks the resulting formal model. Correctness of
a semantics mapping can sometimes be proved rigorously. A proof for the semantics
mapping from xXUML to S/R can be found in [26]. The translator must be validated to
ensure that it correctly implements the translation from the source language to the target
language and also the state space reduction algorithms incorporated. The correctness of
the model checker is out of the scope of this paper. As the source language and the target
language evolve, the translator must also evolve to handle (or utilize, respectively) se-
mantic entities that are newly introduced to the source (or target) language. The translator
also must evolve to incorporate new state space reduction algorithms.

6.1 Translator Validation

Testing is the most commonly used method for validating a translator. Testing of a
translator is analogous to, but significantly different from, testing of a conventional
compiler. Testing of a conventional compiler is most often done by use of a suite of
programs which are intended to cover a wide span of programs and paths through the
compiler. Testing of a translator from a software specification language to a model-
checkable formal language is a multi-dimensional problem. The test suite must be a cross-
product of models, properties, and selections of state space reduction transformations.
The correctness of a compilation can be validated by running the program for a spectrum
of inputs and initial conditions and determining whether the outputs generated conform
to known correct executions. While a translated model can be model checked, it is far
more difficult to generate a suite of models and properties for which it is known whether
or not a property holds on a model. We have a partial test suite for the xXUML-to-S/R
translation and development of a systematic test suite is in progress. Development of
test suites is one of the most challenging problems faced by developers of translation-
based model checking systems. We believe this is a problem which requires additional
attention.

Recently, there has been progress on formal validation of the correctness of transla-
tors. The technique of translation validation is proposed in [27]], whose goal is to check
the result of each translation against the source program and thus to detect and pinpoint
translation errors on-the-fly. This technique can improve, however cannot entirely re-
place the testing approach discussed above since the correctness of translation validation
depends on the correctness of the underlying proof checker.

6.2 Translator Evolution

The key to the evolution of a translator is the evolution of the CAR of the translator since
the CAR bridges the source software language to the target formal language and connects
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the translator frontend to the translator backend. Translation from the source language
to the CAR is relatively straightforward since the CAR is quite simple. The complexity
of the translation from the CAR to the target model-checkable language depends on
the complexity of the target language, but the latter are also usually simple and well
structured. The transformations conducted on the CAR are much more complex. The
principle for the CAR evolution is that the CAR should be kept stable as possible, and
existing translation algorithms and state space reduction algorithms should be reused
as much as possible. The CAR is extended (1) if there is no efficient way to translate
some semantic entities of a new source language, (2) if some semantic entities of a new
target language are hard to utilize, or (3) if implementation of new state space reduction
algorithms requires introduction of new semantic entities in the CAR.

7 Case Studies Using xXUML-to-S/R Translator

The xXUML-to-S/R translator has been applied in model checking designs of real-world
software systems: a robot control system [28] from the robotics research group at the
University of Texas at Austin, a prototype online ticket sale system [29], the TinyOS run-
time environment [30] for networked sensors from University of California, Berkeley.
The case study [31] on the robot control system demonstrated model checking of non-
trivial software design models with the translator. In the case study [32]] on online
transaction systems, state space reduction capabilities of model transformations in the
translator and interactions of these transformations were investigated. The TinyOS case
study [33]] demonstrated the translation support for compositional reasoning. Co-design
and co-verification studies on TinyOS using the translator are in progress.

8 Related Work

Most automatic approaches to model checking of design level software specifications
are based on translation. Translators have been implemented for various design level
specification languages such as dialects of UML, SDL, and LOTOS [34]]. The vUML
tool [7] translates a dialect of UML into Promela. The translation is based on ad-hoc
execution semantics which did not include action semantics, and does not support spec-
ification of properties to be checked on the UML model level. There is also previous
work [35136]] on verification of UML Statecharts by translating Statecharts into directly
model-checkable languages. The CAESAR system [37]] compiles a subset of LOTOS
into extended Petri nets, then into state graphs which are then model-checked by using
either temporal logics or automata equivalences. The IF validation environment
proposes IF [39], an intermediate language, and presents tools for translating dialects of
UML and SDL into IF and tools for validation and verification of IF specifications.
The translator architecture presented in this paper extends the architecture for con-
ventional compilers. Similar extensions have been proposed in [37.38]]. In these architec-
tures, intermediate representations that have fixed and complete semantics are adopted
while in our approach, the CAR does not have fixed and complete semantics. It only
specifies semantics of the generally shared semantic entities and for other semantic en-
tities, their semantics are decided when a CAR profile is defined for a specific source
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language. This enables reuse of translator development efforts while allowing flexible
translator development via a customizable intermediate representation.

A recent approach to model checking implementation level software representations
is an integrated approach based on abstraction and translation. Given a program in
C/C++ or Java, an abstraction of the program is created with respect to the property to
be checked. This abstraction is constructed in a conservative way, i.e., if the property
holds on the abstraction, the property also holds on the program. The abstraction is then
translated into a model-checkable language and model checked. If the property does not
hold on the abstraction, the error trace from model checking the abstraction is used to
determine if the error is introduced by the abstraction process. If so, the abstraction is
refined based on the error trace. The SLAM tool from Microsoft, the FEAVER [6]
tool from Bell Labs, and the Bandera [4]] tool from Kansas State University are sample
projects of this approach. SLAM abstracts a boolean program from a C program, then
directly model-checks the boolean program or translates the boolean program into other
model-checkable languages. FEAVER abstracts a state machine model from a C program
with user help and translates the state machine model into Promela. Bandera abstracts
a state machine model from a Java program and translates the state machine model
into Promela, SMV, and other model-checkable languages. Many of translation issues
identified in our project also appear in the translation phase of these three tools.

9 Conclusions

Translation plays an increasingly important role in software model checking and enables
reuse of mature model checking techniques. This paper identifies and formulates issues
in translation for model checking of executable software designs. Solutions to these
issues are presented in the context of the xXUML-to-S/R translator. These solutions can
be adapted to address similar issues in translation support for model checking of other
design level or implementation level software representations.
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