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Abstract. We believe that the problems of safety, security and resource
usage combine to make it unlikely that programmable networks will ever
be viable without mechanisms to transfer risk from the platform provider
to the user and the programmer. However, we have well established mech-
anisms for managing risk - markets. In this paper we argue for the es-
tablishment of markets to manage the risk in running a piece of software
and to ensure that the risk is reflected on all the stakeholders.

We describe a strawman architecture for third party computation in
the programmable network. Within this architecture, we identify two
major novel features:- Dynamic price setting, and a reputation service.
We investigate the feasibility of these features and provide evidence that
a practical system can indeed be built.

Our contributions are in the argument for markets providing a risk man-
agement mechanism for programmable networks, the development of an
economic model showing incentives for developing better software, and
in the first analysis of a real transaction graph for reputation systems
from an Internet commerce site.

1 Introduction

The core problem being tackled in active networking is the same as for any mo-
bile code approach - how can we allow computation to take place on behalf of
some third party, yet be sure with high probability that the outcome of the com-
putation will not be harmful to the local machine or environment? There have
been attempts to use technologies from the programming language design com-
munity, such as safe typing [II2] and namespace protection [3H4], to design safe
programming languages for active networks and service. Systems have been built
to control the execution environment of third party programs using and extend-
ing the techniques from operating systems for controlling scheduling, memory
usage and general access control [BlGI[7]. Yet another approach for component
based programs is to check a priori that the program composition graph is ac-
ceptable [89].

Yet despite this panoply of technical solutions, there is no widespread deploy-
ment of platforms supporting third party computation for networks or anything
elsd]. We would argue that this situation exists because there is no benefit to the

! One could argue that PlanetLab is a distributed programming platform, yet the users

have to pay by providing computers to use the system. This is therefore evidence
that the market has to be involved.
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manager of any platform in supporting third party computation, and further,
that there is no way for the manager to reflect the risk undertaken by hosting
the platform.

The risks to the platform from running software on behalf of someone else
are that the software, whether through malice or accident, will deny resources to
other users, potentially leading to crashes of their programs and the platform.
This will result in the platform being perceived as unsafe by the affected users,
and they will become reluctant to run software on the platform again. In the
worst case, the software may open up the platform owner to liability for loss and
damage caused to other users. Despite the increasing reliability and safety of
operating systems, there remains a probability that software can deny resources
to other users.

Instead we propose that the manager of the computing platform has to be
appropriately reimbursed for the risk they are taking in hosting the third party
computation, and that the amount of reimbursement should be decided through
market mechanisms. The remainder of this paper provides an overview of market
based scheduling of programs, and outline a strawman architecture for using mar-
kets to calculate the riskiness of running a given program. We then demonstrate
the feasibility of two novel aspects of this strawman architecture; the spread-
ing of risk through market mechanisms and the use of a distributed reputation
system. We conclude with a discussion of the possibilities for future work.

2 Market Based Computational Systems

Market mechanisms for scheduling computation are not novel. There have been
systems designed for the grid and other systems, such as Condor [10], Spawn
[11], the Java Market [12] and Nimrod-G [13]. Surveys and taxonomies of the
various approaches can be found in [14] and [15]. Market mechanisms appear in
many other places, most notably for controlling congestion [L6/I7I[I8].

Negotiating which buyers buy from which sellers is a fundamental choice in
the design of any market-based system. Given that our motivation for a market
based system is for sellers to set prices to guard against the various risks of
the different buyers, we consider mechanisms which allow sellers to set prices. A
more commonly adopted approach is to use a tender/contract approach, where
buyers issue a tender for contract, to which sellers respond with a bid based
upon their estimate of their costs and the value of their service to the seller.
Buyers can then set a buyer-specific price, resulting in different buyers receiving
different prices for the same product.

It is a well-established economic principle that differential pricing with large
fixed costs can be very efficient [19]. By selling each unit at the highest price
each individual is willing to pay, the producer maximises profit and increases
the number of consumers who are able to buy the product. Telecommunications
and airlines are good examples of real markets where this happens. There are
two main arguments against differential pricing in reality:
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1. How can sellers get enough information to set prices appropriately?
2. What happens if buyers resell the product?

If differential pricing is to be effective, it behooves the infrastructure design-
ers to ensure that there is sufficient information for sellers to match prices to
customers’ perceived value. We propose the use of a distributed database con-
taining the outcomes of each transaction, which can then be used to determine
the reputation of each seller, customer and program. The reputation of the seller
and program can be used to adjust prices to account not only for the expected
resource usage, but also for the lost opportunity cost if the program misbehaves
and affects other customers.

We would argue that reselling is not necessarily a bad thing. In our current
design, when the contract between the seller and buyer is made, the right to
process uses a cryptographic ticket tied to the identities of the seller, buyer and
program. To transfer a ticket, the buyer has to chain the identity of the new
ticket owner onto the ticket by re-signing the ticket to confirm the ticket has
been transferred. The outcomes of running the program are then inserted into
the reputation system under both the original buyer and the rebuyer. Any future
price setting will use these outcomes to set price, so that if the reseller wishes to
continue trading, they have to ensure that their customers don’t adversely affect
their reputation. By allowing trade in tickets bearing a right to process, the
market can be made more efficient, since the brokers can accept the responsibility
of matching prices to buyers, and the processor owners need only worry about
the reputations of the resellers.

3 The Risk Compensation Architecture for Third Party
Computation

To explore the design space for building an infrastructure to support risk com-
pensated third party compensation, we produced a strawman architecture, based
on rapid prototyping of the various system components. We assume that there
are a small number of platforms at each locality which can have the necessary
capabilities to run software on behalf of a set of customers. The software can
run for a short duration, e.g. in providing rerouting of critical services during
a Denial of Service attack, or of long duration, such as offering a game server.
We assume that the service location problem is solved elsewhere. The customer
either directly interacts with the system, or a software agent [20] acts on the
customer’s behalf.
The sequence of interactions is illustrated in Figure M

1. The customer makes a request for a price to run an identified piece of soft-
ware. The customer and software are named through a self-certifying naming
system, e.g. by the software using a tree of hashes [21] and identifying the
customer through a hash of their public key.

2. The processors look up the customer’s entries in the reputation service
database. All relevant records are returned.
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Fig. 1. The Strawman Risk Compensation Architecture for Third Party Computation

3. The processor calculates and returns a price to the customer, using the
entries from the reputation service.

4. The customers check the processors’ reputations.

5. The customers make a judgment on which is the best processor for their job
and request execution.

6. After execution, the processor and customer sign an xml certificate describ-
ing the memory and processor cycles used, and whether the jobs generated
uncaught signals or exceptions. They insert the certificate into the reputation
service.

Many of the pieces of this architecture have been built and used together
before, e.g. in the systems surveyed in [T415]. Cryptographic requests and tick-
ets are easily built from standard security protocols and digital signatures [22].
Mobile code systems have been shown to work in many projects, such as in our
previous work on SafetyNet [23].

The novel features of the strawman design are in calculating an offer price
based upon the reputation of the customer, and in the use of a reputation service.
In our initial prototype, the setting of an offer price would often lead to wild
fluctuations in the offered price. To understand this behaviour further and to
develop more stable pricing systems, we built further simulations described in
Section 1] Our initial implementation of the reputation service was based upon
a single mysql database. If the reputation service is to be practical, then it
must scale in the number of entries and the number of users, be resistant to
manipulation by malevolent users, and provide appropriate information to the
users of the service. We undertook studies of existing reputation systems, and
show how the results of these studies should guide the design of future reputation
services.
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4 A Simple Market Model

We base our model firmly in the microeconomic theory of oligopolies. We assume
that each location has a small number of processors available, and that there
are a set of customers who wish to use these machines. For each processor, there
are zero marginal costs for supplying customers - there is purely a fixed cost
for maintaining and running the processor. Each processor can set a customer
specific price for the customer to run their software. Each processor is aware of
the funds available to each customer, and has knowledge of the utility function of
each customer - i.e. how the customer perceives value. Each customer is aware of
the other customers’ utility functions and can calculate the expected load upon
each processor.

We model each processor as a simple M/M/1 queuing system. Thus for each
customer 4 there is a load A;; placed upon the processor j. Each processor has
a capacity p;. The total waiting and service time, 73, from the processor is

therefore: )

1= 22" Aij
The customer cares about the response time from the processor (larger is worse),
their own load placed upon the processor (larger is better) and the cost of using

the processor (less is better). We follow a conventional economic approach and
model the customer’s utility function as:

Z Ta pZJ ij)”

If we set « = —1,0 =2 and v = —1, then we obtairf:

T, =

j k
wy = i Aij (5 = 2 Akj)

Dij

where p;; is the price offered by processor j to customer i per unit of service.
We model the load setting game as follows: For each customer, the customer
searches for the load vector to load on each processor that would maximise
the customer’s utility, subject to the constraint that their expenditure mustn’t
exceed their income I;:

pi-Ai < I;

This set of loads is their best response to the loads set by the other processors.
This game is repeated until no processor can increase its income by adjusting its
price vector. This is the Nash Equilibrium point of the of the customer utilities for
a given price matrix by definition. It should be noted that the Nash equilibrium
is guaranteed to exist since the utility function is continuous and concave in the
the Euclidean space defined by the feasible set of loads [24]. We describe this
theory more in the accompanying technical report [25].

2 These values are chosen arbitrarily
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We assume that the processors set prices, as in the oligopoly theory of
Bertrand [26]. Processors will set prices so as to maximise their income. The
income received by each processor m; is simply the sum of the price offered to
each customer multiplied by the load offered by that processor over all customers.

i
T = Zpij)\ij

We model risk by assuming that there is a failure rate associated with the
software run by each customer, f;. Our simulation runs through a set of discrete
rounds, where the prices and associated loads are calculated for each round. The
perceived failure rate of a processor is then the weighted sum of the failure rates
of the software run upon the processors, weighted by how much load each cus-
tomer places upon the processor. We modify the utility function of the customers
to use the last seen failure rate in their utility calculation.

" — XJ: Aij (1 = 328 i)
pij f j2
The analytic solution of the load setting game for the customers is derived in
the Appendix.

In our model, the processors take turns setting prices that maximise their
revenues from the loads which the customers have maximised. This game is re-
peated until no processor would increase its revenues by changing its prices. This
is again a Nash equilibrium. In calculating the expected revenue, the processors
not only maximise the revenue for the current round, but the expected future
revenue based upon how their perceived failure rate will be modified.

We built a Matlab simulation of the above model and ran it through many
different sets of experiments. As we discuss in the appendix, the discounting
of future income will generally result in a complex equation to predict future
income, and the price setting game is not guaranteed to converge on a single
optimum point. Instead, we have found that the price setting may develop a
limit cycle in which there are a cycle of best responses to each of the other
processors’ prices. We are attempting to develop the theory further to show that
the game will either converge to a single point in the pricing space, or will develop
a limit cycle and will never diverge. We have not discovered any combinations of
settings where the prices diverge. To deal with this eventuality, our simulation
terminates a round either when the price setting converges to a stable set of
prices, or a limit cycle is detected over a number of iterations.

4.1 Case Studies and Simulations

We illustrate two of the more interesting cases below. In each of the scenarios, the
processors discount 2 rounds into the future, calculating their expected income
as a weighted sum of income, assuming that perceived failure rates change based
on the expected customer load, and using the same price vector in the future.
The customer and processor tournaments carry on until the change per round
is less than a given small amount.
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Fig. 2. Offered price for bad software

Bad Software. In this scenario, there are 3 customers wishing to run software
on either of 2 equal processors. Customers 1 and 2 are good customers whose
software doesn’t crash the processor with income of 10 units each. Customer
3 has bad software which crashes the processor, disrupting the other jobs and
a relatively low income of 1 unit. In Figure Bl notice how the price offered to
customer 3 by either of the processors becomes so high that customer 3 cannot
afford to offer very much load. Even with a relatively simplistic optimisation
game, there are emergent behaviours which penalise bad software due to their
detrimental effects on the reputation of the processors.

Bad Software and Risk-Taking Processors. In this scenario, there are 3 customers
wishing to run software on 3 processors. Customers a and b run good software
with a failure rate of 0.1 units, whilst customer ¢ has bad software with a failure
rate of 1 unit. Each of the customers has 10 units of income. Processors 1 and 2
have capacity of 10 units, whilst processor 3 has a capacity of 1 unit. In Figure Bl
the processors serve two different market segments. Processors 1 and 2 become
low failure rate processors mainly servicing the good customers, whilst the other
processor becomes a relatively failure prone machine thus getting a large part
of customer c¢’s income. This illustrates that differential pricing can create niche
markets.

We believe that a major advantage of using software reputation in setting
the price for running a program will be in creating incentives for better software.
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Fig. 3. The emergence of risk taking processors

If software has a lot of bugs, then its reputation will decrease and the price to
run it will rise. Customers will then have an incentive to pressure the software
developers for better software, either through economic pressure by reducing
sales, or through exerting social pressure to reduce the number of bugs.

As program developers will feel more direct pressure to produce better soft-
ware, then developers will have incentives to adopt technology which increases
the safety of their programs. In this way software technology, such as type safe
languages have better chance to compete in the market.

Segmentation of the market will provide separate resources for production
code and for testing code. Free and best effort platforms may emerge, whose
reputation and load will provide indicators as to whether they should be trusted.

Although our simulation modes indicate that differential pricing provides
many good features, more work needs to be done yet. Our model only uses one
approach to negotiating a price. There are many other possible mechanisms for
negotiating prices, and the emerging area of mechanism design for the Internet
and computational systems may provide better technology [27].

5 The Feasibility of a Distributed Reputation System

In our initial implementation of a reputation service, we had no data upon which
to base our design. To ensure that our future work was tested upon real data,
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we analysed an existing reputation system in which products and services were
bought by real people with real money. The Amazon.co.uk website provides a
variety of commerce activities through its “Marketplace” and “Z-Shops”. Fach
user of these services chooses a unique user id and receives an associated tag from
Amazon. After each transaction, feedback is entered where the recommender
gives a rating of between 0 and 5 to each recommendee. These recommendations
can be inspected for each user.

The data was collected by using the web services available from Ama-
zon.co.uk. We set up an initial set of seeds by collecting names through searching
for a set of disparate items. The graph of recommendations was then followed
to collect the set of links and entities. In all we collected 405,661 different nick-
names, or nodes.

Each node has one or more recommendations going from it to other nodes, or
one or more recommendations pointing at itself. Each recommendation consists
of a numeric rating of the transaction, from 0 to 5, the date of the rating and a
comment. We did not collect the comments.

From this collected data, we determined the proportion of nodes which have
k neighbours, P(k). We excluded multiple recommendations between the same
nodes, and self-recommendations. These are plotted in the log/log graphs of
Figures@andBl We show the residuals from the fitted curves, which indicate that
both the outbound and inbound P(k) functions are better fitted by polynomials
of degree 2 in the log/log curves, ie that the relationship between P(k) and k
can be modeled by:

P(k) o kF %)

If we examine the undirected graph formed by the recommendations, we find
the graph to be connected, and the diameter of the graph i.e. the largest shortest
path between two nodes, is measured to be 21 hops. The average shortest path
between two nodes is 8.1.

5.1 Analysis of Reputation Services

As expected, the transaction graph exhibits the properties of a power law graph.
Following Barabasi [28] the transaction graph will grow in the number of nodes
and each node will exhibit preferential attachment. If we classify nodes as either
predominantly buyers or sellers, then a buyer will tend to buy from existing
sellers with established reputations, whilst incoming sellers will be used predom-
inantly by existing buyers who are already well-connected. The low connectivity
of the directed graph can be explained by the clustering of buyers and sellers
around particular types of item, such as videos or books.

In the following discussion, we assume that the characteristics of the trans-
action graph described above can be generalised to other transactional based
systems, such as the execution of a third party piece of software. In the absence
of any other data, it is valid to criticise design approaches to reputation systems
assuming that their transaction graph will show similar characteristics.
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There are a number of peer to peer reputation systems which rely on polling
trusted neighbours to find the reputation of the target system, hoping that they
will have had some direct interaction with the target system such as [29/30]. The
P2PRep system is designed to operate in Gnutella file sharing systems and
is typical of such an approach. To check the reputation of a server, the requesting
node polls other local servents to get certificates detailing their interactions with
the servers. If this technique is reused where the transaction graph is a power
law graph, then there are many nodes which will have had few interactions with
other nodes, and thus will be unlikely to receive any certificates. However, the
localised nature of the cliques will mean that this technique is effective for highly
connected nodes.

The Eigentrust system [31] is based on the distributed computation of the
principal left eigenvector over a normalised version of the transaction graph,
using a similar approach to the pagerank algorithm of Google. In the secure
version discussed by the paper, a node’s “trust” value is computed by a set
of score managers. In each iteration, the score manager’s collect the current
trust value from each of the neighbours of the node, and return the results
after calculating using the local column of the transaction graph matrix. If the
transaction graph is a power law graph, this may result in local hot spots, and a
high number of messages for some nodes, slowing down the computation. Since
each change in the reputation graph may trigger a recomputation of reputation,
the load may become unacceptable.

In making an assessment of a node in the transaction graph, it is necessary to
both have the directly relevant information, and ways of assessing the reliability
of the direct information. If this is not provided, then the direct information is
susceptible to sybil based attacks, where the attacker inserts multiple entries into
the database. We propose a multi-metric, multi-type approach, in which each
transaction entry is accorded a type, so that users can check entries of relevant
type, and the use of metrics to assess the reliability of each transaction entry.

Since the graph is a power law graph, it becomes feasible to search through
the graph in a distributed fashion, since power law graphs are amenable to effi-
cient distributed searching [32|33]. We are currently investigating and comparing
distributed path finding techniques starting from trusted nodes as alternatives
to metrics such as EigenTrust.

Any system should have high availability. The most effective solution may be
to have a dedicated set of high availability servers, running either a DBMS, or a
distributed storage system such as a distributed hash table e.g. Pastry [34]. The
tendency to hot spots in the graph may make the DHT approach vulnerable to
hot spots.

6 Future Work

We are currently building a distributed reputation system, providing a mul-
timetric view of the transaction graph, using a distributed hash table as the
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underlying storage. We will be using the collected data as the basis for analysing
performance.

We are working towards incorporating information about resource usage in
the next generation of the SafetyNet language, and its associated runtime. We
are hoping to incorporate both endogenous information from static analysis of
the program and exogenous information from the transaction certificates. We
will be looking to port the runtime to the XenoServer environment[35].

7 Conclusion

In this paper we have argued that the difficulty of managing risk is one of the
major reasons that active networks and other third party computational infras-
tructures have not achieved widespread deployment. If risk is to be managed,
programs must be priced according to the potential lost revenue from running
a program which deters other customers from using the platform. We have de-
scribed simulations which indicate that pricing according to risk produces a
stable environment which provides market niches for different platforms, and
incentives for good software. Finally, we have presented the first analysis of the
transaction graphs of an ecommerce site, and used this to motivate the design
principles required for a distributed reputation service. The results reported here
indicate that it is feasible to develop a third party computational infrastructure.
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