
A Policy-Based Management Architecture for
Flexible Service Deployment in Active Networks

Yiannis Nikolakis1, Edgar Magaña2, Marcin Solarski3, Alvin Tan4,
Epifanio Salamanca2, Joan Serrat2, Celestin Brou3, and Alex Galis4

1 National Technical University of Athens
Heroon Polytechniou 9, 15773 Athens, Greece

ynikol@telecom.ntua.gr
2 Universitat Politècnica de Catalunya

Dept T.S.C. Campus Nord D4 c. Jordi Girona, 1-3 c.p. 08034 - Barcelona, Spain
{emagana, epi}@nmg.upc.es, serrat@tsc.upc.es

3 Fraunhofer Institute FOKUS
Kaiserin-Augusta-Allee 31, 10589 - Berlin, Germany

{solarski, brou}@fokus.fraunhofer.de
4 University College London

Dept of Electronic & Electrical Engineering, Torrington Place, London WC1E7JE,
United Kingdom

{atan, a.galis}@ee.ucl.ac.uk

Abstract. This paper describes a dynamic, scalable and extensible
policy-based network management (PBNM) system that is fully inte-
grated with a service provisioning architectures for active networks. The
key result is network customisation according to the needs of the dif-
ferent service providers and its end users. Our component-based service
provisioning architecture enables us to render service- and user-specific
requirements, across single/multiple administrative domains, at deploy-
ment time and to dynamically map service components onto the net-
work using the corresponding management policies. The architecture pre-
sented in this paper describes the approach undertaken by the IST-FAIN
research project as well as the main issues that we encounter in develop-
ing and integrating the PBNM with the service provisioning mechanism.

1 Introduction

Active and programmable networking technology introduces innovative ap-
proaches for enabling the user to set up the network configuration and its corre-
sponding services dynamically, according to specific requirements. The dynamic
nature of active networks and its continuously emerging new services, calls for ef-
ficient management mechanisms to configure the network according to the needs
of the service providers and the services themselves, as well as to dynamically
extend the management functionalities to adapt to the requirements set by new
services.

N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 240–251, 2004.
c© IFIP International Federation for Information Processing 2004



A Policy-Based Management Architecture for Flexible Service Deployment 241

The FAIN project [1], [2] is aimed at developing a fully managed, multi-EE
prototype active node to support deployment and provisioning of component-
oriented services. The FAIN programmable node is described in [3]. The FAIN
network management architecture consists of the Policy-Based Network Manage-
ment (PBNM) [4] and the Active Service Provisioning (ASP) [5] systems, which
provide higher-level management and service deployment mechanisms built on
top of an active network infrastructure.
In this paper we describe the final implementation of both the PBNM and ASP
systems as well as the intercommunication mechanism developed in order to of-
fer a flexible service deployment on active networks. We further introduce new
PBNM components at the network-level that were developed to address the
management aspects of end-to-end service creation and deployment, i.e., Re-
source Manager (RM), Service Manager (SM) and the Inter Domain Manager
(IDM). For these purposes, the network-level ASP was developed, which en-
hances our node-level ASP [5] work. We also consider the case when the network
management system is requested to deploy a service in a target node outside of
its domain. The FAIN services and their needs are described using technology-
independent (i.e., achieved via XML implementation) service descriptors and
abstractions from the actual implementation details. The service requirements
are used to create a Virtual Active Network (VAN), which is dedicated to pro-
vide the service with appropriate computational and communicational resources.
The paper is structured as follows: Section 2 provides an overview of the FAIN
PBNM with emphasis on the component functionality; Section 3 presents the
details of the ASP framework; Section 4 gives an explanation of the architecture
and interaction use cases between the PBNM and the ASP frameworks; Section
5 illustrates an example scenario that successfully demonstrates our expected
functionalities, while Section 6 gives a brief review of related work. Finally, Sec-
tion 7 concludes the paper.

2 Policy-Based Network Management (PBNM)
Architecture

The FAIN PBNM management architecture is designed as a hierarchically dis-
tributed architecture. It consists of two levels: the network management level
(NMS) and the element management level (EMS). The NMS is the entry point
to the management architecture. It is the recipient of policies, resulting from
the ANSP’s management decisions or service level agreements (SLA) between
various categories of users. The enforcement of these SLAs requires reconfigura-
tion of the network, which is automated by means of policies sent to the NMS.
Network-level policies are processed by the NMS Policy Decision Points (PDPs),
which decide when policies can be enforced. When enforced, they are delivered
to the NMS Policy Enforcement Points (PEPs) that map them to element level
policies, which are, in turn, sent to the EMSs. EMS PDPs follow a similar proce-
dure at the element level. Finally, the active node PEPs execute the enforcement
actions on the managed network nodes [6].



242 Y. Nikolakis et al.

Fig. 1. FAIN management instances and their components

The defined policies are categorised according to the semantics of management
operations, which may range from basic configuration and fault management op-
erations to service-specific operations. Policies that belong to a specific category
are processed by dedicated PDPs and PEPs. The three main actors of the FAIN
Enterprise Model, the ANSP, SP, and the Customer, may request their own
(virtual) management architecture through which they are able to manage the
resources allocated to the Virtual Environments (VE) of their virtual network.
The VE is an abstraction used only for the purpose of partitioning the resources
of the active node so that different communities of users can stay isolated from
each other.
This allows each actor to select and deploy his own management architecture
freely, in order to manage its allocated resources, which can be policy or non-
policy based. This model corresponds to a ’management instance’ associated
with the particular service provider.
The main components of the FAIN PBNM are illustrated in the Figure 1. Ser-

vice Manager, Resource Manager and the Inter Domain Manager (IDM), are
summarised in the table below. They have been developed in order to support
service deployment, decision- making with regards to resources control, and inter-
domain communication respectively. A detailed description of all components is
given in [7].

3 Active Service Provisioning (ASP) Architecture

One of the key results of the FAIN project is an architecture for service provision-
ing called Active Service Provisioning (ASP). Like the PBNM, it is a two-layered
system that comprises the network level and node level. An overview of its ar-
chitecture is depicted in Figure 2 and has been described in [6] in detail. The
network level functionality is responsible for finding the target nodes for deploy-



A Policy-Based Management Architecture for Flexible Service Deployment 243

Table 1. Description of FAIN PBNM components as depicted in Figure 1

PBNM Com-
ponent

Description

Service Manager This component is responsible for setting up a VAN in response to
a service request. It receives, as an input, the SLA that has been
agreed between this domain and the one that requests it. It uses this
information together with the topological requirements imposed by
a service, which it retrieves from the ASP, to generate the relevant
policies for the service. When a VAN is successfully created, the
service manager instructs the ASP to trigger the deployment of the
requested service.

Resource Man-
ager

The Resource Manager maintains information about the nodes and
links of the system and can compute possible end-to-end routes
for a given service, based on the network topology and resource
information obtained by the Monitoring System. It co-operates with
the ASP system, in order to address service-specific requirements.

Inter-Domain
Manager

It is in charge of implementing end-to-end negotiation of service
deployment into separate active nodes that belong to different ad-
ministrative domains, managed by different organisations.

ing a service by matching the network level service requirements against the
actual network capabilities, coordination of the deployment process at the node
level (i.e., Network ASP Manager), and providing a service code retrieval infras-
tructure (i.e., Service Registry where the service descriptors are kept and Service
Repository where the code modules are kept). At the node level, the ASP identi-
fies necessary service components by resolving node-level component dependen-
cies and coordinates component installation, activation and pre-configuration in
the execution environments located on the node. Active services that can be
deployed using the ASP system have to conform to the FAIN service model pre-
sented in [5]. The work described in this paper extends the one presented in [6] by
discussing the network-level deployment process. In this section, the deployment
requirements are categorized taking into account their scope (network and node
level) as well their lifetime characteristic (static and dynamic requirements).

3.1 Service Description

The FAIN service model used is component-based [5]. It allows structuring ser-
vices using self-contained software units of deployment, management and com-
putation, called service components. A service component may be associated
with a code module that can be downloaded from the service repository and
installed on an active node in an execution environment. This code module is
executable in a particular execution environment and may have a number of
dependencies/requirements on the resources needed for its execution.
The principal composition pattern is a component hierarchy, where service com-
ponents may be recursively composed of sub-components. An example service
conforming to the FAIN model is depicted in Figure 3.



244 Y. Nikolakis et al.

Fig. 2. The ASP overall architecture and relations to other FAIN components

From the deployment perspective, an active service, composed of a set of com-
ponents, can be divided into a number of co-located component groups, each of
which is to be deployed on a single host. Thus, deploying a compound active
service means identifying groups of co-located components and deploying each
of such groups on a node matching the deployment requirements of the compo-
nent group. The deployment requirements of a service can be divided into two
categories:

– the network level deployment requirements describing the requirements
shared by all subcomponents of a top component; and

– the node level deployment requirements of each component within the group.
These requirements include the execution environment and node resources
needed for execution and they are specified with the help of node level service
descriptor as described in [5].

A FAIN active service is described with a network-level service descriptor that
specifies the ’top’ service components which are abstract components (in the
sense they do not have any code directly associated) grouping all service compo-
nents to be deployed on the same node. Deploying a service on a network level
means finding a mapping of the service top components onto the available active
node in the network so that the network level deployment requirements are ful-
filled by the selected nodes. The network level descriptor specifies the following
items:

– the top service components, including references to node level descriptors of
the subcomponents; and

– the static topological constraints of every top service component, which in-
clude partial information on the requested node location. In the current im-
plementation, we differentiate node roles (ingress, intermediate and egress
with respect to domain borders and the main service packet flow) and lo-
cations relative to other nodes, whose location is determined otherwise, for
instance.



A Policy-Based Management Architecture for Flexible Service Deployment 245

Fig. 3. Example description of a distributed FAIN service - component topology and
its network deployment requirements

The network level requirements specified above are of static nature and do
not change whenever the service is deployed. However, they are specified so that
a number of physical network topologies may address them and thus do not allow
fully determining the mapping of top components onto the physical network. To
complete this mapping, additional requirements are specified. They can usually
be determined only at deployment time and are called dynamic requirements
because of this. It is the service deployer that specifies them when requesting a
service deployment. These additional deployment requirements include QoS of
the virtual links, for instance, the jitter or the bandwidth as well as the edge
constraints on the mapping of the logical service topology onto the real network,
like physical nodes/networks on which or close to which given top components
have to be placed.

4 Integrated System Operation

Having designed and developed the PBNM and the ASP systems as individual
entities, we further seek to obtain synergistic benefits by integrating both sys-
tems to establish a seamless, fully managed service provisioning mechanism.
Once an SLA between ANSP and SP has been agreed upon, the following steps
are carried out when providing a service. Firstly, the SP (or a service itself)
requests for a service to be provided with the given edge constraints and the
PBNM, with the support of the ASP, computes a mapping of service compo-
nents to the nodes of the active network. It considers the SP’s constraints, the
deployment requirements of the service and the actual resources in the active



246 Y. Nikolakis et al.

Fig. 4. System operation process

network. Secondly, once the PBNM has obtained the target nodes that make
up the VAN, our management system creates a VAN that meets the service re-
quirements. Thirdly, the PBNM requests the ASP to deploy the service in the
activated VAN. Figure 4, shows the phases mentioned before, while details of
these steps are described in the following subsections.

4.1 Service Requirements Matching

One of the core activities of our system is mapping the components of a given
service to the available nodes in the network. The Network ASP Manager de-
codes the service topological requirements from the service network-level service
descriptor, and the edge constraints from the service deployer. The RM receives
the topological requirements and checks the resource availability along the pos-
sible routes between the two given service endpoints. Resources for a particular
VAN are allocated in a ’hard’ manner, so that the full requested amount of
computational and communication resources must be available on all nodes and
links of a route. If multiple paths satisfy the resource requirements, the RM
submits the list of the candidate mappings, along with resource information to
the Network ASP Manager.
The network-level ASP performs the requirements matching process on the node-
level. It validates the deployability of the service according to each of the can-
didate mappings one after another, by checking that every service component
can be installed on a pertinent node ASP for each identified node in a candidate
VAN. The node-level determines whether a node-level deployment is success-
ful by resolving the technological requirements of the service components. This



A Policy-Based Management Architecture for Flexible Service Deployment 247

includes checking the availability of the execution environment type and compu-
tational resources needed by the service components. As a result of this mapping,
the Network ASP returns a selected candidate VAN with service components as-
signed to the nodes that belong to this VAN.
We have adopted this two-phase process, in order to maintain a clear separation
of tasks and responsibilities between the management and the service provision-
ing frameworks. An alternative solution would be to place all the necessary func-
tionality in only one component, namely the Resource Manager, which would be
able to consider both resource and service-specific requirements in one pass. In
this way, however, the Resource Manager should also be able to access and inter-
pret service-related information, required for the mapping of service components.
Effectively, this would result into duplicating parts of the service provisioning
functionality inside the management system and mixing up the scope of the
two separate frameworks. The drawback in our approach is that for each can-
didate path, the corresponding resource information must be transmitted from
the Resource Manager to Network ASP.

4.2 Virtual Active Network Creation

A VAN is specified by three sets of requirements: the QoS parameters (e.g., the
required bandwidth), the computational parameters (e.g., the amount of mem-
ory) and the specific service requirements (e.g., the VE types).
The VAN creation process is started when an SP triggers the deployment of a
service. The SP uses the corresponding GUI offered by the Policy Editor or by
directly contacting the Service Manager (SM). The network-level management
system (via the SM) receives the request and translates it into a set of policies,
a network-level QoS policy that creates a VAN by allocating resources to it and
a network-level Delegation policy that activates the VAN and delegates man-
agement of the allocated resources through the creation of a new management
instance for this particular SP.

Service Resources Reservation. The determination of the VAN topology is
done through the process described in section 4.1. The information about the new
VAN is sent to the QoS PDP that integrates this information with other VAN
requirements in a structure that is forwarded to the QoS PEP. Next, the QoS
PDP forwards the decision to its corresponding PEP. The QoS PEP transforms
the request into a set of appropriate element-level QoS policies (one policy for
each of the active nodes that constitute the VAN) and it sends the policy to
the EMS of the established nodes. Once the QoS policy is enforced, the EMS
calls the reservation method within the active node, thus ending the reservation
process. The internal active node interactions that guarantee the reservation of
resources, are not within the scope of this paper, but can be found in more detail
in [3].

Service Resources Activation. After the enforcement of the QoS policies
has successfully terminated in all nodes, the PDP Manager starts processing the



248 Y. Nikolakis et al.

delegation policies by forwarding them to the delegation PDP to be evaluated.
A network level policy is translated into two element level delegation policies:
one for assigning access rights to the VE and activating it (i.e., VE activation),
and the other for creating the management instance (MI) inside the EMS so that
the SP can manage its resources (i.e., MI creation).
A policy set is created and submitted to the respective EMSs. The policies are
forwarded to the appropriate management instance, where they are processed
sequentially. The first delegation policy causes the assignment of a security profile
to the created VE, to be afterwards used for its activation. Since this policy must
be enforced immediately, it is forwarded to the delegation PEP running inside
the privileged VE in the active node. The delegation PEP enforces the policy
that activates the new VE using the API offered by the active node.

Service Deployment. When the SM is made known of the correct activation of
the network resources, it will ask the NetASP to perform the corresponding ser-
vice deployment, indicating the kind of service required and the VAN identifier
for the related customer. The network-level ASP iterates through the nodes of
the final VAN and contacts the node level ASP on each of these nodes. The node
ASP may perform the installation and configuration of the service components
identified during the mapping process. To perform the actual installation, the
ASP makes use of the node management framework, which provides a unified
CORBA-based platform for different types of execution-environment. Through
this interface, it is possible to access the EE capabilities and isolate the de-
ployment and management code. The deployment process ends after all service
components have been deployed on the target nodes.

4.3 Inter-domain Management

The role of the inter-domain manager (IDM) comes in when ANSPs need to prop-
agate their SPs’ traffic across each other’s administrative domain. A successful
negotiation will lead to a request to create a VAN between the two domains.
As such, ANSPs need to derive contracts with other ANSPs to encompass the
geographical spread of their targeted client base. For example, in Figure 5, the
administrator in Domain 1 needs to establish a relationship with Domain 2 in
order to reach its customers.
When the network management system is requested to deploy a service that
involves installation of the code in a target node outside of its domain the IDM
contacts a corresponding IDM of the other domain in order to negotiate the
service deployment in one or more of their active nodes and lets the SP of the
first domain to use them. The role of this component is highlighted for reser-
vation of computational and communicational resources for service deployment,
particularly as requests occur between different administrative entities.
In our design we have established a repository that maps a destination address
to an IDM, i.e., a ’many-to-one’ relationship. As such, an ANSP must register
a list of destination addresses within its domain on a repository that has well-



A Policy-Based Management Architecture for Flexible Service Deployment 249

Fig. 5. A view of multiple domains, using the WebTV scenario as an example

known address, so that this repository can provide a discovery mechanism for
mapping destination addresses to their respective IDM.

5 Example Scenario

A demonstration of the overall architecture has been carried out over the dis-
tributed FAIN testbed, which interconnects several different sites across Europe,
using IP tunnels over the public Internet.
According to the demo scenario, an SP is offering a WebTV service, emitting
a video stream in MPEG format. Two customers subscribe to the service. The
first one uses a device with limited bandwidth, which is not in position to receive
the video stream as it is emitted by the WebTV application and requires a H323
format as input. For this reason a transcoder service will have to be installed
in the active node placed closest to the customer, to convert the video stream
to a format understandable to the receiver. The second customer connecting to
the WebTV service does not have the limitations of the first one. However the
service is not using a multicast protocol and thus a duplicator service will have
to be installed after the video source, which will replicate the multimedia data
into a new flow, targeted to the second client.
As mentioned before, the first client has bandwidth limitation and for this rea-
son, it is necessary that the PBNM knows the QoS parameters of the user by
QoS policies. As the customers are not expert users, they are classified in three
QoS categories, i.e., Gold, Silver and Bronze. These categories involve several
QoS parameters:”if User Category = Silver then Priority = 5 and Bandwidth =
50 end” , etc.
When the PBNM decides which QoS parameters apply, it transforms the high-
level policies into element-level policies; the new policies are distributed to the



250 Y. Nikolakis et al.

targeted active nodes (where the service will be installed) and the VAN is cre-
ated. After that, the delegation phase willbe executed and the VAN is prepared
to receive service components. For this reason the management system requests
the ASP to deploy servicecomponents, as we have explained in the earlier sec-
tion. Finally the customers have a service-integrated VAN, which supports the
transcoderand duplicator services in order to receive the corresponding video
stream from WebTV server. The complete WebTV service scenario is explained
in [8].

6 Related Work

The VAN [9] framework introduces the concept of the Virtual Active Network,
which can be established on-demand for a particular customer, offering a sepa-
rate service management interface. Our architecture can be seen as an extension
of this work.
The Tempest [10] project provides a programmable network infrastructure, with
inherent support for virtual private networks. However Tempest is restricted to
the partition of resources and lacks service deployment capabilities.
The Darwin [11] project uses the notion of virtual meshes to describe the virtual
networks that encompass the network and computational resources allocated
and managed to meet the needs of service providers or applications, providing
strong resource control mechanisms. In our approach we have also adopted the
use of a component-based service model, which provides greater flexibility in the
deployment of new services.
The autonomic service deployment in programmable networks [12] allows deploy-
ing component-based services in large-scale networks. The deployment process is
executed in two phases, corresponding to the network and node level deployment
in our approach. Unlike our approach, the interactions between deployment and
management frameworks are not considered.

7 Conclusions

In this paper we have described the approach adopted by the FAIN project for
the flexible support of service provisioning, according to the customer-specific
requirements. In our view, network management and service deployment are
closely related and the corresponding support systems should interoperate when
deploying a service. As such, we integrated these two aspects by means of in-
corporating the PBNM and the ASP systems. The management system is re-
sponsible for setting up a suitable network topology and reserving the resources
required for the smooth operation of a service, also considering an interdomain
situation. The service provisioning system deals with the service-specific require-
ments and is involved in the process of mapping the service to the network, while
it also deploys the appropriate service components to the selected target nodes.
The architecture presented has been developed and tested in the framework of
the FAIN project. The future work will focus on providing improved support



A Policy-Based Management Architecture for Flexible Service Deployment 251

for service reconfigurability. Deployment algorithms and more optimised target
environment selection algorithms will also be investigated.

Acknowledgements. This paper describes work undertaken and in progress in
the context of the FAIN - IST 10561, a 3-year project from 2000 to 2003, which is
partially funded by the Commission of the European Union. The authors would
like to acknowledge all FAIN partners for the fruitful discussions that have taken
place within this project.

References

1. Galis, A., B. Plattner, J.M. Smith, S. Denazis, E. Moeller, H. Guo, C. Klein,
J. Serrat, J. Laarhuis, G.T. Karetsos, C. Todd: ”A Flexible IP Active Networks
Architecture” International Working Conference on Active Networks (IWAN2000),
16-18 October 2000, Tokyo, Japan

2. FAIN Project WWW Server http://www.ist-fain.org.
3. FAIN Deliverable D7 ”Final Active Node Architecture and Design” May 2003 -

http://www.ist-fain.org
4. Salamanca, E., E. Magaña, J. Vivero, A. Galis, B. Mathieu, Y. Carlinet, O.

Koufopavlou, C. Tsarouchis, C. Kitahara, S Denazis and J. L. Mañas: ”A Policy-
Based Management Architecture for Active and Programmable Networks” IEEE
Network Magazine, Special issue on Network Management of Multiservice Multi-
media IP-Based Networks, May 2003, Vol. 17 No.3

5. Solarski, M., M. Bossardt, T. Becker: ”Component-based Deployment and Man-
agement of Services in Active Networks” IWAN 2002, Zürich, CH, Dec. 2002

6. FAIN Deliverable D8 ”Final Specification of Case Study Systems” May 2003 -
http://www.ist-fain.org

7. Galis, A., S. Denazis, C. Klein, C. Brou (eds.): ”Programmable Networks and their
Management” Artech House Books (www.artechhouse.com), ISBN: 1-58053-745-6
(commission for publication in 4th Quarter 2003)

8. FAIN Deliverable D9 ”Final Specification of FAIN Scenarios” May 2003 -
http://www.ist-fain.org

9. Brunner, M., R. Stadler: ”Service Management in Multi-Party Active Networks”
IEEE Communications Magazine, Vol. 38(3), 2000

10. van der Merwe, J.E., S. Rooney, I.M. Leslie, S.A. Crosby: ”The Tempest - A Prac-
tical Framework for Network Programmability” IEEE Network, Vol 12, Number
3, 1998

11. Gao, J., P. Steenkiste, E. Takahashi, and A. Fisher: ”A Programmable Router Ar-
chitecture Supporting Control Plane Extensibility” IEEE Communications Maga-
zine, March 2000

12. Haas, R., P. Droz, B. Stiller: ”Autonomic service deployment in networks” IBM
Systems Journal, Vol. 42, No. 1, 2003


	Introduction
	Policy-Based Network Management (PBNM) Architecture
	Active Service Provisioning (ASP) Architecture
	Service Description

	Integrated System Operation
	Service Requirements Matching
	Virtual Active Network Creation
	Inter-domain Management

	Example Scenario
	Related Work
	Conclusions



