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Abstract. Multi input/output transition system (MIOTS) models the
interface distribution of a system by partitioning its inputs and out-
puts into channels. The MIOTS refusal testing theory has been based on
singular observers. Such an observer is useful for eliminating nondeter-
minism in the testing process, but also contributes to the large size of
the test suites. We propose an alternative type of observers: all-observer,
which can observe all the output channels simultaneously, and help to
reduce a test suite effectively. An algorithm is presented to generate
an all-observer test suite from the specification. The derived test suite is
sound for all MIOTS systems, and complete for a class of MIOTS systems
that are common in practice. We also discuss the problem of factorized
all-observer test generation. Our work complements the MIOTS refusal
testing with singular observers.

1 Introduction

Conformance testing is an operational way to check the correctness of a system
implementation by means of experimenting. Tests are applied to the implemen-
tation, and based on observations made during the execution of the tests, a ver-
dict about the correctness of the implementation is given. In formal conformance
testing it is assumed that we have a formal specification, and implementations
whose behavior is also formally modeled but not apriori known. Labeled Tran-
sition System (LTS) is a well-known model [1,2] for describing processes. LTS
does not distinguish between the initiative of actions, which is not very realis-
tic. So input/output transition system (IOTS) was proposed to model the more
common communication via actions that are initiated by the system (output),
and initiated by the environment (input) [3]. The IOTS model has no consider-
ation for the distribution of communication interfaces between the system and
the environment. To overcome this deficiency, [4] proposed a new model called
multi input/output transition system (MIOTS), which partitions the inputs and
outputs into different channels reflecting the locations where actions occur.
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For MIOTS implementations, the conformance to an LTS specification is de-
fined as the implementation relation multi input/output refusal preorder ≤mior.
miocoF is a generalization of ≤mior, which requires that all responses an im-
plementation can perform after every trace in the set of traces F are allowed by
the specification. Testing for miocoF consists of serial compositions of providing
a single input action at some input channel and detection of its acceptance or
rejection, and observing some output channel and detection of the occurrence or
absence of outputs produced at this channel. Such tests are modeled by singular
observers. After each trace in F , an individual test is needed for checking each
output channel to see if the implementation behaves correctly at this channel.
This method avoids the nondeterministic outputs of the implementation at dif-
ferent channels, and also allows for stronger testing power in general. However,
it also contributes to the large size of the derived test suite, which means big
time expense in test generation as well as in test execution.

Just like singular observers, all-observer is a special class of MIOTS that
can observe all the output channels simultaneously. We present in this paper
a test generation algorithm. For a specification with respect to miocoF , the
algorithm generates an all-observer test suite, which is smaller than the singu-
lar observer test suite, sound for all MIOTS systems, and complete for special
MIOTS systems (which are common in practice, e.g. queue systems).

Factorized test generation [5] is a technique that aims to avoid the genera-
tion of tests for a complicated correctness criterion directly from a large spec-
ification. In [5], for a specification s and miocoF , miocoF is decomposed into
mioco{σ}(∀σ ∈ F). Then for each trace, a selection process is applied to ob-
tain a reduced-size specification. This decomposition is very inefficient, especially
when F contains a lot of traces. So we propose an improved F-partition method,
which groups all the traces having the same selection process in one set, and thus
makes the test generation more efficient. It is shown that this optimization is
necessary for the factorized all-observer test generation.

This paper is organized as follows. Sect. 2 reviews the preliminaries of the
refusal testing theory for MIOTS. Sect. 3 describes our work on the all-observer
test generation. Sect. 4 discusses the factorized test generation in all-observer
based testing. Concluding remarks and future works are presented in sect. 5.

2 Refusal Testing for MIOTS

Definition 1. A (labeled) transition system over L is a quadruple 〈S,L,→, s0〉
where S is a (countable) set of states, L is a (countable) set of observable actions,
→⊆ S × L× S is a set of transitions, and s0 ∈ S is the initial state.

We denote the class of all transition systems over L by LT S(L). The observ-
able behavior of a transition system is expressed using sequences consisting of
actions and sets of refused actions, i.e., sequences in (L ∪ P (L))∗ (P (L) is the
power-set of L). Such sequences are called failure traces, comparable to traces
(those in L∗). A refusal transition is defined as a self-loop transition in the form
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s
A→ s′ where A ⊆ L is called a refusal of s, meaning that the system is unable

to perform any action in A from state s.

Definition 2. Let p ∈ LT S(L), then

1. init(p) =def {α ∈ L|∃p′ : p α→ p′}
2. der(p) =def {p′|∃σ ∈ (L ∪ P (L))∗ : p σ→ p′}
3. ftraces(p) =def {σ ∈ (L ∪ P (L))∗ : p σ→}
4. pref(σ2) = {σ1|∃σ′ : σ1 · σ′ = σ2 and σ1, σ2, σ

′ ∈ (L ∪ P(L))∗}
5. P after σ =def {p′|∃p ∈ P : p σ→ p′}
6. p is deterministic iff ∀σ ∈ L∗ : |{p} after σ| ≤ 1
7. p is output-finite if there is a natural number N s.t. ∀p′ ∈ der(p), the set

X = {σu ∈ (LU )∗|p′ σu→} is finite and ∀σu ∈ X : |σu| ≤ N , where LU is the
set of output actions.

Definition 3. A multi input/output transition system p over partitioning LI =
{L1

I , . . . , L
n
I } of LI and partitioning LU = {L1

U , . . . , L
m
U } of LU is a transition

system with inputs and outputs, p ∈ LT S(LI ∪ LU ), such that for all Lj
I ∈ LI ,

∀p′ ∈ der(p), if ∃a ∈ Lj
I : p′ a→ then ∀b ∈ Lj

I : p′ b→. The universe of multi
input/output transition systems over LI and LU is denoted byMIOT S(LI ,LU ).

Refusal testing [6] is a kind of such implementation relation where experi-
ments are not only able to detect whether actions can occur, but also able to
detect whether actions can fail, i.e. refused by the system. In MIOTS refusal test-
ing [4], special action labels θj

i (j = 1, . . . , n) are added to observe the inability
of the implementation to accept an input action in channel Lj

I (input suspen-
sion, denoted by ξj), and θk

u(k = 1, ...,m) are added to observe the inability to
produce outputs in channel Lk

U (output suspension, denoted by δk). Let Θ =
{θ1i , . . . , θn

i , θ
1
u, . . . , θ

m
u } denote all the suspension detection labels. Then, imple-

mentations that are modeled as members of MIOT S(LI ,LU ) are observed by
observers modeled in MIOT S(Lθ

U ,Lθ
I) where Lθ

I = {L1
I ∪{θ1i }, . . . , Ln

I ∪{θn
i }},

Lθ
U = {L1

U ∪ {θ1u}, . . . , Lm
U ∪ {θm

u }}. Communication between observer and sys-
tem is modeled by the parallel composition operator ‖. Observations that can be
made by an observer u interacting with p by means of ‖ now may consist these
suspension detection actions: obs(u, p) =def {σ ∈ (L ∪Θ)∗|(u‖p) σ→}.

Singular observers are a special class of MIOTS observers. They consist of
finite, serial compositions of providing a single input action at some channel Lj

I

and detection of its acceptance or rejection, and observing some channel Lk
U and

detection of the occurrence or absence of outputs produced at this channel. The
set of all singular observers over LI and LU is denoted by SOBS(Lθ

U ,Lθ
I).

In correspondence with the observations defined on (LI ∪LU ∪Θ)∗, we define
the suspension traces of p to be its failure traces restricted to (LI∪LU∪LI∪LU )∗ :
straces(p) =def ftraces(p)∩(LI∪LU∪LI∪LU )∗. Responses of the implementation
after a specific suspension trace that can be observed by singular observers are
collected into the set out.
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out(p after σ) =def {x ∈ LU |∃p′ : p σ→ p′ x→}
∪ {ξj |1 ≤ j ≤ n, ∃p′ : p σ→ p′ and init(p′) ∩ Lj

I = ∅}
∪ {δk|1 ≤ k ≤ m,∃p′ : p σ→ p′ and init(p′) ∩ Lk

U = ∅}
Definition 4 (multi input/output refusal preorder).
i ∈MIOT S(LI ,LU ) and s ∈ LT S(LI ∪ LU ), then

i ≤mior s =def ∀u ∈ SOBS(Lθ
U ,Lθ

I) : obs(u, i) ⊆ obs(u, s).

[4] has proved that i ≤mior s iff ∀σ ∈ (LI∪LU∪LI∪LU )∗ : out(i after σ) ⊆
out(s after σ). Checking this out inclusion condition for all the suspension traces
is too time consuming in practice. Therefore, [4] further generalizes this condition
to an arbitrary (and possible finite) set F ⊆ (LI∪LU ∪LI∪LU )∗, and define a
corresponding implementation relation miocoF :

Definition 5. i miocoF s =def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ).

3 All-Observer Testing for MIOTS

3.1 All-Observer

The all-observer is also a special class of MIOTS observers. Besides providing
input actions and observing single-channel outputs or suspensions, they are ad-
ditionally equipped with an all-output-channel observing mode: observing all
the m output channels (Lk

U , k = 1, . . . ,m) and detection of an output at some
channel, or no output at all. This collective output suspension is denoted by
a special label δ (called all-channel output suspension, meaning the refusal of
LU ), which can be detected by the all-observer using the label θu : θu =def

〈θ1u, . . . , θm
u 〉. The set Θ denotes the set of all the suspension detection labels:

Θ = {θ1i , . . . , θn
i , θ

1
u, . . . , θ

m
u , θu} , and let Ψ = {ξ1, . . . , ξn, δ1, . . . , δ

m, δ} denote
the counterpart suspension actions of the system. Other notations follow those
in Sect. 2.

Definition 6. An all-observer u over LI and LU is a finite, deterministic
MIOTS u ∈MIOT S(Lθ

U ,Lθ
I) such that

∀u′ ∈ der(u) : init(u′) = ∅ or init(u′) = LU ∪ {θu}
or init(u′) = {a, θj

i } for some j ∈ {1, . . . , n} and a ∈ Lj
I

or init(u′) = Lk
U ∪ {θk

u} for some k ∈ {1, . . . ,m}
the set of all-observer over LI and LU is denoted by AOBS(Lθ

U ,Lθ
I).

Definition 7. Communication between all-observer and system is modeled by
the operator ‖:MIOT S(Lθ

U ,Lθ
I)×LT S(LI∪LU ) → LT S(LI∪LU ∪Θ), defined

by the following inference rules:

u
a→u′,p

a→p′

u‖p
a→u′‖p′ (a ∈ LI ∪ LU ) u

θ
j
i→u′,init(p)∩Lj

I
=∅

u‖p
θ

j
i→u′‖p

(j ∈ {1, . . . , n})

u
θu→u′,init(p)∩LU=∅

u‖p
θu→u′‖p

u
θk

u→u′,init(p)∩Lk
U=∅

u‖p
θk

u→u′‖p

(k ∈ {1, . . . ,m})
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Definition 8. An all-observer test t ∈ AOBS(Lθ
U ,Lθ

I) such that ∀t′ ∈ der(t):

init(t′) = ∅ iff t′ = pass or t′ = fail

where pass and fail are verdicts that indicate the (in)correctness of implemen-
tation i when running t against i.

A test suite is sound if it never rejects correct implementations, and a test
suite is exhaustive if each incorrect implementation always fails this test suite. In
practice test suites are required to be sound, but not necessarily exhaustive. A
test suite is called complete if it is both sound and exhaustive. [4] presents a test
generation algorithm that produces complete SOBS test suites for specifications
with respect to miocoF . The SOBS test suite generated by the algorithm tends
to be very large because the necessity to check each output channel after each
σ ∈ F using a separate test. Our goal is: for given miocoF and specification s,
to replace the complete SOBS test suite with an AOBS test suite, which has
a smaller size, and preserves the soundness unconditionally, and preserves the
completeness conditionally. We presents an all-observer test generation algorithm
in the next section. It is modified from the singular-observer algorithm with two
changes: one, merging test purposes by checking more traces in one test case; two,
observing all the output channels simultaneously after performing each trace in
F using one test, instead of checking the output channels one by one using m
tests. The two changes all help to reduce the size of a test suite.

3.2 Test Generation

Let p ∈MIOT S(LI ,LU ), abbreviate “p after σ” to “p−σ”, and define out2(p−
σ) to be the union of out(p− σ) and the possible all-channel output suspension
δ: out2(p− σ) =def out(p− σ)∪ {δ|∃p′ ∈ p− σ : init(p′)∩LU = ∅}. In addition,
we define the out set of a state set P to be: out(P ) =def {out(p− ε)|p ∈ P}. We
denote with σ̄ the trace σ where each occurrence of a refusal action ξj , δ or δk

is replaced by its detection label θj
i , θu or θk

u, and vice versa.
The AOBS test generation algorithm is shown as follows. The rationale be-

hind is that it constructs tests that check the condition set forth in Def. 5:
out(i− σ) ⊆ out(s− σ) for each σ ∈ F .

Algorithm 1
input: s = 〈S,LI ∪ LU ,→, s0〉,F ⊆ (LI ∪ LU ∪ LI ∪ LU )∗

output: test case tF,S
initial value: S = {s0} after ε
Apply one of the following non-deterministic choices recursively.
1. if F = ∅ then tF,S := pass

2. take some Lj
I ∈ LI and a ∈ Lj

I , such that F ′ = {σ|a · σ ∈ F} �= ∅ and
S ′ = S after a, then

tF,S := a; tF ′,S′ +
{
θj

i ; fail ξj /∈ out(S) and ε ∈ F
θj

i ;pass otherwise
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3. take some Lj
I ∈ LI such that F ′ = {σ|ξj ·σ ∈ F} �= ∅,S ′ = (S after ξj), then

tF,S := a;pass + θj
i ; tF ′,S′ (a is any input in Lj

I)
4. observe on all the output channels

tF,S :=

∑{x; fail | x /∈ out(S), ε ∈ F}
+

∑{x;pass | x /∈ out(S), ε /∈ F}
+

∑{x; tF ′,S′ | x ∈ out(S),F ′ = {σ|x · σ ∈ F},S ′ = S after x}
+

{
θu; fail if ε ∈ F and ∃k ∈ {1, . . . ,m}, δk /∈ out(S)
θu;pass otherwise

where x ∈ LU

5. take some Lk
U ∈ LU , if F ′ = {σ|δk · σ ∈ F} �= ∅ and S ′ = S after δk, then

tF,S :=
∑{x; fail | x /∈ out(S), ε ∈ F}+

∑{x;pass | otherwise}+ θk
u; tF ′,S′

where x ∈ Lk
U ��

Step 1 assigns pass in case no trace in F is performed. Step 2 and 3 each
supplies an input to the implementation at some channel Lj

I and continues if
the implementation is able to accept or refuse this input, respectively. Step 4
awaits an output action at any output channel or observes an all-channel output
suspension. Step 5 awaits a single-channel output suspension to test deeper. For
each response that is unspecified by the specification, a fail verdict is given. In
particular, when θu is observed but there exists an output channel that should
not suspend at the current states (i.e., δk /∈ out(S)), a fail verdict should be
made. With this strategy, it is apparent that an all-observer test cannot detect
unspecified single-channel output suspension, because the suspension will be
screened by an output at another channel that is also under observation in the
all-output-channel observing mode. This limitation makes Algorithm 1 unable to
generate an exhaustive test suite. We will give a demonstration and discuss this
problem in Sect. 3.4. Fig. 1 compares AOBS with SOBS tests in the way they
check the output behavior of the implementation after performing σ. An SOBS
test suite uses m tests: t1, . . . , tm, each for one output channel. These tests are
substituted in the AOBS test suite by only one test t as shown in Fig. 1b, where
xk generally refers to any x ∈ Lk

U .

3.3 Soundness

Proposition 1. Let p ∈ MIOT S(LI ,LU ), then δ ∈ out2(p − σ) implies δk ∈
out(p− σ), k = 1, . . . ,m.

Tests generated by Algorithm 1 in Sect. 3.2 check all and only the traces in F
to see if the out-inclusion condition holds. There are five types of observations:
(1) input action a ∈ Lj

I , (2) input suspension ξj , (3) output action y ∈ Lk
U , (4)

single-channel output suspension δk, (5) all-channel output suspension δ. Only
three of them (2, 3, 5) may be associated with verdicts. fail verdicts are only
given for unspecified output or input and output suspension, which all mean
non-conformance, so the AOBS tests generated by Algorithm 1 must be sound.
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t
0

t'

...

x
1 x

2

t'
x2

vdt
t'
x1

(b) the  test t

t
0

t'

...

1
UL

t
1

t
m

(a) m  tests

m
UL

is

x
1

x
1

x
2

(c) i fails the test suite, but

   i passes the test suite

u

Fig. 1. testing σ for output: SOBS vs. AOBS tests

Proposition 2. Let s ∈ LT S(LI , LU ), F ⊆ (LI ∪ LU ∪ LI ∪ LU )∗, then the
AOBS test suite generated by Algorithm 1 is sound for s w.r.t. miocoF .

Algorithm 1 generates sound but not exhaustive test suites. See Fig. 1c for
an example, suppose x1 and x2 respectively belong to L1

U and L2
U of a specifi-

cation s and F = {σ}, the implementation i will fail the SOBS tests because it
has an unspecified output suspension (δ2, as shown by the self-loop transition)
after performing σ. This error, however, will not be disclosed by the AOBS tests
generated by Algorithm 1, because the output-checking test always stops with a
pass verdict after the action x1. This example shows that the all-observer gen-
erally have a weaker testing power than singular observers. The exhaustiveness
can only be preserved conditionally, as is shown in the next section.

3.4 Completeness

In this section, we discuss the problem of generating complete all-observer test
suites. We show that this is possible for a special class of MIOTS in case F
satisfies a given condition.

Definition 9. Let s ∈ LT S(LI , LU ), Lθ = LI ∪LU ∪LI ∪LU , strace-reordering
is a relation defined on (Lθ)∗, ∼⊆ (Lθ)∗ × (Lθ)∗:

∀σ1, σ2 ∈ (Lθ)∗, σ1 ∼ σ2 =def σ1!(LI∪LI∪Lk
U∪{Lk

U}) = σ2!(LI∪LI∪Lk
U∪

{Lk
U}), k = 1, . . . ,m

where σ!A is the projection of σ on the action set A, resulting in a trace con-
sisting of only actions in A with their original order.

If σ1 ∼ σ2, we say σ2 is an strace-reordering of σ1. For example, use a, b for
inputs, and x, y, z for outputs at different channels, then (a·x1·x2·y·δ2·z·b·x·y) ∼
(a·y ·x1 ·δ2 ·z ·x2 ·b·y ·x). ∼ is an equivalence relation on (Lθ)∗. A real background
of this relation is the queue systems [7].
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Definition 10. Let p ∈ LT S(LI ∪ LU ),LI = {L1
I , . . . , L

n
I } and LU =

{L1
U , . . . , L

m
U }, we say p is strace-reorderable, if

∀σ1, σ2 ∈ (Lθ)∗ and σ1 ∼ σ2: σ1 ∈ straces(p) iff σ2 ∈ straces(p)

Queue systems is an intuitionistic example of strace-reorderable systems,
but note that not all the strace-reorderable systems are queue systems. Strace-
reorderable systems have two important properties.

Proposition 3. Suppose p ∈ LT S(LI ∪ LU ) is strace-reorderable, σ ∈ (Lθ)∗,
x ∈ Lk′

U , k �= k′, then

1. δk /∈ out(p− σ) implies δk /∈ out(p− σ · x)

2. ∀p′, p σ→ p′ : (p′ δk

→ and p′ x→) implies δk ∈ out(p− σ · x)

Proof.

1. (by contradiction) δk ∈ out(p− σ · x) implies p σ·x·δk

−→ , in turn implies p σ·δk·x−→
because p is strace-reorderable and σ · x · δk ∼ σ · δk · x. Then we have δk ∈
out(p− σ), so a contradiction.

2. We first show that p σ→ p′ : (p′ δk

→ and p′ x→ p′′) implies p′′ δk

→. Otherwise,

suppose ∃y ∈ Lk
U : p′′ y→, then p

σ·δk·x·y−→ . Because p is strace-reorderable and also

σ · δk · x · y ∼ σ · δk · y · x, we will have p
σ·δk·y·x−→ , which is impossible by the

definition of δk. From p′′ δk

→ we have δk ∈ out(p− σ · x). ��

The first statement means that, if p does not suspend on the channel Lk
U

after a trace σ, it will not either after the trace σ · x where x belongs to a
different output channel. The second statement comes from the fact that, if p
cannot produce any output at the channel Lk

U in a state p′, it cannot either after
a further output action x at a different channel. These properties characterize
the independence of the output behaviors occurring at different channels of a
strace-reorderable system.

Definition 11. s ∈ LT S(LI , LU ), F ⊆ (LI ∪ LU ∪ LI ∪ LU )∗, for ∀k ∈
{1, . . . ,m}, the boolean predicate keepF (δk) is true if

∀σ ∈ F and δk /∈ out(s− σ),∀y ∈ LU \Lk
U : y ∈ out(s− σ) implies σ · y ∈ F

“LU \Lk
U” is the difference between LU and Lk

U . In case s is output-finite
(cf. Def. 2.7), from a finite set F , we can always derive a finite set F ′ that
satisfies ∀k ∈ {1, . . . ,m} : keepF ′(δk). One of such sets is F0 = F ∪ {σ ·σu ∈
straces(s)|σ ∈ F , σu ∈ (LU )∗}. This expansion is necessary for the purpose of
detecting unspecified single-channel output suspension δk, as explained later.

On the contrary, a system that is not output-finite may produce infinite out-
put sequences (and possible with infinite length) in some state. We exclude such
systems in the discussion of completeness and assume that specifications are
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output-finite. However, we do not require this for implementations; an imple-
mentation may produce endless outputs (e.g. on entering an error state). Some
straightforward properties of keepF (δk) are summarized below.

Proposition 4. Let s ∈ LT S(LI ∪ LU ), σ ∈ (Lθ)∗,∀k(k = 1, . . . ,m)

1. δk ∈ out(s− σ) implies keep{σ}(δk)

2. if δk /∈ out(s− σ) and ¬∃y ∈ LU \Lk
U s.t. y ∈ out(s− σ), then keep{σ}(δk)

3. keep{σ}(δk)(∀σ ∈ F) implies keepF (δk)

Proposition 5. Let s ∈ LT S(LI ∪ LU ), i ∈ MIOT S(LI ,LU ), s and i are all
strace-reorderable, and s is ouput-finite, F ⊆ (Lθ)∗ and satisfies keepF (δk)(k =
1, . . . ,m),T is the AOBS test suite generated by Algorithm 1, then T is exhaus-
tive for s w.r.t. miocoF .

Proof. We have to prove: ∀i ∈ MIOT S(LI ,LU ) : ¬(i miocoF s) implies
(i fails T ), this equals to proving:

“∃σ ∈ F : out(i− σ) �⊆ out(s− σ)” implies “∃t ∈ T : i fails t” (#)
If ∃σ ∈ F s.t. out(i − σ) �⊆ out(s − σ), at least one of the following three

cases must hold according to the definition of out:
case1. ∃ξj : ξj ∈ out(i − σ) but ξj /∈ out(s − σ). Let t be the test checking

the input at Lj
I after σ, then ξj ∈ out(i− σ) implies ∃i′ : i σ→ i′

ξj

→ i′. According

to Algorithm 1 step 2, since ξj /∈ out(s − σ), we have (t σ̄→ t′
θj

i→ fail). So

∃i′ : t‖i σ̄→ t′‖i′ θj
i→ fail‖i′, this means i fails t. (#) holds.

case2. ∃y ∈ Lk
U : y ∈ out(i− σ) but y /∈ out(s− σ). Similar reasoning leads

to (#).
case3. ∃δk : δk ∈ out(i− σ) but δk /∈ out(s− σ). Let t be the test checking

the output in LU after σ, then we have three facts (as are illustrated in Fig. 2):

I. δk /∈ out(s− σ); II. δk ∈ out(i− σ); III. the test t: t σ̄→ t′ θu→ fail
Next we consider two cases about i and prove that “i fails t” always holds.
(1) The implementation i can suspend simultaneously at all the output chan-

nels, i.e., δ ∈ out2(i − σ), then ∃i′ : i σ→ i′ δ→ i′. So from III: ∃i′ and t′ s.t.
t‖i σ̄→ t′‖i′ θu→ fail‖i′, then i fails t.

(2) i cannot suspend at all the output channels, i.e., i must produce an output
at some channel after performing σ:

∀i′, (i σ→ i′ δk

→) implies (∃k′ �= k and y ∈ Lk′
U : i′

y→)

From II, we know ∃i′ : i σ→ i′ δk

→ i′, so ∃k′ �= k and y ∈ Lk′
U : i′

y→ . . . . . . . IV.
(2.1) If y /∈ out(s− σ), it can be proved i fails t, similar to above case2.
(2.2) Else y ∈ out(s − σ), then from the fact I and the assumption that F

satisfies keepF (δk)(k = 1, . . . ,m), we have σ · y ∈ F .
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By Algorithm 1, the AOBS test t must have a y transition after σ̄ : t′
y→, as

shown in Fig. 2.
Let σ′ = σ ·y, we have the following facts resembling I, II and III:
I’. δk /∈ out(s− σ′) (By I and Proposition 3.1)

II’. δk ∈ out(i− σ′) (By i
σ→ i′ δk

→ i′, IV and Proposition 3.2)

III’. the AOBS test t: t
σ̄·y→ t′′ θu→ fail (By I’ and Algorithm 1)

Similar to the proof in (1) and (2) we may further grow the AOBS test t as:

t
σ̄′→ t′′

y′
→ where k′′ �= k and y′ ∈ Lk′′

U , as shown in Fig. 2c.
For σ′′ = σ′ ·y′, continue with the proof like that for (1) and (2). Under the

assumption that s is output-finite, the process must end at a trace σ0 ∈ F :
σ0 = σ ·y ·y′ · . . ., where y, y′, . . . are outputs at channels other than Lk

U . Then
we have:

-I- δk /∈ out(s− σ0); -II- δk ∈ out(i− σ0); -III- t0
σ̄0→ t0

θu→ fail
And one of the following two conditions must be true:
end-condition1: δ ∈ out2(i− σ0). Then by -III-: i fails t.

end-condition2: ∃k0 �= k and y0 ∈ Lk0

U : y0 ∈ out(i− σ0) but y0 /∈ out(s−
σ0). Then t: t0

y0

→ fail, and so i fails t.
Now, it can be concluded by case1 to case3 that: ∀σ ∈ F , out(i − σ) �⊆

out(s− σ) implies ∃t ∈ T : i fails t, (#) always holds. ��

(a) specification s

s
0

s'

y

s''

y'

{y0}s0

k
Ux L∈

' k
Ux L∈

0 k
Ux L∈

(b) implementation i

i
0

i'

y

i''

y'

y0
i0

k

k

i0

end1
end2

(c) the  test t

t
0

t'

...

σ

y

t''

...
y'

u

u

fail

fail

...

x0 y0

t0

fail

u

failpass

Fig. 2. growing of the AOBS test

The key in the proof is that, an unspecified single-channel output suspen-
sion, screened by a series of outputs at other channels, will manifest itself even-



Testing Multi Input/Output Transition System with All-Observer 105

tually when all the allowed outputs (they are finite, because the specification
s is output-finite) at the interfering channels of the implementation have been
produced and then only “unspecified” output or all-output-channel suspension
can be produced by the implementation (these two cases both result in a fail
verdict). Proposition 5 gives the sufficient condition to achieve this effect: to pre-
serve single-channel output suspension through interfering outputs, the specifi-
cation and implementation must be strace-reorderable; to detect the suspension
eventually, all the allowed outputs at other channels must be further checked,
which is guaranteed if F satisfies the keep condition.

Theorem 1. Let s ∈ LT S(LI ∪ LU ), i ∈ MIOT S(LI ,LU ), s and i are all
strace-reorderable, and s is ouput-finite, F ⊆ (Lθ)∗ and satisfies keepF (δk)(k =
1, . . . ,m),T is the AOBS test suite generated by Algorithm 1, then T is complete
for s w.r.t. miocoF .

This theorem is obvious from Propositions 2 and 5. By now, we have achieved
the second goal set in Sect. 3.1. The exhaustiveness of all-observer tests is accom-
plished by making stronger test assumptions about the models of both specifica-
tions and implementations. This technique has often been used for test selection,
or test-suite size reduction [8]. In practice, queue systems are strace-reorderable
and often output-finite. Therefore, the all-observer test generation has promising
application values.

3.5 Examples

In this section, we use some examples to illustrate the all-observer test generation
algorithm.

Example 1. Figure 3a shows an strace-reorderable and output-finite specification
q ∈ MIOT S(Lθ

I = {{a, ξ}},Lθ
U = {{x, δ1}, {y, δ2}}). After the input action a,

q either produces x, or produces y, or produces x and y in an arbitrary order.
τ denotes an internal action. Let F = {a, a ·x, a ·y, a ·x · y, a ·y ·x}. The AOBS
and SOBS test suites generated by Algorithm 1 and the algorithm in [4] (after
merging relevant tests) respectively are shown in Fig. 3b and Fig. 3c. Only
output-checking tests are listed for comparison. The SOBS test suite contains
six tests t1 ∼ t6 (e.g. t3 checks the output at the channel L1

U both after the
trace a and after a·x·y, and also the output at the channel L2

U after a·x). Since
∀σ ∈ F : δk ∈ out(s−σ), keepF (δk)(k = 1, . . . ,m) holds (by Propositions 4.1 and
4.3), by Theorem 1 we know that the AOBS test suite is complete. It contains
only one test, but is testingly equivalent to the six SOBS tests.

Example 2. Also for q in Example 1, now let F = {a, a · δ1, a ·δ2}, the SOBS
and AOBS test suites are shown in Fig. 3d. It can be verified that F satisfies
keepF (δk) for each k in {1, . . . ,m}. First, we have δk ∈ out(s− a) for k = 1, 2,
so keep{a}(δk). Then, although δ2 /∈ out(s− a·δ1), there isn’t any z ∈ LU\L2

U :
z ∈ out(s − a·δ1); by Proposition 4.2 we have keep{a·δ1}(δ2). Also, by the fact
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δ1 ∈ out(s−a·δ1) and Proposition 4.1 we know keep{a·δ1}(δ1). Similar arguments
hold for keep{a·δ2}(δ1) and keep{a·δ2}(δ2). Therefore by Theorem 1 the AOBS
test suite is complete. It contains three tests with the same testing power as the
four SOBS tests (which are left to readers and not shown in Fig. 3). Furthermore,
execution of t′1 always results in pass verdict and thereby can be removed.

We have illustrated Algorithm 1 by two examples where each F satisfies the
exhaustiveness-preserving condition. In case F does not satisfy this condition,
we must first expand it to get one that does. At the same time, we will obtain
a stronger conformance relation than the original miocoF .

4 Factorized All-Observer Test Generation

4.1 Factorized Test Generation

Definition 12. The universe of selection processes over LI is defined by
SLT S(LI) =def {p ∈ LT S(LI)|p is deterministic}
Let s ∈ LT S(LI ∪ LU ) and q ∈ SLT S(LI), then the transition system s‖LI

q ∈
SLT S(LI ∪ LU ) is defined by the following inference rules.

s
a→s′,q

a→q′

s‖LI
q

a→s′‖LI
q′ (a ∈ LI) s

x→s′

s‖LI
q

x→s′‖LI
q
(x ∈ LU )

For a very large specification s, selection process q can be used to isolate
a smaller specification s‖LI

q that contains only the responses to the input se-
quences specified in q, but discards all responses to other input sequences. The
operator ‖LI

imitates the synchronous communication operator ‖ but only syn-
chronizes input actions. s‖LI

q can be seen as the projected specification of s
onto q.

[5] gives the soundness-preserving condition for the factorized test generation.
For s ∈ LT S(LI ∪ LU ), q ∈ LT S(LI) and F ⊆ (LI ∪ LU ∪ LI ∪ LU )∗, if q
satisfies the condition “F!LI ⊆ traces(q)”(F!LI =def {σ!LI |σ ∈ F}), then
a sound test suite of s‖LI

q with respect to miocoF is also sound for s with
respect to miocoF . [5] also gives the completeness-preserving condition for the
factorized test generation. A boolean predicate is defined as acceptq(σ) =def

∀σ′ ∈ pref(σ),∃q′(q σ′
→ q′) : q′ a→ (∀a ∈ LI). If q satisfies the condition “∀σ ∈

F : acceptq(σ!LI)”, then a complete test suite of s‖LI
q with respect to miocoF

is also complete for s with respect to miocoF .
Another problem in test generation for miocoF is that F may contain many

traces, which means both time and space challenging to test generation tools. A
feasible way is to decompose the correct criterion miocoF into smaller ones.

Proposition 6.
1. miocoF =

⋂
σ∈F mioco{σ}

2. miocoF = miocoF1

⋂
miocoF2

⋂
. . .

⋂
miocoFn (F = F1 ∪ F2 ∪ . . . ∪ Fn)
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Fig. 3. All-observer test generation

By Proposition 6.1, miocoF can be splitted into a set of smaller relations
mioco{σ}(σ ∈ F) for which the correctness check may be performed indepen-
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dently. For each of these small criteria, it suffices to take a selection process
q that satisfies either the soundness-preserving or the completeness-preserving
condition to generate a (sound or complete) test suite for s‖LI

q and mioco{σ},
respectively. These test suites are then combined into one test suite, which is
sound or complete in testing implementations for its miocoF -relation with s.
This method was proposed in [5] and called factorized test generation. The test
generation algorithm is the one in [4] and it generates SOBS tests.

To partition F into a set of singletons reduces the calculation complexities
at furthest, but it is very inefficient due to the large number of traces contained
in F : an individual application of the selection process is needed for each σ in
F , even for the traces sharing the same selection process and the same projected
specification. To overcome this problem, we need a coarser partitioning of F .

Definition 13. Let σ, σ′ ∈ (LI ∪ LU ∪ LI ∪ LU )∗, we say σ is affinal to σ′ if:
σ!LI = σ′!LI , denoted by: σ ⊥ σ′.

affinal (⊥) is an equivalence relation and F forms a partition over ⊥:
F⊥ = {F1,F2, . . . ,Fh}. Fi!LI contains only one trace, denoted as σi. By Propo-
sition 6.2, we know that miocoF can be decomposed into a set of criteria
miocoFi

(i = 1, . . . , h). Traces in Fi have the same projection on LI ; thus they
share the same selection process (e.g. stick(σi) or fan(σi), two kinds of selec-
tion processes defined in [5]). Now we generate a test suite for each s‖LI

qi and
miocoFi for i = 1, . . . , h, where qi is constructed in line with σi. This improve-
ment can greatly reduce the frequency of calculating projected specifications.
Furthermore, such trace grouping helps to merge test cases that check the fail-
ure traces having common prefixes, and to reduce the size of the final composed
test suite. This improvement is just an optimization for the factorized SOBS
test generation, but for factorized AOBS test generation using Algorithm 1, it
is indeed necessary, as we show in the next section.

4.2 Factorized All-Observer Test Generation

Using Algorithm 1 for factorized test generation we get AOBS test suites. Will
they still be sound or complete under the respective condition established in
Sect. 4.1? Proposition 2 shows that Algorithm 1 generates sound AOBS test
suites for general MIOTS systems; so does it for projected specifications, which
are certainly MIOTS systems. Therefore, Algorithm 1 can be used to generate
a sound AOBS test suite for each miocoFi and s‖LI

qi (Fi ∈ F⊥, i = 1, . . . , h),
where qi satisfies σi ∈ traces(qi). All these test suites are united into one test
suite, which is sound for s with respect to miocoF .

Proposition 5 specifies the requirements imposed on the specification s, the
implementation i and F for Algorithm 1 to generate an exhaustive AOBS test
suite for s with respect to miocoF . To apply this proposition to factorized
AOBS test generation, we must prove that these requirements are still satisfied
by both the projected specifications and Fi in the smaller criterion miocoFi

.
Ideally, all of the following three guesses should true:
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guess1. the projected specifications s‖LI
qi are output-finite

guess2. the projected specifications s‖LI
qi are strace-reorderable

guess3. for each Fi ∈ F⊥ and the projected specification s‖LI
qi:

keepFi(δ
k)(k = 1, . . . ,m)

It is obvious that guess1 is true if the specification s is output-finite, because
any selection process only “copies” the original outputs but never adds. However,
guess2 is not hinted by the assumption that s is strace-reorderable. Nevertheless,
if q satisfies acceptq(σ!LI), s‖LI

qi will have properties similar to Proposition 3.

Proposition 7. Let s ∈ LT S(LI ∪ LU ) be strace-reorderable, q ∈ SLT S(LI),
p ≡ s‖LI

q, x ∈ Lk′
U , k �= k′. For ∀σ ∈ (Lθ)∗, if acceptq(σ!LI), then

1. δk /∈ out(p− σ) implies δk /∈ out(p− σ ·x)

2. ∀p′, p σ→ p′ : (p′ δk

→ and p′ x→) implies δk ∈ out(p− σ ·x)

This proposition can be proved using the fact that acceptq(σ!LI) implies
out(s − σ) = out(p − σ) and out(s − σ ·x) = out(p − σ ·x) (note that σ⊥ σ ·x,
so acceptq(σ · x!LI). Then δk /∈ out(p − σ) implies δk /∈ out(s − σ). From
Proposition 3 and the assumption s is strace-reorderable, we have δk /∈ out(s−σ·
x), so also δk /∈ out(p−σ·x). Similar reasoning leads to part 2 of the proposition.
These properties of s‖LI

q expressed by Proposition 7 are really what matter in
the proof of exhaustiveness of the AOBS test suites in Proposition 5. It doesn’t
matter that s‖LI

q is not strace-reorderable.

Proposition 8. Let s∈LT S(LI∪LU ), q∈SLT S(LI),F ⊆ (Lθ)∗ and ∀σ ∈ F :
acceptq(σ!LI), p ≡ s‖LI

q. Then for each k in {1, . . . ,m}: “keepF (δk) holds for
s” iff “keepF (δk) holds for p”.

Proposition 9. Let s∈LT S(LI∪LU ), and F⊥ = {F1,F2, . . . ,Fh}. If F satis-
fies keepF (δk) for s, Fi will also satisfy keepFi

(δk) for s:

∀δk(k = 1, . . . ,m) : keepF (δk) implies keepFi(δ
k)(i = 1, . . . , h)

Proposition 9 can be proved easily using Def. 11 and the fact σ⊥σ·y. It means
that the predicate keepFi

(δk) is preserved in the affinal partition of F . Proposi-
tion 8 can be proved using Def. 11 and the equation out(s− σ) = out(p− σ). It
means that the predicate is preserved in the projected specification. From these
two propositions, it can be concluded: given that F satisfies keepF (δk) for s, we
have ∀Fi ∈ F⊥ : keepFi(δ

k)(k = 1, . . . ,m) hold for each projected specification
s‖LI

qi. qi is the selection process satisfying acceptqi(σi!LI) where Fi!LI = σi.
This is guess3. Now, completely analogous to the process of proving Proposi-
tion 5, it can be shown that Algorithm 1 generates a complete AOBS test suite
for each of the projected specification s‖LI

qi with respect to the corresponding
decomposed criterion miocoFi , if only the original requirements imposed on the
specifications s, the implementation i and the set of failure traces F are satis-
fied, and also a selection process qi complying with the completeness-preserving
condition is used. Combining this result with the fact that miocoF can be de-
composed according to the affinal partition of F , we get Theorem 2.
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Theorem 2. Let s ∈ LT S(LI ∪LU ), i ∈ MIOT S(LI ,LU ), s and i are all
strace-reorderable, and s is ouput-finite, F ⊆ (Lθ)∗ and satisfies keepF (δk)(k =
1, . . . ,m). F⊥ = {F1,F2, . . . ,Fh},Fi!LI = {σi}. For i = 1, . . . , h, let qi ∈
SLT S(LI) and satisfies acceptqi(σi), let pi ≡ s‖LI

qi, and TFi(pi) is the AOBS
test suite generated by Algorithm 1 for pi w.r.t. miocoFi , Then⋃

Fi∈F⊥ TFi
(pi) is complete for s w.r.t. miocoF .

Consequently, for strace-reorderable specifications and implementations, if
the specification is output-finite, Algorithm 1 can be used for the factorized
generation of complete AOBS test suites, following the same rule that governs
the factorized generation of SOBS tests. Thus a single framework exists for the
factorized generation of both singular-observer and all-observer tests.

5 Conclusions and Future Work

In this paper we present a new method of testing MIOTS, viz. with a kind of
observers called all-observer. The all-observer is superior to singular observers
in the sense that they can observe the responses of the implementation at all
the output channels simultaneously in a testing process. As a result, a test suite
consisting of all-observer tests is often much smaller than the one consisting of
singular observer tests. This means time-savings in both test generation and test
execution. However, the discriminating power of all-observer is generally weaker
than that of singular observers, because it may fail to capture the unspecified
single-channel output suspensions. We give a test generation algorithm to de-
rive all-observer tests for a specification s with respect to the relation miocoF .
The algorithm can generate a sound test suite for any MIOTS systems, but
can only generate a complete test suite for a subset of the MIOTS systems:
strace-reorderable, which characterizes the independence of the output behaviors
occurring at different channels, and output-finite, which is only required for the
specification but not for the implementation.

We then studied the problem of factorized all-observer test generation. For
the decomposition of the correctness criterion, an optimized F-partition tech-
nique is proposed to take advantage of the fact that many traces in F may share
the same selection process. For the reduction of the specification, it is proved
that the soundness and completeness conditions in factorized singular-observer
test generation are also valid for the factorized all-observer test generation.

In theory, the all-observer complements the singular observers in testing
MIOTS. In practice, queue systems is a possible domain applying the all-observer
testing. Finally, in case an MIOTS is strace-reorderable, the trace set F may be
reduced according to the strace-reordering relation without weakening the cor-
rect criterion. This is to be studied in future.
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