
N. Wakamiya et al. (Eds.): IWAN 2003, LNCS 2982, pp. 190–201, 2004.
© IFIP International Federation for Information Processing 2004

Dynamic Deployment and Configuration of
Differentiated Services Using Active Networks

Toshiaki Suzuki1, Chiho Kitahara2, Spyros Denazis3, Lawrence Cheng4,
Walter Eaves4, Alex Galis4, Thomas Becker5, Dusan Gabrijelcic 6,

Antonis Lazanakis7, and George Karetsos7

1 Hitachi, Ltd., Central Research Laboratory, Japan
toshiaki@crl.hitachi.co.jp, Tel:+81-42-323-1111, Fax:+81-42-327-7868

2 Hitachi, Ltd., Systems Development Laboratory, Japan
kitahara@sdl.hitachi.co.jp, Tel:+81-44-959-0266, Fax:+81-44-959-0853

3 Hitachi Europe Ltd., Hitachi Sophia Antipolis, France
spyros.denazis@hitachi-eu.com, Tel:+33-4-89-87-41-72,

Fax:+33-4-89-87-41-51
4 University College London, United Kingdom

{l.cheng, w.eaves, a.galis}@ee.ucl.ac.uk, Tel:+44-20-7419-3946,
 Fax:+44-20-7387-4350

5 Fraunhofer Institute for Open Communication Systems FOKUS, Germany
becker@fokus.fhg.de, Tel:+49-30-3463-7393, Fax:+49-30-3463-8393
6 Jozef Stefan Institute, Laboratory for Open Systems and Networks, Slovenia

dusan@e5.ijs.si, Tel:+386-1-4773-757, Fax:+386-1-4232-118
7 National Technical University of Athens, Greece

laz@telecom.ntua.gr, karetsos@cs.ntua.gr, Tel:+30-210-7721511,
Fax:+30-210-7722534

Abstract. This paper presents the detailed components of the Future Active IP
Networks (FAIN) [1] [2] [3] active node framework based on the novel Virtual
Environment (VE) concept. It also presents the dynamic and autonomic de-
ployment of differentiated services and the configuration capabilities thereof
enabled. The FAIN node supports the dynamic deployment and instantiation of
multiple active VEs, each one of them capable of hosting multiple Execution
Environments (EE) and supporting communication among different EEs in the
same node. The EEs may, in turn, be deployed and instantiated on demand
thereby introducing new features and functionality in the node according to new
requirements and arising needs. We tested the FAIN active network by develop-
ing and dynamically deploying a control EE, which was designed and tested for
the QoS configuration of the Diffserv-enabled pan-European FAIN testbed [4].
The work presented in this paper was performed in the European Union re-
search and development project under the Information Society Technologies
programme.

Keywords: FAIN, Active Node, Virtual Environment, Execution Environment

1 Introduction

In the world of network architectures, we are experiencing a significant paradigm
shift resulting in new technologies and approaches. The motivation behind this shift is

Dynamic Deployment and Configuration of Differentiated Services 191

the still elusive goal of rapid and autonomous service creation, deployment, activation
and management, resulting from new and ever changing customer and application re-
quirements. Research activity in this area has clearly focused on the synergy of a
number of concepts: programmable networks and services, managed networks, net-
work virtualisation, open interfaces and platforms, application level programming and
increasing degrees of intelligence inside the network. Next generation networks must
be capable of supporting a multitude of service providers that exploit an environment
in which services are dynamically deployed and quickly adapted over a common het-
erogeneous physical infrastructure, according to varying and sometimes conflicting
customer requirements.

Programmable and Active Networks have been proposed as a solution for the fast,
flexible and dynamic deployment of new network services. These networks aim at
providing easy introduction of new network services by adding dynamic programma-
bility to network devices such as routers, switches and applications servers. The basic
idea is to enable third parties (end users, operators, and service providers) to inject
application-specific services (in the form of code) into the network. Applications are
thus able to utilize the required network capabilities in terms of optimised network re-
sources and as such they are becoming network-aware. Programmable networks allow
dynamic injection and deployment of code as a promising way of realising applica-
tion-specific service logic, or performing dynamic service provision on demand. The
viable architectures for programmable networks have to be carefully engineered to
achieve suitable trade-offs between flexibility, performance, resilience, security and
manageability.

In this paper we present the detailed components of the FAIN active node, and the
dynamic deployment of differentiated services and the configuration thereof enabled
by a novel active and programmable node architecture. More specifically, in section 2
we describe the FAIN active node architecture and its major components. The focus is
on the deployment and instantiation of VEs and EEs as host environments for the in-
troduction of new functionality. In Section 3 we present the design and implementa-
tion of a secure control EE that is based on the SNMP [11] and hosts a control proto-
col. In Section 4 we demonstrate the uses of the deployed control EE for the dynamic
configuration of a Diffserv network in order to provide the required levels of QoS. Fi-
nally conclusions and future work are presented in section 5.

2 FAIN Active Node

Figure 1 depicts the major components of the FAIN programmable node and its inter-
action with the management node, which includes at both network and element levels
an Active Service Provisioning (ASP) and a Policy Based Network Management Sys-
tem (PBNM) components [9]. When the FAIN node boots up a Privileged VE is
automatically instantiated and a new component is installed, namely the VE manager,
which implements the VE management framework. This component offers access to a
number of node services that are deemed necessary to configure and setup the node. It
is used for instantiating new VEs together with appropriate EEs and to install compo-
nents therein which potentially offer new control interfaces that allow services inside
VEs to customise resources according to application-specific requirements.

192 T. Suzuki et al.

The VE manager is complemented with the security component (SEC) that offers a
set of security services and enforces node policies, the resource control component
(RCF) responsible for implementing the FAIN resource control framework and the
demultiplexing/multiplexing component (De/MUX) which delivers packets to the
right VE and EE. In the subsequent sections we describe each one of these compo-
nents in detail.

De/MUX

I/F

FAIN Active Node

ASP

PBNM

Privileged
VE

Management
Node

Node OS

SEC

VEM

RCF

Fig. 1. Initial Components of the FAIN Active Node

In our architecture, multiple EEs can be executed in one VE since the unit for man-
agement is VE not EE. Therefore interaction between EEs is allowed. On the other
hand, the conventional works for active networks are mainly contributed to make new
possibilities in one EE. Therefore interaction between EEs looks out of scope in the
past researches. In this sense, the concept of VE is the most crucial idea. Another
benefit of VE is related to the accounting. The real VE is composed of multiple re-
sources. Therefore it provides easy accounting based on the resource consumption.

2.1 Virtual Environment Management

As we have mentioned before, services are installed in VEs and eventually instanti-
ated and executed inside the associated EEs. In FAIN, services are described accord-
ing to a component-based approach. As such a service is defined as a graph of service
components, which in turn can be developed and deployed independently as and when
needed [3][5]. It is an advantage when the hosting environments for services, i.e. the
execution environments are also component-based. This allows to move aspects such
as lifecycle management, dynamic configuration, access control, monitoring, etc. to a
supporting framework and avoid re-implementation inside the service code. The im-
plementation of the VE management is an example for this.

During the boot procedure of the FAIN active node, the privileged virtual envi-
ronment is started together with a default execution environment. Any subsequently
created virtual environment will need some basic resources in order to support service
installation and component instantiation. For this reason various resource managers
are installed inside the privileged virtual environment during the boot procedure as it
is shown in figure 2.

Dynamic Deployment and Configuration of Differentiated Services 193

 VE
Manager

Privileged Execution Environment

EE
Manager

Security
Manager

Channel
Manager

Diffserv
Manager

Privileged Virtual Environment

Fig. 2. Initial manager components of FAIN active node

The privileged execution environment runs in the context of the privileged virtual
environment. Inside the privileged execution environment there exist the resource
managers for the basic services. They will be used to create resources for other virtual
environments. These basic resource managers comprise the following:

A Virtual Environment Manager is used for the creation of new virtual environ-
ments. This manager will examine the resource profile submitted as part of a VE crea-
tion policy and try to create any referenced resource using other basic managers. The
resulting resource components will be inherited by the new virtual environment. A
number of Execution Environment Managers are used for the creation of specific exe-
cution environments. Since running instances of services can exist only inside execu-
tion environments, there has to be at least one execution environment attached to any
virtual environment. A Security Manager is a core component of the security architec-
ture that exports a minimal set of interfaces to other node subsystems. A Channel
Manager is used for creating channels to receive and send packets from and to the
network. A Diffserv Manager is used for creating Diffserv controllers to control par-
ticular packet flows based on priorities.

2.2 Demultiplexer and Multiplexer: De/MUX

Our framework supports multiple VEs and multiple EEs running in VEs and as such
the packets are delivered to the right entity inside a node. To this end packets must
carry all the necessary information based on which the De/MUX component may
forward the packet to its destination inside the node. In this case, we need to specify
both environments, the VE and EE, to execute real processing to active packet data.
We have adopted the Active Network Encapsulation Protocol (ANEP) [7] for the
FAIN active packet data and extended its definition by introducing two new options:
one for the VE identifier and one for the EE identifier.

 0 31

N 4N+ 0 byte 4N+ 1 byte 4N+ 2 byte 4N+ 3 byte
0 FLG option type option length
1 VE-ID or EE-ID (32bit)

Fig. 3. VE/EE identifier

The formats for two new options are the same as shown in figure 3. The FLG indi-
cates how to handle the option data. The owner of the option defines the value of the

194 T. Suzuki et al.

FLG. The option type indicates a type of option. The value of the option type for VE
and EE identifiers are 101 and 102 which were defined for the FAIN VE environ-
ment. The option length specifies the size of option field in 32 bit words. The value of
the option length for the VE-ID or EE-ID is 2 in 32 bit words. The VE-ID or EE-ID
indicates an identifier to transmit active packets to a proper VE/EE.

In figure 4, we present the block diagram of packet data delivery.

VE-ID / EE-ID / Client (Object reference or
 Port number)

Packet Filter

Active
Channel

Channel
Manager

(1)

(4)(6)

(3)

Security
Data

Channel

De/MUX

(2)

(5)

(10)

(12)

(11)
(13)

(14)

(7) (15) (16)

(8)

(9) (17)

Fig. 4. Block diagram of packet delivery

Active (ANEP) packet data delivery. (1) A client requests a Channel Manager to
create a new Active Channel for receiving ANEP packet data by registering a VE-ID,
an EE-ID and an object reference of itself or a socket port number. (2) The Channel
Manager creates the Active Channel by registering an active consumer object, which
includes the VE-ID, the EE-ID and the reference or the socket port number, into an
internal table for active packets. (3) The packet filter transmits the received ANEP
packet to the Channel Manager since the manager sets conditions to intercept ANEP
packets at the booting process. The filter could be implemented by the Netfiler [8]. (4)
The Channel Manager calls a security function for checking the ANEP packet before
sending it to a proper client. (5, 6) After executing the security check, the Channel
Manager sends the ANEP packet data to the proper client through an appropriate
Active Channel by getting a target from the internal table. The table includes the
relation between VE-ID/EE-ID and the target receiver. (7) If there is an ANEP packet
to be sent to another node, the client sends the ANEP packet to the proper Active
Channel. (8) The Active Channel inserts the security information into the ANEP
packet by interacting with the security component before sending it to the outside
network. (9) After that, the Active Channel transmits the ANEP packet to the outside
network.

Data (Non-active) packet data delivery. (10) A client requests the Channel Manager
to create a new Data Channel for receiving non-active packet by registering flow
conditions and object reference of itself or a socket port number. (11) The Channel
Manager sets the filter conditions such as a source IP address and so forth. (12) The
Channel Manager creates the Data Channel object, which includes the flow conditions
and the reference or the socket port number. (13) The filter transmits data packet to
the Channel Manager. (14, 15) The Channel Manager sends data packet to a proper

Dynamic Deployment and Configuration of Differentiated Services 195

client through an appropriate Data Channel. (16) If there are some packet data to be
sent to another node, the client sends them to the proper Data Channel. (17) The Data
Channel transmits data packet to the outside network.

2.3 Resource Control Framework

RCF (Resource Control Framework) has been designed by taking strongly into
consideration and exploiting the capabilities of the component model that has been
introduced in the VE management framework that was previously described. The part
of RCF that is responsible for the management of the resources is actually part of the
VE Management framework while the run-time control of the resources is done by
other lower level RCF components. RCF can be defined as the aggregation of all the
FAIN active node components that operate and interact in order to control and
manage resources. As it is depicted in figure 5, there are the component families of
the RCF.

RMRCA RCA RCA

RMRC

resources

VEM
client

VE

Fig. 5. RCF Architecture

Resource Controller (RC). RC is the responsible entity for the runtime control of a
resource inside the active node. RC can be a component running in the Kernel Space
of the node for a software router or can be a specific device of a hardware router. It
can be the Traffic Control framework of the Linux. Every RC has an interface that
allows its runtime configuration, which includes the allocation and monitoring of the
resources.

Resource Manager (RM). For every RC, an RM exists in the user space. It is
responsible for the configuration of the corresponding RC in order to enforce the
resource partitioning among the various VEs. Moreover, the RMs are responsible for
the RCAs creation, configuration and management. Among others the RMs are
responsible for the Admission Control of the incoming requests for new allocations
and for the realization of the allocation by configuring the corresponding RCs.

196 T. Suzuki et al.

Resource Controller Abstraction (RCA). For every resource capacity that is
allocated to a VE, an RCA of that resource is created. For every VE, a resource
controller abstraction (RCA) exists that represents part of the RC functionality to the
VE client: the part of the resource that has been allocated to the VE. The RCAs export
interfaces and accept requests by VE owners and/or users for resource access.
Resource access includes requests for resource consumption and management. RCAs
check those requests against resource status and the requested entities' privileges and
enforce the valid requests by configuring the corresponding RCs accordingly.

In FAIN we adopted a two-phase approach for admission control, namely, the crea-
tion phase and the activation phase. We note here that the creation and activation of a
VE is part of a larger activity, which results in the creation, and activation of a virtual
network across the entire active network. During the creation phase, the client re-
quests the creation of a new VE. The VEM passes these requirements to the corre-
sponding RMs. Every RM decides if the requested allocation can be carried out or
not. When the VEM has collected all the replies from the RMs, it decides if the new
VE may be admitted or not. If any of the RMs is unable to provide the requested re-
source capacity, the admission of the VE is aborted while the VEM informs all RMs
that they have to release any pre-allocated resources.

When all the replies from the RMs are positive, the VEM replies positively as well.
But even then, the VEM does not activate the newly created VE and the resources
remain preallocated. If the creation of all VEs across the entire active network nodes
has succeeded, only then the newly created VEs are activated. The activation request
arrives at the VEM from the Network management station, which collects and checks
all the responses from the VEMs of the nodes across the active network. In this case,
the VEM gets in contact with all the involved RMs in order to activate the RCAs,
configure the RCs accordingly, and enforce the appropriate resource allocations.

We have implemented two types of resource controller. The one is a bandwidth
controller of a software router based on Linux. The other is a controller of the Diff-
serv functions of a hardware router. In this paper, the Diffserv control and manage-
ment are presented as an example of the RCF implementation. The Diffserv controller
and the hardware router are regarded as the RCA and the RC respectively.

2.4 FAIN Security Architecture

We propose high level security architecture as shown in the figure 6. Basic security
services are positioned in the privilege VE because of the following reasons: we want
to treat all possible technologies and their implementations, implementing VE and
services in the one and only one manner, reducing the risk of multiple implementa-
tions, and the services offered in the pVE are protected again with the same services
and mechanisms. This doesn't preclude VEs or services from implementing their own
security services or mechanisms when it is reasonable to do so.

The FAIN security architecture was designed as a complete security solution for
programmable and active node. It provides two level communication security, au-
thorization and policy enforcement on the node, static and dynamic code verification,
system integrity and accountability through audit service and logging. Only the first
three aspects will be briefly described.

Dynamic Deployment and Configuration of Differentiated Services 197

Two level communication security is provided for active packets with hop-by-hop
protection in between two neighbor nodes based on symmetric cryptography and end-
to-end authentication of data origin of the static parts of the active packets based on
asymmetric cryptography. Two ANEP options were designed to support two level
protection: hop-by-hop option, with security association identifier, replay protection
field and keyed hash, and credential option with credential filed, type and location,
optional timestamp and target and digital signature field. Multiple credential options
can be in the packet related to different users, which digital signatures cover static
parts of the packet. Communication security is supported with a protocol for auto-
matic establishment of security association between nodes and protocol for exchang-
ing user credentials between nodes in a hop manner. For efficient operation creden-
tials are cached on nodes. Management sessions to nodes use CORBA over SSL and
credential used (X.509v3 certificates with extended attributes) were handled in the
same manner as user credentials supplied in the active packet.

External Services

Certification
Authority

Attribute
Authority

Policy
Management

Credentials
Management

Active Service
Provisioning

Code module
and service
verification

Policy

Authorization

Enforcement

Credentials Cryptographic Subsystem

Communication Security:
integrity, authentication, confidentiality for

packet, sessions

Resource Control

pVE

 Services

 Virtual Environments

A
u

dit and
 Logging

S
ystem

 Integrity

Fig. 6. High level security architecture

Authorization and policy enforcement on the nodes is provided by transparent en-
forcement layer, based on CORBA interceptors, components/packets security context
and two level policy. Security context is build from user supplied credentials either in
active packet or exchanged during SSL session negotiation. Low level policy is man-
datory and it is enforced based on VE and service/EE identifiers, while high level pol-
icy allows fine grain discretional control. Multiple types of security policies can be
supported by the system; we have implemented a simple one based on user roles like
VE manager, manager, observer, user etc. Enforcement layer enables us to control ac-
cess to the level of component interface or port while component run time instance
can be a thread or a process. Static Code verification is based on digital signature
mechanism while dynamic verification, like in SNAP case, see section 3., was en-
abled with separation of variable data (SNAP packet) and its static part, data origin

198 T. Suzuki et al.

authentication, same as used for communication security, and code verification per-
formed by ASPE, see section 3.2.

3 A Secure Control EE (Active SNMP-EE)

The Active SNMP-EE is the control EE in FAIN. This EE is realized with the Safe
and Nimble Active Packets (SNAP) interpreter [6][10][12]. The Active SNMP-EE
consists of two components: a) SNAP Activator that generates SNAP packet pro-
grams with various SNMP commands; b) ANEP-SNAP Packet Engine (ASPE) that
provides ANEP encapsulation and security provisioning for SNAP active packets
across nodes. In the Active SNMP-EE, the active extensions were realized by using
an extensible SNMP [11] agent. The Active SNMP-EE is able to execute SNMP
primitives. The SNAP Activator generates SNAP packet programs that carry SNMP
commands. SNAP packet programs are encapsulated into ANEP for the purpose of in-
tegration and interoperability. Further details of the SNAP Activator can be found at
[1]. Noted that SNAP is a light-weight protocol, it has no facility for authentication at
all. The ASPE works together with the Security Manager to provide the necessary se-
curity facilities to protect the end-to-end and hop-by-hop authenticity of SNAP packet
programs generated by the Active SNMP-EE.

In active networks, hop-by-hop authentication should be included as well as end-
to-end authentication. Principle authentication must be performed at an intermediate
node since the traversing active packet will be modified. In order to enforce both end-
to-end and hop-by-hop authenticity of active packets, we determine the static data of
SNAP packet programs, and then encapsulate these data into ANEP separately from
the SNAP dynamic data. We define the SNMP commands that are carried in the
SNAP packet programs to be the static data; whereas the dynamic data is the SNAP
packet itself (SNAP consists of a heap and a stack which are used to carry variable
data) [13]. The eventual goal is to merge the ASPE with the SNAP Activator so that
ANEP encapsulation can be performed whilst SNAP packets are being generated. Our
current implementation fingerprints the SNAP packet (which contains both static and
dynamic contents) before enforcing hop-by-hop protection. This static field will be
digitally signed by the principle's private key (the digitally signing is performed at
SEC), and the signature will be verified by each of the intermediate modifying nodes.
The SNAP packet program is encapsulated entirely into Option-5. When an ANEP-
SNAP packet arrives at a hop node, the SNAP packet will be extracted from Option-
5, subjected to integrity and authenticity check by SEC. We use symmetric crypto-
graphic techniques. Under this arrangement, neighboring hops would have established
a trusted relationship among themselves i.e. by creating a negotiated security associa-
tion (SA). With a SA, neighboring nodes can achieve peer authentication plus inter-
node integrity and confidentiality protection of active packets.

3.1 Packet Flow in the ASPE

In figure 7, a block diagram of the ASPE is depicted. (1) The SNAP Activator gener-
ates a SNAP packet. (2) The SNAP Analyser determines the VE-ID, EE-ID, destina-
tion IP address, the SNAP Packet ID and the SNAP static command from the SNAP

Dynamic Deployment and Configuration of Differentiated Services 199

packet. (3) The Communication Manager uses the SNAP Packet ID as a reference to
extract the corresponding Security ID (SID) in the Option-4 of this SNAP packet from
its database, if no SID is found then this SNAP packet will be treated as a fresh
packet. (4) The Digester provides additional internal integrity check for the SNAP
packet. (5) The SNAP Encapsulator encapsulates the SNAP packet and the SNAP
static command into ANEP Option-5 and the Payload field respectively. The SNAP
Encapsulator then assigns the VE-ID, EE-ID, destination address and the SID of this
SNAP packet to Option 1 to 4 respectively. (6) After that the ANEP-SNAP packet is
transmitted to a local SEC for security provisioning before being forwarded to its next
hop. (7) When an ANEP-SNAP packet arrives at its next hop, the De/MUX dis-
patches the packet to the SNAP De-Encapsulator after successful security checks per-
formed at SEC. (8) The SNAP De-Encapsulator extracts the SNAP packet Option-5.
(9) The Digester performs internal security checks for Option-5. (10) If the destina-
tion of the ANEP-SNAP packet is not local then the SNAP Analyser will extract the
SNAP packet ID and the Security ID from the SNAP packet and Option 4 respec-
tively, (11) The Communication Manager keeps this SNAP packet ID-SID pair in its
database. The ID pair is needed by the SNAP Encapsulator for future ANEP-SNAP
encapsulation. (12) The SNAP De-Encapsulator passes the SNAP packet to SNAP
Activator for service control purposes. The same process is repeated at every travers-
ing node.

De/MUX

SNAP

Encapsulator

(1)

SNAP
Analyser

SNAP

De-Encapsulator

Communication
Manager

Digester

SNAP Activator

(2)

(3)

(4)

(5)

(6) (7)

(8)

(9)

(10)

(11)

(12)
ASPE

SNMP EE

Fig. 7. Block diagram for ANEP-SNAP packet flow

4 Dynamic Diffserv QoS Configuration and Consideration

To test our architecture, we executed dynamic Diffserv QoS configuration. With re-
gard to QoS management by active networking, the management has been re-
ported[14]. However our main objective is not executing QoS management. The point
is execution of application in the VE/EE.

200 T. Suzuki et al.

In this test, a video flow was transmitted from Cambridge test-bed to Berlin test-
bed. A user tries to execute Diffserv transmission. The user connects Cambridge and
Berlin through hybrid active network nodes (Hardware router and Active Proxy (VE
with Diffserv controller)). The hardware router is just a box for transmission of packet
based on priorities. The Active Proxy provides an environment to instantiate a Diff-
serv controller. Then the user assigns DSCP-0 to a video flow from the Cambridge
test-bed and DSCP-8 is assigned to a jam flow in Berlin test-bed in the beginning. In
this case, the jam traffic has a high priority. Therefore if the jam traffic fully con-
sumes available bandwidth for an output port of the hardware router, the video flow
will suffer service degradation. To avoid this, SNAP active packet is injected from
SNAP sender at Berlin to the video sender at Cambridge and the DSCP value of the
video flow is changed from DSCP-0 to DSCP-56 at Cambridge. In this case, the video
flow acquires higher priority than that of the jam flow. Therefore the video flow is
transmitted unaffected by the jam flow.

To realize the function, the VEM creates a new VE and basic components such as
the De/MUX, the SEC and the RCF components including the Diffserv Controller in
the Java-EE. In addition, the ACTIVE SNMP-EE is also created. To configure the ac-
tive nodes, the ACTIVE SNMP-EE injects a SNAP packet and the De/MUX inter-
cepts it. Integrity of the ANEP-SNAP packet is guaranteed by the SEC function and
the RCF component assigns QoS to a specific flow dynamically. Through this test,
the FAIN network provides a secure and dynamic network configuration. In addition,
users can create their Diffserv controller in their VE and configure them independ-
ently. Besides, we have realized communication between the Java-EE and the
ACTIVE SNMP-EE. Usual active network framework is constructed based on one
EE. However, our framework is constructed based on resources. The users can create
multiple EEs in VE. Therefore it supports communication between EEs. In this sense,
our architecture has high flexibility.

5 Conclusions and Future Work

In this paper, we have described the detailed components of the FAIN active node
framework based on the novel Virtual Environment (VE) concept. The VE framework
provides the natural coexistence of multiple EEs in each VE and it is supporting inter-
actions between EEs. It has been validated by the communication between two types
of Execution Environments: Java-EE and Active SNMP-EE. In addition, we have
provided a secure control framework by the active packet. It has been guaranteed by
the hop-by-hop and end-to-end authenticity and integrity checking of the active
packet. Further more, we have controlled the Diffserv functions. In the near future, we
will extend our framework to other resources and to other cases of autonomic de-
ployment of services bringing just the right services to the customer at just the right
context.

Acknowledgement. This paper describes work undertaken in the context of the FAIN
– Information Society Technologies (IST) 10561 project. The IST program is partially
funded by the Commission of the European Union.

Dynamic Deployment and Configuration of Differentiated Services 201

References

1. FAIN Project WWW Server (FAIN Deliverable) - http://www.ist-fain.org
2. A. Galis, S. Denazis, C. Klein, C. Brou (eds.), book: "Programmable Networks and

their Management", Artech House Books (www.artechhouse.com) , ISBN: 1-58053-745-
6 (to be published 4th Quarter 2003)

3. S. Denazis, T. Suzuki, C. Kitahara, T. Becker, D. Gabrielcic, A. Lazanakis, W. Eaves, L.
Cheng et al., "Final Active Node Architecture and Design", FAIN Deliverable 7, May
2003

4. P. Flury, E Boschi, T. Suzuki, C. Kitahara, D. Gabrielcic et al., "Evaluation Results and
Recommendations", FAIN Deliverable 9, May 2003

5. S. Denazis, S. Karnouskos, T. Suzuki, S. Yoshizawa, "Component-based Execution En-
vironments of Network Elements and a Protocol for their Configuration", IEEE - Trans-
actions on Systems, Man and Cybernetics, Special Issue on Technologies that promote
computational intelligence, openness and programmability in networks and Internet ser-
vices, 2003 (to appear).

6. SNAP (Safe and Nimble Active Packets) - http://www.cis.upenn.edu/~dsl/SNAP/
7. D. Alexander, B. Braden, C. Gunter, A. Jackson, A. Keromytis, G. Minden, D Wetherall,

"Active Network Encapsulation Protocol (ANEP)", Intrenet Draft -
http://www.cis.upenn.edu/~switchware/ANEP/docs/ANEP.txt

8. Netfilter - http://www.netfilter.org/
9. C. Brou, C. Kitahara, C. Tsarouchis, J. Vivero et al, "Final Specification of Case Study

Systems", FAIN Deliverable 8, May 2003
10. J. Moore, M.Hicks, S. Nettles, S., "Practical Programmable Packets", Proceedings IEEE

INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society.

11. D. Harrington, "An Architecture for Describing Simple Network Management Protocol
(SNMP) Management Frameworks", RFC3411, December 2002, IETF.

12. W. Eaves, L. Cheng, A. Galis, "SNAP Based Resource Control for Active Networks",
GLOBECOM 2002.

13. L. Cheng, W. Eaves, A. Galis, "Strong Authentication for Active Networks", accepted
for presentation at and to appear in the proceedings of IEEE-Softcom 2003.

14. S. Vrontis, I. Sygkouna, M. Chantzawa, E. Sykas, "Enabling Distributed QoS Manage-
ment utilizing Active Network Technology", 2003 IFIP-IEEE International Conference
on Network Control and Engineering, 11-15.10, 2003, Muscat, Oman.

	1 Introduction
	2 FAIN Active Node
	2.1 Virtual Environment Management
	2.2 Demultiplexer and Multiplexer: De/MUX
	2.3 Resource Control Framework
	2.4 FAIN Security Architecture

	3 A Secure Control EE (Active SNMP-EE)
	3.1 Packet Flow in the ASPE

	4 Dynamic Diffserv QoS Configuration and Consideration
	5 Conclusions and Future Work

